2015年广东省高考数学试卷(理科)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考注意事项
1.进入考场时携带的物品。

考生进入考场,只准携带准考证、二代居民身份证以及2B铅笔、0.5毫米黑色墨水签字笔、直尺、圆规、三角板、无封套橡皮、小刀、空白垫纸板、透明笔袋等文具。

严禁携带手机、无线发射和接收设备、电子存储记忆录放设备、手表、涂改液、修正带、助听器、文具盒和其他非考试用品。

考场内不得自行传递文具等物品。

由于标准化考点使用金属探测仪等辅助考务设备,所以提醒考生应考时尽量不要佩戴金属饰品,以免影响入场时间。

2.准确填写、填涂和核对个人信息。

考生在领到答题卡和试卷后,在规定时间内、规定位置处填写姓名、准考证号。

填写错误责任自负;漏填、错填或字迹不清的答题卡为无效卡;故意错填涉嫌违规的,查实后按照有关规定严肃处理。

监考员贴好条形码后,考生必须核对所贴条形码与自己的姓名、准考证号是否一致,如发现不一致,立即报告监考员要求更正。

3.考场面向考生正前方的墙壁上方悬挂时钟,为考生提供时间参考。

考场时钟的时间指示不作为考试时间信号,考试时间一律以考点统一发出的铃声信号为准。

2015年广东省高考数学试卷(理科)
一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(5分)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()
A.{1,4}B.{﹣1,﹣4}C.{0}D.∅
2.(5分)若复数z=i(3﹣2i)(i是虚数单位),则=()
A.2﹣3i B.2+3i C.3+2i D.3﹣2i
3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()
A.y=B.y=x+C.y=2x+ D.y=x+e x
4.(5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.1
5.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0
C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0
6.(5分)若变量x,y满足约束条件,则z=3x+2y的最小值为()A.4 B.C.6 D.
7.(5分)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
8.(5分)若空间中n个不同的点两两距离都相等,则正整数n的取值()
A.至多等于3 B.至多等于4 C.等于5 D.大于5
二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)
9.(5分)在(﹣1)4的展开式中,x的系数为.
10.(5分)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=.
12.(5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)
13.(5分)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.
14.(5分)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A (2,),则点A到直线l的距离为.
15.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=.
三、解答题
16.(12分)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x ∈(0,).
(1)若⊥,求tanx的值;
(2)若与的夹角为,求x的值.
17.(12分)某工厂36名工人年龄数据如图:
工人编号年龄工人编

年龄工人编

年龄工人编

年龄
1 2 3 4 5 6 7 8 940
44
40
41
33
40
45
42
43
10
11
12
13
14
15
16
17
18
36
31
38
39
43
45
39
38
36
19
20
21
22
23
24
25
26
27
27
43
41
37
34
42
37
44
42
28
29
30
31
32
33
34
35
36
34
39
43
38
42
53
37
49
39
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值和方差s2;
(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?
18.(14分)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.
(1)证明:PE⊥FG;
(2)求二面角P﹣AD﹣C的正切值;
(3)求直线PA与直线FG所成角的余弦值.
19.(14分)设a>1,函数f(x)=(1+x2)e x﹣a.
(1)求f(x)的单调区间;
(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;
(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤﹣1.
20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB 的中点M的轨迹C的方程;
(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
21.(14分)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.
(1)求a3的值;
(2)求数列{a n}的前n项和T n;
(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.
2015年广东省高考数学试卷(理科)
参考答案与试题解析
一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(5分)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()
A.{1,4}B.{﹣1,﹣4}C.{0}D.∅
【分析】求出两个集合,然后求解交集即可.
【解答】解:集合M={x|(x+4)(x+1)=0}={﹣1,﹣4},
N={x|(x﹣4)(x﹣1)=0}={1,4},
则M∩N=∅.
故选:D.
【点评】本题考查集合的基本运算,交集的求法,考查计算能力.
2.(5分)若复数z=i(3﹣2i)(i是虚数单位),则=()
A.2﹣3i B.2+3i C.3+2i D.3﹣2i
【分析】直接利用复数的乘法运算法则化简求解即可.
【解答】解:复数z=i(3﹣2i)=2+3i,则=2﹣3i,
故选:A.
【点评】本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.
3.(5分)下列函数中,既不是奇函数,也不是偶函数的是()
A.y=B.y=x+C.y=2x+ D.y=x+e x
【分析】直接利用函数的奇偶性判断选项即可.
【解答】解:对于A,y=是偶函数,所以A不正确;
对于B,y=x+函数是奇函数,所以B不正确;
对于C,y=2x+是偶函数,所以C不正确;
对于D,不满足f(﹣x)=f(x)也不满足f(﹣x)=﹣f(x),所以函数既不是奇函数,也不是偶函数,所以D正确.
故选:D.
【点评】本题考查函数的奇偶性的判断,基本知识的考查.
4.(5分)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.B.C.D.1
【分析】首先判断这是一个古典概型,从而求基本事件总数和“所取的2个球中恰有1个白球,1个红球”事件包含的基本事件个数,容易知道基本事件总数便是从15个球任取2球的取法,而在求“所取的2个球中恰有1个白球,1个红球”事件的基本事件个数时,可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从15个球中任取2个球的取法有;∴基本事件总数为105;
设“所取的2个球中恰有1个白球,1个红球”为事件A;
则A包含的基本事件个数为=50;
∴P(A)=.
故选:B.
【点评】考查古典概型的概念,以及古典概型的求法,熟练掌握组合数公式和分步计数原理.
5.(5分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0
C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0
【分析】设出所求直线方程,利用圆心到直线的距离等于半径,求出直线方程中的变量,即可求出直线方程.
【解答】解:设所求直线方程为2x+y+b=0,则,
所以=,所以b=±5,
所以所求直线方程为:2x+y+5=0或2x+y﹣5=0
故选:A.
【点评】本题考查两条直线平行的判定,圆的切线方程,考查计算能力,是基础题.6.(5分)若变量x,y满足约束条件,则z=3x+2y的最小值为()
A.4 B.C.6 D.
【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最小值.
【解答】解:不等式组对应的平面区域如图:
由z=3x+2y得y=﹣x+,平移直线y=﹣x+,
则由图象可知当直线y=﹣x+,经过点A时直线y=﹣x+的截距最小,
此时z最小,
由,解得,即A(1,),
此时z=3×1+2×=,
故选:B.
【点评】本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决
本题的关键.
7.(5分)已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
【分析】利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.【解答】解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),
可得:,c=5,∴a=4,b==3,
所求双曲线方程为:﹣=1.
故选:C.
【点评】本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.
8.(5分)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3 B.至多等于4 C.等于5 D.大于5
【分析】先考虑平面上的情况:只有三个点的情况成立;再考虑空间里,只有四个点的情况成立,注意运用外接球和三角形三边的关系,即可判断.
【解答】解:考虑平面上,3个点两两距离相等,构成等边三角形,成立;
4个点两两距离相等,三个点在圆上,一个点是圆心,圆上的点到圆心的距离都相等,则不成立;
n大于4,也不成立;
在空间中,4个点两两距离相等,构成一个正四面体,成立;
若n>4,由于任三点不共线,当n=5时,考虑四个点构成的正四面体,
第五个点,与它们距离相等,必为正四面体的外接球的球心,
且球的半径不等于边长,即有球心与正四面体的底面的中心重合,
但显然球的半径不等于棱长,故不成立;
同理n>5,不成立.
故选:B.
【点评】本题考查空间几何体的特征,主要考查空间两点的距离相等的情况,注意结合外接球和三角形的两边与第三边的关系,属于中档题和易错题.
二、填空题(本大题共7小题,考生作答6小题,每小题5分,满分30分.)(一)必做题(11~13题)
9.(5分)在(﹣1)4的展开式中,x的系数为6.
【分析】根据题意二项式(﹣1)4的展开式的通项公式为T r
=•(﹣1)r•,
+1
分析可得,r=2时,有x的项,将r=2代入可得答案.
【解答】解:二项式(﹣1)4的展开式的通项公式为T r
=•(﹣1)r•,
+1
令2﹣=1,求得r=2,
∴二项式(﹣1)4的展开式中x的系数为=6,
故答案为:6.
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题
10.(5分)在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=10.
【分析】根据等差数列的性质,化简已知的等式即可求出a5的值,然后把所求的式子也利用等差数列的性质化简后,将a5的值代入即可求答案.
【解答】解:由a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=5a5=25,
得到a5=5,
则a2+a8=2a5=10.
故答案为:10.
【点评】本题主要考查了等差数列性质的简单应用,属于基础题.
11.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b=1.
【分析】由sinB=,可得B=或B=,结合a=,C=及正弦定理可求b
【解答】解:∵sinB=,
∴B=或B=
当B=时,a=,C=,A=,
由正弦定理可得,
则b=1
当B=时,C=,与三角形的内角和为π矛盾
故答案为:1
【点评】本题考查了正弦、三角形的内角和定理,熟练掌握定理是解本题的关键
12.(5分)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1560条毕业留言.(用数字作答)
【分析】通过题意,列出排列关系式,求解即可.
【解答】解:某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了=40×39=1560条.
故答案为:1560.
【点评】本题考查排列数个数的应用,注意正确理解题意是解题的关键.
13.(5分)已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则P=.
【分析】直接利用二项分布的期望与方差列出方程求解即可.
【解答】解:随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,
可得np=30,npq=20,q=,则p=,
故答案为:.
【点评】本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能
力.
14.(5分)已知直线l的极坐标方程为2ρsin(θ﹣)=,点A的极坐标为A (2,),则点A到直线l的距离为.
【分析】把极坐标方程转化为直角坐标方程,然后求出极坐标表示的直角坐标,利用点到直线的距离求解即可.
【解答】解:直线l的极坐标方程为2ρsin(θ﹣)=,对应的直角坐标方程为:y﹣x=1,
点A的极坐标为A(2,),它的直角坐标为(2,﹣2).
点A到直线l的距离为:=.
故答案为:.
【点评】本题考查极坐标与直角坐标方程的互化,点到直线的距离公式的应用,考查计算能力.
15.如图,已知AB是圆O的直径,AB=4,EC是圆O的切线,切点为C,BC=1.过圆心O作BC的平行线,分别交EC和AC于D和点P,则OD=8.
【分析】连接OC,确定OP⊥AC,OP=BC=,Rt△OCD中,由射影定理可得OC2=OP•OD,即可得出结论.
【解答】解:连接OC,则OC⊥CD,
∵AB是圆O的直径,
∴BC⊥AC,
∵OP∥BC,
∴OP⊥AC,OP=BC=,
Rt△OCD中,由射影定理可得OC2=OP•OD,
∴4=OD,
∴OD=8.
故答案为:8.
【点评】本题考查圆的直径与切线的性质,考查射影定理,考查学生的计算能力,比较基础.
三、解答题
16.(12分)在平面直角坐标系xOy中,已知向量=(,﹣),=(sinx,cosx),x ∈(0,).
(1)若⊥,求tanx的值;
(2)若与的夹角为,求x的值.
【分析】(1)若⊥,则•=0,结合三角函数的关系式即可求tanx的值;
(2)若与的夹角为,利用向量的数量积的坐标公式进行求解即可求x的值.【解答】解:(1)若⊥,
则•=(,﹣)•(sinx,cosx)=sinx﹣cosx=0,
即sinx=cosx
sinx=cosx,即tanx=1;
(2)∵||=,||==1,•=(,﹣)•(sinx,cosx)=sinx﹣cosx,
∴若与的夹角为,
则•=||•||cos=,
即sinx﹣cosx=,
则sin(x﹣)=,
∵x ∈(0,).
∴x ﹣∈(﹣,).
则x ﹣=
即x=+=.
【点评】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基础.
17.(12分)某工厂36名工人年龄数据如图:
工人编号年龄工人编

年龄工人编

年龄工人编

年龄
1 2 3 4 5 6 7 8 940
44
40
41
33
40
45
42
43
10
11
12
13
14
15
16
17
18
36
31
38
39
43
45
39
38
36
19
20
21
22
23
24
25
26
27
27
43
41
37
34
42
37
44
42
28
29
30
31
32
33
34
35
36
34
39
43
38
42
53
37
49
39
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值和方差s 2;
(3)36名工人中年龄在﹣s和+s之间有多少人?所占百分比是多少(精确到0.01%)?
【分析】(1)利用系统抽样的定义进行求解即可;
(2)根据均值和方差公式即可计算(1)中样本的均值和方差s2;
(3)求出样本和方差即可得到结论.
【解答】解:(1)由系统抽样知,36人分成9组,每组4人,其中第一组的工人年龄为44,所以其编号为2,
∴所有样本数据的编号为:4n﹣2,(n=1,2,…,9),
其数据为:44,40,36,43,36,37,44,43,37.
(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.
由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.
(3)∵s2=.∴s=∈(3,4),
∴36名工人中年龄在﹣s和+s之间的人数等于区间[37,43]的人数,
即40,40,41,…,39,共23人.
∴36名工人中年龄在﹣s和+s之间所占百分比为≈63.89%.
【点评】本题主要考查统计和分层抽样的应用,比较基础.
18.(14分)如图,三角形△PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3,点E是CD的中点,点F、G分别在线段AB、BC上,且AF=2FB,CG=2GB.
(1)证明:PE⊥FG;
(2)求二面角P﹣AD﹣C的正切值;
(3)求直线PA与直线FG所成角的余弦值.
【分析】(1)通过△PDC为等腰三角形可得PE⊥CD,利用线面垂直判定定理及性质定理即得结论;
(2)通过(1)及面面垂直定理可得PG⊥AD,则∠PDC为二面角P﹣AD﹣C的平
面角,利用勾股定理即得结论;
(3)连结AC,利用勾股定理及已知条件可得FG∥AC,在△PAC中,利用余弦定理即得直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC的余弦值.【解答】(1)证明:在△PDC中PO=PC且E为CD中点,
∴PE⊥CD,
又∵平面PDC⊥平面ABCD,平面PDC∩平面ABCD=CD,PE⊂平面PCD,
∴PE⊥平面ABCD,
又∵FG⊂平面ABCD,
∴PE⊥FG;
(2)解:由(1)知PE⊥平面ABCD,∴PE⊥AD,
又∵CD⊥AD且PE∩CD=E,
∴AD⊥平面PDC,
又∵PD⊂平面PDC,∴AD⊥PD,
又∵AD⊥CD,∴∠PDC为二面角P﹣AD﹣C的平面角,
在Rt△PDE中,由勾股定理可得:
PE===,
∴tan∠PDC==;
(3)解:连结AC,则AC==3,
在Rt△ADP中,AP===5,
∵AF=2FB,CG=2GB,
∴FG∥AC,
∴直线PA与直线FG所成角即为直线PA与直线AC所成角∠PAC,
在△PAC中,由余弦定理得
cos∠PAC=
=
=.
【点评】本题考查线线垂直的判定、二面角及线线角的三角函数值,涉及到勾股定理、余弦定理等知识,注意解题方法的积累,属于中档题.
19.(14分)设a>1,函数f(x)=(1+x2)e x﹣a.
(1)求f(x)的单调区间;
(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;
(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m≤﹣1.
【分析】(1)利用f′(x)>0,求出函数单调增区间.
(2)证明只有1个零点,需要说明两个方面:①函数单调;②函数有零点.(3)利用导数的最值求解方法证明,思路较为复杂.
【解答】解:(1)f′(x)=e x(x2+2x+1)=e x(x+1)2,
∴f′(x)≥0,
∴f(x)=(1+x2)e x﹣a在(﹣∞,+∞)上为增函数.
(2)证明:∵f(0)=1﹣a,a>1,
∴1﹣a<0,即f(0)<0,
∵f()=(1+a)﹣a=+a(﹣1),a>1,
∴>1,﹣1>0,即f()>0,
且由(1)问知函数在(﹣∞,+∞)上为增函数,
∴f(x)在(﹣∞,+∞)上有且只有一个零点.
(3)证明:f′(x)=e x(x+1)2,
设点P(x0,y0)则)f'(x)=e x0(x0+1)2,
∵y=f(x)在点P处的切线与x轴平行,
∴f′(x0)=0,即:e x0(x0+1)2=0,
∴x0=﹣1,
将x0=﹣1代入y=f(x)得y0=.
∴,
∴,
要证m≤﹣1,即证(m+1)3≤a﹣,
需要证(m+1)3≤e m(m+1)2,
即证m+1≤e m,
因此构造函数g(m)=e m﹣(m+1),
则g′(m)=e m﹣1,由g′(m)=0得m=0.
当m∈(0,+∞)时,g′(m)>0,
当m∈(﹣∞,0)时,g′(m)<0,
∴g(m)的最小值为g(0)=0,
∴g(m)=e m﹣(m+1)≥0,
∴e m≥m+1,
∴e m(m+1)2≥(m+1)3,
即:,
∴m≤.
【点评】本题考查了导数在函数单调性和最值上的应用,属于综合应用,在高考中属于压轴题目,有较大难度.
20.(14分)已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.
(1)求圆C1的圆心坐标;
(2)求线段AB 的中点M的轨迹C的方程;
(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.
【分析】(1)通过将圆C1的一般式方程化为标准方程即得结论;
(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线L与圆C1的方程,利用根的判别式△=0及轨迹C的端点与点(4,0)决定的直线斜率,即得结论.
【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,
整理,得其标准方程为:(x﹣3)2+y2=4,
∴圆C1的圆心坐标为(3,0);
(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),
联立方程组,
消去y可得:(1+k2)x2﹣6x+5=0,
由△=36﹣4(1+k2)×5>0,可得k2<
由韦达定理,可得x1+x2=,
∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,
∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;
(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C 只有一个交点.
理由如下:
联立方程组,
消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,
令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,
又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,
∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,
k的取值范围为[﹣,]∪{﹣,}.
【点评】本题考查求轨迹方程、直线与曲线的位置关系问题,注意解题方法的积累,属于难题.
21.(14分)数列{a n}满足:a1+2a2+…na n=4﹣,n∈N+.
(1)求a3的值;
(2)求数列{a n}的前n项和T n;
(3)令b1=a1,b n=+(1+++…+)a n(n≥2),证明:数列{b n}的前n项和S n满足S n<2+2lnn.
【分析】(1)利用数列的递推关系即可求a3的值;
(2)利用作差法求出数列{a n}的通项公式,利用等比数列的前n项和公式即可求数列{a n}的前n项和T n;
(3)利用构造法,结合裂项法进行求解即可证明不等式.
【解答】解:(1)∵a1+2a2+…na n=4﹣,n∈N+.
∴a1=4﹣3=1,1+2a2=4﹣=2,
解得a2=,
∵a1+2a2+…+na n=4﹣,n∈N+.
∴a1+2a2+…+(n﹣1)a n﹣1=4﹣,n∈N+.
两式相减得na n=4﹣﹣(4﹣)=,n≥2,
则a n=,n≥2,
当n=1时,a1=1也满足,
∴a n=,n≥1,
则a3=;
(2)∵a n=,n≥1,
∴数列{a n}是公比q=,
内附答案则数列{a n}的前n项和T n ==2﹣21﹣n.
(3)b n=+(1+++…+)a n ,
∴b 1=a 1,b2=+(1+)a2,b3=(1++)a3,
∴b n=+(1+++…+)a n,
∴S n=b1+b2+…+b n=(1+++…+)a 1+(1+++…+)a2+…+(1+++…+)a n
=(1+++…+)(a1+a2+…+a n)=(1+++…+)T n
=(1+++…+)(2﹣21﹣n )<2×(1+++…+),
设f(x)=lnx+﹣1,x>1,
则f′(x)=﹣.
即f(x)在(1,+∞)上为增函数,
∵f (1)=0,即f (x)>0,
∵k≥2,且k∈N •时,,
∴f ()=ln+﹣1>0,即ln >,
∴ln ,,…,
即=lnn,
∴2×(1+++…+)=2+2×(++…+)<2+2lnn,
即S n<2(1+lnn)=2+2lnn.
【点评】本题主要考查数列通项公式以及前n项和的计算,以及数列和不等式的综合,利用作差法求出数列的通项公式是解决本题的关键.考查学生的计算能力,综合性较强,难度较大.
第21页(共21页)。

相关文档
最新文档