高数定积分定义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数定积分定义
定积分是微积分中的一个重要概念,它是对函数在一定区间上的
积分结果的确定。

在数学中,积分是微积分中的一种基本概念,定义
了一种反向操作,即由导数得到原函数。

定积分的定义是指在函数y=f(x)的x轴某一区间[a,b]上,将其分割成许多小的矩形,并将这些矩形的面积分别求出。

当分割的小矩形
数趋向于无穷大时,这些小矩形组成的面积总和即为该函数在区间[a, b]上的定积分,用符号∫abf(x)dx表示。

其中dx代表自变量的微元,f(x)代表被积函数,而a和b是积分
的上下限。

上述式子也可以看作是在曲线y=f(x)与x轴之间的面积之
积分。

为了方便计算,往往将上述区间分割成等分的若干小区间,其中
小区间的个数记作n,区间长为Δx。

于是有Δx=(b-a)/n,而小矩形
面积为f(xi)Δx,其中xi为小区间的中点。

将这些面积相加,即可得到该函数在区间[a, b]上的近似定积分。

在极限n趋向于无穷大的情况下,上述近似定积分将趋近于函数
在区间[a, b]上的定积分,即∫abf(x)dx。

因此,定积分又可以描述为曲线y=f(x)在区间[a, b]上与x轴之
间面积大小的确定。

而由于定积分的值只与积分区间及被积函数有关,因此在定积分的计算中,被积函数函数的表达式及积分区间的范围就
成为了最为重要的关键。

定积分在实际问题中的应用非常广泛,例如可以用于求曲线与坐标轴的面积,求函数在某个区间上的平均值,以及求物体在某一时间间隔内的位移等问题。

同时,定积分也是微积分中重要的积分概念之一,有较高的理论和实际应用价值。

相关文档
最新文档