能被2、3、5整除的数(精选15篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能被2、3、5整除的数(精选15篇)
能被2、3、5整除的数篇1
教学目标
(一)掌握能被2,5整除的数的特征。
(二)理解并掌握奇数和偶数的概念。
(三)能运用这些特征进行判断。
(四)培养学生的概括能力。
教学重点和难点
(一)能被2,5整除的数的特征。
(二)奇数和偶数的概念,0也是偶数。
教学用具
投影片。
教学过程设计
(一)复习准备
1.提问。
①说出20的全部约数。
②说出5个8的倍数。
③26的最小约数是几?最大约数是几?最小的倍数是几?2.板书。
按要求在集合圈里填上数。
教师:在计算中,经常需要先判断一个数能否被另一个数整除。
如果掌握了数的一些特征,就可以帮助我们进行判断。
今天我们就学习最常见的,能被2,5整除的数的特征。
板书课题。
(二)学习新课
1.能被2整除数的特征。
(1)教师:(指板书练习2)右边集合圈里的数与左边圈里的数是什么关系?
教师:请观察右边圈里的数、它们的个位数有什么特点?(个位上是0,2,4,6,8。
)
教师:请再举出几个2的倍数,看看符不符合这个特点?
学生随口举例。
教师:谁能说一说能被2整除的数的特征?
学生口答后老师板书:个位上是0,2,4,6,8的数,都能被2整除。
(2)口答练习(投影片)
请把下面的数按要求填在圈内:
1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。
学生口答完后,老师介绍:
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
(奇读j9)板书,上面两个集合圈上补写出“偶数”,“奇数”。
教师:上面两个集合圈里该不该打省略号?为什么?
学生讨论后老师说明:
在本题所列的有限个数里的奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
教师:奇数、偶数在我们日常生活中遇到过吗?习惯上称它们为什么数?(单数、双数。
)
教师板书:0÷2=0。
问:0算不算偶数?请说一说是怎样想的。
学生讨论后老师总结:商是0,0是整数,说明0也能被2整除,所以0也算偶数。
(3)练习:(先分小组小说,再全班统一回答。
)
①说出5个能被2整除的两位数。
②说出3个不能被2整除的三位数。
③说出15~35以内的偶数。
④50以内的偶数有多少个?奇数有多少个?
2.能被5整除的数的特征。
(1)教师先在黑板上画出两个集合圈,然后提出要求:你们能不能用与研究能被2整除的数的特征相同的方法,找出能被5整除的数的特征?
学生自己动手填数、观察、讨论。
老师巡视过程中选一位同学板书填空。
教师:说一说能被5整除的数的特征?
教师:请举几个多位数验证。
教师:再说一说什么样的数能被5整除?
板书:个位上是0或者5的数,都能被5整除。
(2)练习:
①按从小到大的顺序,说出50以内能被5整除的数。
②(投影片)下面哪些数能被5整除?
240,345,431,490,545,543,709,725,815,922,986,990。
③(投影片)从下面的数中挑出既能被2整除,又能被5整除的数。
这些数有什么特点?12,25,40,80,275,320,694,720,886,3100,3125,3004。
学生口答后教师板书:
既能被2整除、又能被5整除的数有:
40,80,320,720,3100。
个位数字是0。
④教师随口说出数,请立即说出这个数能被2还是能被5整除,或者是既能被2又能被5整除。
并说明判断的依据。
(三)巩固反馈
(1~4题口答,5题小组讨论后汇报。
)
1.自然数按照能不能被2整除进行分类。
2.在1~100的自然数中,能被2整除的数有( )个,能被5整除的数有( )个
3.比75小,比50大的奇数有( )。
4.个位是( )的数能同时被2和5整除。
5.用0,7,4,5,9五个数字组成能被2整除,能被5整除,能同时被2和5整除的数(四)课堂总结和课后作业
1.什么叫奇数?什么叫偶数?
2.能被2整除的数的特征?能被5整除的数的特征?
4.作业:课本P55练习十二:1,2,3,4。
课堂说明
本节课是要让学生学习了约数、倍数之后,掌握一些常用数的整除特征。
这些知识是今后进一步学习的重要基础。
能被2,5整除的数的特征,都在个位数,学生极易理解和掌握。
奇数、偶数的概念,学生掌握也并不困难。
所以课堂设计中都安排让学生通过练习自己去学习,尤其是能被5整除的数的特征,完全安排学生自学,这样既调动了学生的积极性,又锻炼和培养了学生的归纳概括能力。
课堂上还设计了较多的练习,使学生能较熟练地应用数的特征和概念进行判断。
新课教学分两部分。
第一部分教学能被5整除数的特征,分三层。
引导学生自己归纳出能被2整除的数的特征;掌握奇数,偶数概念;巩固能被2整除数的特征和奇、偶数概念。
第二部分教学能被2整除数的特征。
分两层。
学生自学归纳出能被5整除数的特征;巩固能被2,5整除数的特征,并掌握能同时被2,5整除的数的特征。
板书设计
能被2、3、5整除的数篇2
教学目标
在理解的基础上,掌握的特征,并能利用特征判断一个数能否被3整除.
教学重点
归纳能被3整除数的特征.
教学难点
归纳能被3整除数的特征。
教学过程
一、引入(演示:)下载
1、教师提问:能被2整除的数有什么特征?
能被5整除的数有什么特征?
2、导入
(1)今天这节课,我们一起来研究.(板书课题)
提问:谁能随便说个数?这个数要能被3整除.
(2)教师:老师也说一个数,请你用3除一除,看这个数能否被3整除.(板书:123)
如果你们说这个数能被3整除,那么老师立刻就可以说:132、231、213、312、321这些数统统都能被3整除!信不信?请除除看.
为什么会有如此结果?到底有什么特征呢?现在我们一起来研究.
二、新课(继续演示课件:)下载
1、我们先来研究12这个数.12为什么能被3整除?可以这样想:(教师演示)
12根铅笔(10根一捆)
提问:这10根铅笔,若3根一捆可以打成几捆?还剩几根?(3捆剩1根)
教师:3个3也就是一个9,那么我们可以把10想成一个9加上1.9肯定能被3整除,可以不再考虑,只需考虑现在未打成整捆的零散根数,10根中剩下的1根加上另外2根是3根,正好打成一捆,说明12能被3整除.
板书:
2、再研究一个数:24
演示:一个10可以想成一个9加1,那么20可以想成什么呢?(2个9加2)
2个9加可以不再考虑,现在只需考虑谁?(2加4)
如果3根一捆,正好打成两捆,说明什么?(24能被3整除)
3、照这样我们来分析一下27
板书:
推理:一个10我们把它想成一个9加1,两个10我们把它想成两个9加2,照这样想,30可以想成什么?(三个9加3),40呢? 50呢? 80呢?
4、分析一个较大的数:126(教师演示)
把100根想成一个99加1,两个10想成两个9加2,零散根数则1+2+6=9.9能被3整除,所以126能被3整除.
5、照此思路分析438
板书:
验证:用3整除,证明刚才的分析正确
6、用此思路分析523
板书:
7、总结:请同学们观察板书,有什么发现吗?能被3整除的数有什么特征?
概括能被3整除数的特征:一个数各个数位上的数的和能被3整除,这个数就能被3整除.
三、巩固练习(继续演示课件:)下载
1、口答:现在你知道为什么你们说123能被3整除,老师就立刻可以说13
2、231……统统都能被3整除吗?
2、判断下面各数能否被3整除:207、891、19
3、450、222、136
3、在□中填几,这个数就能被3整除?
17□(指导思路:找出最小的数,然后依次加3)
4□2(要求一次说全)
□25□(不必说全,即问:只要保证什么就可以?)
4、下面的数是能被3整除,能被2整除,还是能被5整除?
58、115、207、80、108、45
5、比赛:利用给出6个数字:0,1,2,3,4,5,在30秒钟内,看谁能组出最多个能同时被2、3、5整除的三位数.
四、思考练习
看谁能用最快的方法判断出5169这个四位数能否被3整除.
(引出弃3的倍数法,只考虑数字5+1)
五、全课总结
今天我们学习了哪些新知识?的特征是什么?
六、布置作业
1、写出三个能被3整除的偶数;
2、写出三个能被3整除的奇数;
3、先求出下面每个数各位上的数的和,看能不能被9整除;再算一算下面各数能不能被 9整除.
162 378 586 632 2988
七、板书设计
能被2、3、5整除的数篇3
教学目标
(一)通过操作发现能被3整除数的特征。
(二)培养学生观察、分析、概括的能力。
(三)渗透理论来源于实践的辩证唯物主义观点。
教学重点和难点
(一)能被3整除的数的特征。
(二)特征的归纳过程。
教学用具
教具:投影片。
学具:每位同学准备15根小棒,数位顺序表。
(只到万级)
教学过程设计
(一)复习准备
1.下列数中,哪些能被2整除?哪些能被5整除?哪些能同时被2和5整除?(投影片)
85,87,94,32,50,60,102,143,230,540,405,725,819,528。
2.说一说能被2或者5整除的数的特征?能同时被2和5整除的数的特征?
3.能被2和能被5整除的数的共同特点是什么?(都是看个位数字。
)
教师:我们已学习了能被2,5整除的数的特征,并能利用这些特征,很快地对一个数能否被2或5整除作出判断。
下面我们继续研究
一些数的整除特征。
教师板书:12问能否被3整除。
逐次把12改为120,121,123,124,126,1263,请学生口答它们能否被3整除。
(竖行排列,能被3整除的画√)
请学生任意说出一个数,老师判断它能否被3整除。
(能整除的画√)
教师:(指板书)请观察,能被3整除的数个位数字有什么特点吗?(找不出来。
)
教师:能被3整除的数的个位数找不出特征,它们具有什么特征呢?这节课我们就来研究这个问题。
板书课题:能被3整除的数。
(二)学习新课
1.请学生操作摆数并判断能否被3整除。
(1)请学生取出数位顺序表和3根小棒,按数位顺次表任意摆出一个数,看它能否被 3整除。
(板书:3根。
)
学生口答,老师板书:(横排排列)
300,120,111,2100,…(都能被3整除。
)
(2)请分别用4,5,6,7,9,12,15根小棒摆出一些数,并看看它们能否被3整除。
(板书:4,5,…根。
)
学生口答老师板书:
121, 310, 202, 1111, 12001,…(都不能被 3整除。
)
410,1211,230,1112,3011,…(都不能被3整除。
)
…
573,134052,912111,8412,…(都能被3整除。
)
板书时把用同样多根小棒摆出的数排在根数后面,还可以把能被3整除与不能被3整除的数分别板书在两边。
2.引导学生观察、归纳。
(1)教师:请观察用3根小棒摆成的数,这些数有什么共同特点?(各位上数的和是3。
)
教师:请观察板书能被3整除的数。
分别找出6根,9根,12根,15根小棒摆出的数各自所共有的特点。
小组讨论要求能找出:用6根小棒摆出的数各位上数的和是6;用9根小棒摆出的数各位上数的和是9;用12根小棒摆出的数各位上数的和是12;用15根小棒摆出的数各位上数的和是15。
(2)教师: 3, 6, 9, 12, 15这些数与 3有什么关系?(这些数都是 3的倍数,都能被 3整除。
)
教师:请验证是不是具备这个特点的数一定能被3整除呢?
学生举例验证。
教师:能说一说能被3整除的数的特征吗?
学生口答后教师板书:一个数的各位上的数的和能被3整除,这个数就能被3整除。
练习:教师给出一个数,请同学用反馈牌表示出自己的判断。
能被3整除的用√,不能被3整除的用×。
(数是逐个出示)
3125( ) 4203( ) 1818( )
10515( ) 8219( ) 56789( )
教师:请观察板书,用4根、5根、7根组成的数,能分别说一说它们的特征吗?
要求学生自己试用前面的方法推出都不能被3整除。
教师:说一说什么样的数一定不能被3整除。
(一个数各位上数的和不能被 3整除,这个数就一定不能被3整除。
)
(3)老师板书:3148782。
问:这个数能否被3整除?说出你的判断方法。
请学生报出一个数,另一位同学进行判断。
请两人一组,一人说数另一人判断。
(要求说出判断过程)
3.请看上(3)板书例题,在计算各位上数的和时,可以简算,是3的倍数的可以不算在内,口算起来更快。
板书示意:
练习:板书2562913能否被3整除?
口答:解法1:2+5+6+2+9+1+3=28。
因为28不能被3整除,所以2562913不能被3整除。
解法2:(如上式)因为2+5=7,7不能被3整除,所以2562913不能被3整除。
显然第二种方法更简便。
教师:请判断31495621,5923467能否被3整除。
说出自己是怎样想的。
教师:试写出一个能被2整除,又能被3整除的数。
并说出自己是怎样想的。
学生讨论后老师归纳:
要能被2整除,个位数必须是偶数,又要能被3整除,所以各位上数的和要是3的倍数。
教师:能找出能同时被3和5整除的数的特点吗?
学生口答并举例验证。
教师:讨论一下,什么样的数能同时被2,3和5整除。
学生讨论后归纳:
个位上是0,各位上的数的和是3的倍数的数,能同时被2,3和5整除。
(三)巩固反馈
1.(投影片)判断下面的数,哪些能被3整除?
432,1590,7285,61527,5281,1254,32358,13227。
(学生用反馈牌,请错误答案的同学讲判断过程,使之自我纠正错误。
)
2.口答:在方框中填上一个数字,使这个数能被3整除。
9□31 72□63
3.按要求在括号内各填5个数。
(学生口头汇报,集体订正。
)
①能同时被2和5整除的数( );
②能同时被2和3整除的数( );
③能同时被3整和5整除的数( );
④能同时被2,3和5整除的( )。
(四)课堂总结与课后作业
1.能被3整除数的特征。
2.能同时被2和3整除的数的特征。
能同时被3和5整除的数的特征。
能同时被2,3,5整除数的特征。
3.作业:课本 P55:5,6,7。
课堂教学设计说明
本节内容是在学生学习了能被2和5整除数的特征之后,学生易产生看一个数的个位数字来判断它能否被3整除的错误。
因此,在新课前设置了让学生按个位数寻找能被3整除数的特征,在此设疑,可以激发学生探求新知识的欲望,提高学习兴趣。
然后再引导学生通过动手操作、观察分析,使他们在充分感知的基础上归纳出能被3整除的数的特征。
能同时被2和3;3和5;2,3和5整除的数的特征,都以练习形式出现,促使学生积极思考,运用所学过的知识来解决问题,进而归纳出相应的特征。
新课教学分三部分。
第一部分是让学生动手操作,充分感知。
第二部分引导学生观察、分析、归纳出能被3整除数的特征。
第三部分通过练习让学生掌握用各位数字和进行判断时较为简便的方法,认识能同时被两个或三个数整除数的特征。
板书设计
能被2、3、5整除的数篇4
教学目标
(一)通过操作发现能被3整除数的特征。
(二)培养学生观察、分析、概括的能力。
(三)渗透理论来源于实践的辩证唯物主义观点。
教学重点和难点
(一)能被3整除的数的特征。
(二)特征的归纳过程。
教学用具
教具:投影片。
学具:每位同学准备15根小棒,数位顺序表。
(只到万级)
教学过程设计
(一)复习准备
1.下列数中,哪些能被2整除?哪些能被5整除?哪些能同时被2
和5整除?(投影片)
85,87,94,32,50,60,102,143,230,540,405,725,819,528。
2.说一说能被2或者5整除的数的特征?能同时被2和5整除的数的特征?
3.能被2和能被5整除的数的共同特点是什么?(都是看个位数字。
)
教师:我们已学习了能被2,5整除的数的特征,并能利用这些特征,很快地对一个数能否被2或5整除作出判断。
下面我们继续研究一些数的整除特征。
教师板书:12问能否被3整除。
逐次把12改为120,121,123,124,126,1263,请学生口答它们能否被3整除。
(竖行排列,能被3整除的画√)
请学生任意说出一个数,老师判断它能否被3整除。
(能整除的画√)
教师:(指板书)请观察,能被3整除的数个位数字有什么特点吗?(找不出来。
)
教师:能被3整除的数的个位数找不出特征,它们具有什么特征呢?这节课我们就来研究这个问题。
板书课题:能被3整除的数。
(二)学习新课
1.请学生操作摆数并判断能否被3整除。
(1)请学生取出数位顺序表和3根小棒,按数位顺次表任意摆出一个数,看它能否被 3整除。
(板书:3根。
)
学生口答,老师板书:(横排排列)
300,120,111,2100,…(都能被3整除。
)
(2)请分别用4,5,6,7,9,12,15根小棒摆出一些数,并看看它们能否被3整除。
(板书:4,5,…根。
)
学生口答老师板书:
121, 310, 202, 1111, 12001,…(都不能被 3整除。
)
410,1211,230,1112,3011,…(都不能被3整除。
)
…
573,134052,912111,8412,…(都能被3整除。
)
板书时把用同样多根小棒摆出的数排在根数后面,还可以把能被3整除与不能被3整除的数分别板书在两边。
2.引导学生观察、归纳。
(1)教师:请观察用3根小棒摆成的数,这些数有什么共同特点?(各位上数的和是3。
)
教师:请观察板书能被3整除的数。
分别找出6根,9根,12根,15根小棒摆出的数各自所共有的特点。
小组讨论要求能找出:用6根小棒摆出的数各位上数的和是6;用9根小棒摆出的数各位上数的和是9;用12根小棒摆出的数各位上数的和是12;用15根小棒摆出的数各位上数的和是15。
(2)教师: 3, 6, 9, 12, 15这些数与 3有什么关系?(这些数都是 3的倍数,都能被 3整除。
)
教师:请验证是不是具备这个特点的数一定能被3整除呢?
学生举例验证。
教师:能说一说能被3整除的数的特征吗?
学生口答后教师板书:一个数的各位上的数的和能被3整除,这个数就能被3整除。
练习:教师给出一个数,请同学用反馈牌表示出自己的判断。
能被3整除的用√,不能被3整除的用×。
(数是逐个出示)
3125( ) 4203( ) 1818( )
10515( ) 8219( ) 56789( )
教师:请观察板书,用4根、5根、7根组成的数,能分别说一说它们的特征吗?
要求学生自己试用前面的方法推出都不能被3整除。
教师:说一说什么样的数一定不能被3整除。
(一个数各位上数的和不能被 3整除,这个数就一定不能被3整除。
)
(3)老师板书:3148782。
问:这个数能否被3整除?说出你的判断方法。
请学生报出一个数,另一位同学进行判断。
请两人一组,一人说数另一人判断。
(要求说出判断过程)
3.请看上(3)板书例题,在计算各位上数的和时,可以简算,是3的倍数的可以不算在内,口算起来更快。
板书示意:
练习:板书2562913能否被3整除?
口答:解法1:2+5+6+2+9+1+3=28。
因为28不能被3整除,所以2562913不能被3整除。
解法2:(如上式)因为2+5=7,7不能被3整除,所以2562913不能被3整除。
显然第二种方法更简便。
教师:请判断31495621,5923467能否被3整除。
说出自己是怎样想的。
教师:试写出一个能被2整除,又能被3整除的数。
并说出自己是怎样想的。
学生讨论后老师归纳:
要能被2整除,个位数必须是偶数,又要能被3整除,所以各位上数的和要是3的倍数。
教师:能找出能同时被3和5整除的数的特点吗?
学生口答并举例验证。
教师:讨论一下,什么样的数能同时被2,3和5整除。
学生讨论后归纳:
个位上是0,各位上的数的和是3的倍数的数,能同时被2,3和5整除。
(三)巩固反馈
1.(投影片)判断下面的数,哪些能被3整除?
432,1590,7285,61527,5281,1254,32358,13227。
(学生用反馈牌,请错误答案的同学讲判断过程,使之自我纠正错误。
)
2.口答:在方框中填上一个数字,使这个数能被3整除。
9□31 72□63
3.按要求在括号内各填5个数。
(学生口头汇报,集体订正。
)
①能同时被2和5整除的数( );
②能同时被2和3整除的数( );
③能同时被3整和5整除的数( );
④能同时被2,3和5整除的( )。
(四)课堂总结与课后作业
1.能被3整除数的特征。
2.能同时被2和3整除的数的特征。
能同时被3和5整除的数的特征。
能同时被2,3,5整除数的特征。
3.作业:课本 P55:5,6,7。
课堂教学设计说明
本节内容是在学生学习了能被2和5整除数的特征之后,学生易产生看一个数的个位数字来判断它能否被3整除的错误。
因此,在新课前设置了让学生按个位数寻找能被3整除数的特征,在此设疑,可以激发学生探求新知识的欲望,提高学习兴趣。
然后再引导学生通过动手操作、观察分析,使他们在充分感知的基础上归纳出能被3整除的数的特征。
能同时被2和3;3和5;2,3和5整除的数的特征,都以练习形式出现,促使学生积极思考,运用所学过的知识来解决问题,进而归纳出相应的特征。
新课教学分三部分。
第一部分是让学生动手操作,充分感知。
第二部分引导学生观察、分析、归纳出能被3整除数的特征。
第三部分通过练习让学生掌握用各位数字和进行判断时较为简便的方法,认识能同时被两个或三个数整除数的特征。
板书设计
能被2、3、5整除的数篇5
能被 2 、 5 整除的数
五年级执教者邓美丽
一、知识目标
理解并掌握能被 2 、 5 整除的数的特征。
二、能力目标
培养学生的观察能力,提高思维的水平。
三、德育目标
培养良好的思维品质和认真细致的作风。
四、教学重点
通过学生自己查找数据,掌握能被 2 、 5 整除的数的特征。
五、教学难点
能根据特征熟练地判断一个数是否能被 2 、 5 整除。
六、教学准备
资料多媒体
七、教学过程
一)、复习导入。
(出示问答题)
1 、我们学习了一个数的约数和倍数,两个整数,具备什么条件时,才能说一个数能被另一个数整除?
2 、下面各组数中,谁是谁的倍数,谁是谁的约数?
10 和 2 15 和 5 12 和 3 14 和 28
3 、说一说 2 的倍数和 5 的倍数。
二)、探究新知。
引入:在计算中,经常要判断一个数能不能被另一个数整除,可以根据数的一些特征来进行判断。
这些数的特征又是怎样的呢,你想知道吗?跟着老师一起去发现,好吗?(板书课题:能被 2 、 5 整除的数)
1 、能被
2 整除的数的特征。
( 1 )学生自查 1 — 60 数据表中,能被 2 整除的数有那一些,填在自学资料表内。
( 2 )自查后,同位讨论:这些数有什么特征吗?
( 3 )学生归纳:个位上是 0 、 2 、 4 、 6 、 8 、的数,都能被 2 整除。
2 、能被 5 整除的数的特征。
方法与上相同。
3 、能同时被 2 、 5 整除的数的特征。
方法与上相同。
4 、知识归纳:(能被 2 、
5 整除的数的特征)
5 、自学 54 — 55 面这些数中还有没有特殊的名称。
( 1 )集体讨论;自然数中的数还有别的特殊名称?
( 2 )汇报讨论结果。
三)、巩固练习。
(另付练习资料)
1 、尝试练习。
( 1 )学生独立完成,教师个别辅导。
( 2 )汇报独立完成作业情况。
2 、说一说,议一议。
( 1 )四人一组进行讨论。
( 2 )通过讨论,你又知道了一些什么?
3 、超级练习。
( 1 )先独立完成。
(2 )集体讨论:先说结果,再说一说你是怎么做的,又是怎么想的?
( 3 )通过讨论后,你还有什么问题要提出来讨论的吗?
四)课堂小结。
1 、这节课你又学到了哪些知识?
2 、学生归纳能被 2 、 5 整除的数。
板书设计:
能被 2 、 5 整除的数
个位上是 0 、 2 、 4 、 6 、 8 的数
个位上是 0 或者 5 的数
个位上是 2 和 5 的数
能被2、3、5整除的数篇6
教学目标
在理解的基础上,掌握的特征,并能利用特征判断一个数能否被3整除.
教学重点
归纳能被3整除数的特征.
教学难点
归纳能被3整除数的特征。
教学过程
一、引入(课件演示:)下载
1、教师提问:能被2整除的数有什么特征?
能被5整除的数有什么特征?
能同时被2、5整除的数有什么特征?
2、导入
(1)今天这节课,我们一起来研究.(板书课题)
提问:谁能随便说个数?这个数要能被3整除.
(2)教师:老师也说一个数,请你用3除一除,看这个数能否被3整除.(板书:123)
如果你们说这个数能被3整除,那么老师立刻就可以说:132、231、213、312、321这些数统统都能被3整除!信不信?请除除看.
为什么会有如此结果?到底有什么特征呢?现在我们一起来研究.
二、新课(继续演示课件:)下载
1、我们先来研究12这个数.12为什么能被3整除?可以这样想:(教师演示)
12根铅笔(10根一捆)
提问:这10根铅笔,若3根一捆可以打成几捆?还剩几根?(3捆剩1根)
教师:3个3也就是一个9,那么我们可以把10想成一个9加上1.9肯定能被3整除,可以不再考虑,只需考虑现在未打成整捆的零散根数,10根中剩下的1根加上另外2根是3根,正好打成一捆,说明12能被3整除.
板书:
2、再研究一个数:24
演示:一个10可以想成一个9加1,那么20可以想成什么呢?
(2个9加2)
2个9加可以不再考虑,现在只需考虑谁?(2加4)
如果3根一捆,正好打成两捆,说明什么?(24能被3整除)
3、照这样我们来分析一下27
板书:
推理:一个10我们把它想成一个9加1,两个10我们把它想成两个9加2,照这样想,30可以想成什么?(三个9加3),40呢? 50呢? 80呢?
4、分析一个较大的数:126(教师演示)
把100根想成一个99加1,两个10想成两个9加2,零散根数则1+2+6=9.9能被3整除,所以126能被3整除.
5、照此思路分析438
板书:
验证:用3整除,证明刚才的分析正确
6、用此思路分析523
板书:
7、总结:请同学们观察板书,有什么发现吗?能被3整除的数有什么特征?
概括能被3整除数的特征:一个数各个数位上的数的和能被3整除,这个数就能被3整除.
三、巩固练习(继续演示课件:)下载
1、口答:现在你知道为什么你们说123能被3整除,老师就立刻可以说13
2、231……统统都能被3整除吗?
2、判断下面各数能否被3整除:207、891、19
3、450、222、136
3、在□中填几,这个数就能被3整除?
17□(指导思路:找出最小的数,然后依次加3)
4□2(要求一次说全)
□25□(不必说全,即问:只要保证什么就可以?)
4、下面的数是能被3整除,能被2整除,还是能被5整除?。