算术平方根教学设计10篇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算术平方根教学设计10篇
《平方根》教案篇一
教学设计示例
一.教学目标
1.会用计算器求数的平方根;
2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点
教学重点:用计算器求一个正数的平方根的程序
教学难点:准确用计算器求解一个正数的平方根
三.教学方法
讲练结合
四.教学手段
实物投影仪,计算器
五.教学过程
在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。
具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。
熟悉计算器基本键的功能。
现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求的步骤如下:
小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求的值。
(保留4个有效数字)
解:用计算器求的步骤如下:
小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求的'值。
解:用计算器求的步骤如下:
因为计算结果要求保留4个有效数字,
例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:
因为计算结果要求保留4个有效数字,
小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:
分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
解:按键的顺序是:显示612.65685
≈612.7
练习:
求下列正数的算术平方根:
(1)49 ;(2)0.81;(3)1.5376;(4)5 ;(6)260;
(7);(8)101.38
六.总结
利用计算器求解既快又精确,操作时要严格按照步骤执行。
特别注意要用到第二功能键,首先要先按“2F”在按需要的键。
由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。
八.作业
教材A组1、2、3
九、板书设计
平方根优秀教案设计篇二
学习目标:
1、在实际问题中,感受算术平方根存在的意义,理解算术平方根的概念,算术平方根具有双重非负性
2、会用计算器求一个数的算术平方根;利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的'规律;
学习重点:理解算术平方根的概念
学习难点:算术平方根具有双重非负性
学习过程:
一、学习准备
1、阅读课本第3页,由题意得出方程x= ,那么X= ,
这种地砖一块的边长为m
2、正数a有2个平方根,其中正数a的正的平方根,也叫做a的算术平方根。
例如,4的平方根是,叫做4的算术平方根,记作=2,
2的平方根是“ ”,叫做2的算术平方根,
3、(1)16的算术平方根的平方根是什么?5的算术平方根是什么?
(2)0的算术平方根是什么?0的算术平方根有几个?
(3)2、-5、-6有算术平方根吗?为什么?
4、按课本第4页例题1格式求下列各数的算术平方根:
(1)625(2)0. 81;(3)6;(4)(5) (6)
二、合作探究:
1、阅读课本第5页利用计算器求算术平方根的方法,利用计算器求下列各式的值。
(1)(2)(3)
2、利用计算器求下列各数的算术平方根
a2000020020.020.0002
通过观察算术平方根,归纳被开方数与算术平方根之间小数点的变化规律
3、在中,表示一个数,表示一个数,算术平方根具有
练习:若a-5+ =0,则的平方根是
三、学习:
本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?
四、自我测试:
1、判断下列说法是否正确:
①5是25的算术平方根;()②-6是的算术平方根;()
③ 0的算术平方根是0;()④ 0.01是0.1的算术平方根;()
⑤一个正方形的边长就是《·.》这个正方形的面积的算术平方根.()
2、若=2.291,=7.246,那么=( )
A.22.91 B.72.46 C.229.1 D.724.6
3、下列各式哪些有意义,哪些没有意义?
4、求下列各数的算术平方根
①121 ②2.25 ③ ④(-3)2
5、求下列各式的值① ② ③ ④
思维拓展:
1、一个数的算术平方根等于它本身,这个数是。
2、若x=16,则5-x的算术平方根是。
3、若4a+1的平方根是±5,则a的算术平方根是。
4、的平方根等于,算术平方根等于。
5、若a-9+ =0,则的平方根是
6、的平方根等于,算术平方根是。
7、求xy算术平方根是。
数学小知识——怎样用笔算开平方
我国古代数学的成就灿烂辉煌,早在公元前一世纪问世的我国经典数学著作《九章算术》里,就在世界数学史上第一次介绍了上述笔算开平方法.据史料记载,国外直到公元五世纪才有对于开平方法的介绍.这表明,古代对于开方的研究我国在世界上是遥遥领先的.1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除256,所得的最大整数是4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.如图2所示分别求85264,12.5平方根的过程。
自己举例试试!
学情分析: 篇三
知识背景:学生已经学会了乘方运算。
能力背景:能借助乘方运算解决其逆运算-----开平方
预测目标:1.能熟练地求一个正数的平方根。
2、知道乘方与开方的联系与区别
四、教具准备: 多媒体
小结: 篇四
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
《平方根》教案篇五
教学目标:
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
教学重点:
算术平方根的概念。
教学难点:
根据算术平方根的概念正确求出非负数的算术平方根。
教学过程
一、情境导入
请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是?这个问题实际上是已知一个正数的平方,求这个正数的问题?
这就要用到平方根的概念,也就是本章的主要学习内容。
这节课我们先学习有关算术平方根的概念。
二、导入新课:
1、提出问题:(书P68页的问题)
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值。
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。
a的算术平方根记为,读作根号a,a叫做被开方数。
规定:0的算术平方根是0.
也就是,在等式=a (x0)中,规定x = .
2、试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。
3、想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。
例如表示25的算术平方根。
4、例1 求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
三、练习
P69练习1、2
四、探究:(课本第69页)
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的`值吗?
建议学生观察图形感受的大小。
小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。
五、小结:
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根
六、课外作业:
P75习题13.1活动第1、2、3题
教学目标: 篇六
知识与技能目标:
1、知道平方根的概念,能熟练地求出一个正数的平方根。
2、能描述平方根的特征,理解开方与乘方两者之间的联系与区别。
过程与方法目标:
让学生在观察、探索等活动中,获得对非负数的平方根特点的认识。
情感与态度目标:
1、学生积极参与数学活动,培养其对数学的好奇心与求知欲。
2、过数学活动,使学生获得成功的体验,并形成实事求是的态度。
《平方根》教案篇七
一、教学目标
1.理解一个数平方根和算术平方根的意义;
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;
3.通过本节的训练,提高学生的逻辑思维能力;
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣。
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合
四、教学手段
幻灯片
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0。
125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。
下面作一个小练习:填空
1、()2=9;
2、()2 =0、25;
3、
5、()2=0、0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根;
±0.5是0。
25的平方根;
0的平方根是0;
±0.09是0。
0081的平方根。
由此我们看到+3与—3均为9的平方根,0的平方根是0,下面看这样一道题,填空:()2=—4
学生思考后,得到结论此题无答案。
反问学生为什么?因为正数、0、负数的平方为非负数。
由此我们可以得到结论,负数是没有平方根的。
下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1.一个正数有两个平方根,它们互为相反数。
2.0有一个平方根,它是0本身。
3.负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到+3与—3的平方是9,9的平方根是+3和—3,可见平方运算与开平方运算互为逆运算。
根据这种关系,我们可以通过平方运算来求一个数的平方根。
与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“— ”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”。
根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”。
练习:1.用正确的符号表示下列各数的平方根:
①26 ②247 ③0。
2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
③0。
2的。
平方根是
④3的平方根是
⑤ 的平方根是
由学生说出上式的读法。
例1。
下列各数的平方根:
(1)81;(2);(3);(4)0。
49
解:(1)∵(±9)2=81,
∵81的平方根为±9。
即:
(2)
的平方根是,即
(3)
的平方根是,即
(4)∵(±0。
7)2=0。
49,
∵0。
49的平方根为±0。
7。
小结:让学生熟悉平方根的概念,掌握一个正数的平方根有两个。
六、总结
本节课主要学习了平方根的概念、性质,以及表示方法,回去后要仔细阅读教科书,巩固所学知识。
七、作业
教材P。
127练习1、2、3、4。
八、板书设计
平方根
(一)概念(四)表示方法例1
(二)性质
(三)开平方
探究活动
求平方根近似值的一种方法
求一个正数的平方根的近似值,通常是查表。
这里研究一种笔算求法。
例1。
求的值。
解∵92102,
两边平方并整理得
∵x1为纯小数。
18x1≈16,解得x1≈0。
9,
便可依次得到精确度
为0。
01,0。
001,……的近似值,如:
两边平方,舍去x2得19.8x2≈—1.01
教学重点:篇八
算术平方根的概念。
《平方根》教案篇九
教学目标
1、了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;
3、通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
教学难点
根据算术平方根的概念正确求出非负数的算术平方根。
知识重点
算术平方根的概念。
教学过程(师生活动)
设计理念
情境导入同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子。
因为这一天,神舟五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示神舟五号飞船升空时的画面)。
那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度(米/秒)而小于第二宇宙速度:(米/秒)。
、的大小满足。
怎样求、呢?这就要用到平方根的概念,也就是本章的主要学习内容。
这节课我们先学习有关算术平方根的概念。
请看下面的问题。
神舟五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀。
此内容有感染力,使学生对本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣。
这里的计算实际上是已知幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路。
提出问题
感知新知多媒体展示教科书第160页的问题(问题略),然后提出问题:
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值。
练习:教科书第160页的填表。
练习:教科书第160页的填表。
这个问题抽象成数学问题就是已知正方形的面积求正方形的边长,这与学生以前学过的
已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。
归纳新知上面的问题,可以归纳为已知一个正数的平方,求这个正数的问题。
实际上是乘方运算中,已知一个数的指数和它的幂求这个数。
一般地,如果一个正数x的平方等于a,即=a,那么这个正数x叫做a的算术平方根。
a的算术平方根记为,读作根号a,a叫做被开方数。
规定:0的算术平方根是0。
也就是,在等式=a (x0)中,规定x = 。
思考:这里的数a应该是怎样的数呢?
试一试:你能根据等式:=144说出144的算术平方根是多少吗?并用等式表示出来。
想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值。
例如表示25的算术平方根,因为也可以写成,读作二次根号a。
算术平方根的概念比较抽象,原因之一是学生对石这个新
的符号的理解要有一个过程。
通过此问题,使学生对符号而表示的具体含义有更具体、更深刻的认识。
应用新知例。
(课本第160页的例1)求下列各数的算术平方根:
(1)100;(2)1;(3);(4)0。
0001
建议:首先应让学生体验一个数的。
算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使=100,因为例题的解答展示了求数的算术平方根的思考过程。
在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果。
探究拓展提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受的大小。
小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究。
教科书在边空提出问题小正方形的对角线的长是多少,
这是为在10。
3节介绍在数轴上画出表示的点做准备。
小结与作业
课堂小结
提问:1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
布置作业3、必做题:课本第167页习题10。
1第1、2、3题;168页第11题。
4、备
5、选题:
(1)判断下列说法是否正确:
i。
是25的算术平方根;
ii。
一6是的算术平方根;
iii。
0的算术平方根是0;
iv。
0。
01是0。
1的算术平方根;
⑤一个正方形的边长就是这个正方形的面积的算术平方根。
(2)下列各式哪些有意义,哪些没有意义?
①— ② ③ ④
(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。
在本节的第一个探究栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算术平方根的必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略。
特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题。
通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣的。
教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练。
通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备。
教学过程: 篇十
(一)创设情景,引入新课
师:小明到装饰城购买瓷砖,老板给了他一块面积为4dm2的正方形瓷砖,聪明的你能告诉小明这块瓷砖的边长吗?(幻灯片显示)
生:2dm(学生异口同声)
师:若面积为5 dm2 ,则边长为多少呢?
生1:边长为2.5 dm(生1好耍小聪明,回答问题不假思索)
生2:边长不能为2.5 dm
师:为什么?
生2:因为如果边长为2.5 dm,那么它的面积就为6.25 dm2,所以不正确。
(此时学生中出现了一阵骚动,有的学生还怀疑数字出错了,建议把数字改为9,并说出
其中的原因。
)
生3:要是能知道几的平方等于5就好了。
(生3是一个基础较好的学生,很爱动脑筋,此时有不少学生对他的见解表示赞成)
(二)实践探索,揭示新知:
1、平方根的定义(幻灯片显示)
一般地,如果一个数的平方根等于a,那么这个数叫做a的平方根(square root),也称为二次方根。
也就是说,如果x2=a,那么x叫做a的平方根。
例如:22=4,(-2)2=4,±2叫做4的平方根
32=9,(-3)2=9,±3叫做9的平方根
2、探索平方根的性质:
a.看一看:观察下面的式子: (幻灯片显示)
① 12=1, (-1)2=1
② 0.52=0.25, (-0.5)2=0.25
③ ()2= ,(-)2=
(1)请你写出一个与上面式子类同的式子;
(2)你发现了什么结论?
生1:互为相反数的两个数的平方相等。
生2:平方等于同一个数的数有两个,它们互为相反数。
生3:±1都是1的平方根
生4:一个正数的平方根有2个,一个正的,一个负的,并且互为相反数。
一个正数a 有两个平方根,它们互为相反数。
(在学生的交流与探索之中,思维的火花不断绽放,逐渐地点出了新知。
)
b.介绍平方根的表示方法: (幻灯片显示)
一个正数a有两个平方根,它们互为相反数。
正数a的正的平方根,记作
正数a的负的平方根,记作-
这两个平方根合在一起记作±
c. 想一想
在下列各括号中,能填写适当的数使等式成立吗?如果能够,请填写;如果不能,请说明理由,并与同学交流。
① ()2=9 ()2=25 ( )2=
② ()2=2 ()2=3 ( )2=0
③ ( )2=-2
(对于① 学生在较短的时间内很顺利地做完了;② ③ 较① 有一定的难度,有一部分的学生通过指点也能做出。
通过以上的一组题目的讨论与交流,学生自然得出了平方根的性质。
顺便提出开平方的定义,并作友情提醒。
)
平方根的性质:
一个正数a有两个平方根,它们互为相反数。
0只有一个平方根,它是0本身;
负数没有平方根
(三)尝试应用,反馈矫正
下面请学生做这样一组题目(P63 例1),看谁做得既快又好(幻灯片显示题目)
(时间不到3分钟,学生基本上都做完了,接着,幻灯片出示该题的解题过程)
师:你在做这题时有没有什么疑惑的地方?
生5:我在做时动不动就漏写负的平方根。
生6:对于像3、5这样的数在求它们的平方根时,感觉不顺手。
生7:(-2)2怎么有两个平方根呢?
生8:我们有没有办法检查求出来的'结果对还是不对呢?
(学生之间进行交流……)
师:大家提出的问题都很好,回答也很好。
(让学生之间通过交流与思考,解决他们存在的困惑之处,教师作适当的补充;接着针对学生的情况,给出了下面的判断题)
考考你:判断下面的说法是否正确:(幻灯片出示题目)
1.-5是25的平方根;
2.25的平方根是-5;
3.0的平方根是0
4.1的平方根是1
5、(-3)2的平方根是-3
(让学生思考并说出错误的理由……)。