高中物理生活中的圆周运动题20套(带答案)及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理生活中的圆周运动题20套(带答案)及解析
一、高中物理精讲专题测试生活中的圆周运动
1.已知某半径与地球相等的星球的第一宇宙速度是地球的
1
2
倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:
(1)星球表面的重力加速度?
(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?
【答案】(1)01=4g g 星 (2)0
024
g s
v H L
=
-201[1]42()s T mg H L L =+
- 【解析】 【分析】 【详解】
(1)由万有引力等于向心力可知2
2Mm v G m R R =
2Mm
G
mg R
= 可得2
v g R
=
则014
g g 星=
(2)由平抛运动的规律:21
2
H L g t -=
星 0s v t =
解得0
024g s v H L
=
- (3)由牛顿定律,在最低点时:2
v T mg m L
-星=
解得:2
01142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦
【点睛】
本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.
2.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:
(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;
(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】
(1)根据机械能守恒定律 E p =211m ?2
v ① v 12Ep
m
=7m/s ② (2)由动能定理得-mg ·2R -W f =
22
211122
mv mv - ③ 小球恰能通过最高点,故22
v mg m R
= ④ 由②③④得W f =24 J (3)根据动能定理:
2
2122
k mg R E mv =-
解得:25k E J =
故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】
(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能
定理可以求出小球的脱离弹簧时的速度v;
(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小
3.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:
(1)滑块A 在半圆轨道最高点对轨道的压力;
(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;
(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内
【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】
(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:
2211222
A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:
2
A N A v m g F m R
+=
滑块在半圆轨道最高点受到的压力为:
F N =1N
由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:
A A
B B m v m v =
解得:v B =3m/s
滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:
)B B B m v m M v =+共(
由能量关系:
2211()-22
P B B B B E m v m M v m gL μ=
-+共 解得E P =0.22J
(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:
)B B B m v m M v =+(
若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:
2211
1()22
B B B B m gL m v m M v μ=-+
联立解得:
L 1=1.35m
若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:
222112()22
B B B B m gL m v m M v μ=
-+ 联立解得:
L 2=0.675m
综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m
4.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

(1)求小球在最低点时的速度大小;
(2)如果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,求电场强度可能的大小。

【答案】(1)18v gL =2)335mg mg E q q
≤≤ 【解析】 【详解】
(1)在最低点,由向心力公式得:
2
1mv F mg L
-= 解得:18v gL =
(2)果在小球通过最低点时,突然在空间产生竖直向下的匀强电场,若使小球在后面的运动中,绳出现松软状态,说明小球能通过与圆心等的水平面,但不能通过最高点。

则小球不能通过最高点, 由动能定理得:
2212112222
mg L Eq L mv mv ⋅+=
- 且
2
2
v Eq mg m L
+=
则35mg
E q
=
也不可以低于O 水平面
2
12
mv mgL EqL += 则3mg
E q
=
所以电场强度可能的大小范围为
335mg mg
E q q
≤≤
5.如图所示,一半径r =0.2 m 的1/4光滑圆弧形槽底端B 与水平传送带相接,传送带的运行速度为v 0=4 m/s ,长为L =1.25 m ,滑块与传送带间的动摩擦因数μ=0.2,DEF 为固定于竖直平面内的一段内壁光滑的中空方形细管,EF 段被弯成以O 为圆心、半径R =0.25 m 的一小段圆弧,管的D 端弯成与水平传带C 端平滑相接,O 点位于地面,OF 连线竖直.一质量为M =0.2 kg 的物块a 从圆弧顶端A 点无初速滑下,滑到传送带上后做匀加速运动,过后滑块被传送带送入管DEF ,已知a 物块可视为质点,a 横截面略小于管中空部分的横截面,重力加速度g 取10 m/s 2.求:
(1)滑块a 到达底端B 时的速度大小v B ; (2)滑块a 刚到达管顶F 点时对管壁的压力.
【答案】(1)2/B v m s = (2) 1.2N F N = 【解析】
试题分析:(1)设滑块到达B 点的速度为v B ,由机械能守恒定律,有21g 2
B M r Mv = 解得:v B =2m/s
(2)滑块在传送带上做匀加速运动,受到传送带对它的滑动摩擦力, 由牛顿第二定律μMg =Ma
滑块对地位移为L ,末速度为v C ,设滑块在传送带上一直加速 由速度位移关系式2Al=v C 2-v B 2
得v C =3m/s<4m/s ,可知滑块与传送带未达共速 ,滑块从C 至F ,由机械能守恒定律,有
221122
C F Mv MgR Mv =+ 得v F =2m/s
在F 处由牛顿第二定律2
g F
N v M F M R
+=
得F N =1.2N 由牛顿第三定律得管上壁受压力为1.2N, 压力方向竖直向上 考点:机械能守恒定律;牛顿第二定律
【名师点睛】物块下滑和上滑时机械能守恒,物块在传送带上运动时,受摩擦力作用,根据运动学公式分析滑块通过传送带时的速度,注意物块在传送带上的速度分析.
6.如图所示,一质量为m =1kg 的小球从A 点沿光滑斜面轨道由静止滑下,不计通过B 点时的能量损失,然后依次滑入两个相同的圆形轨道内侧,其轨道半径R =10cm ,小球恰能通过第二个圆形轨道的最高点,小球离开圆形轨道后可继续向E 点运动,E 点右侧有一壕沟,E 、F 两点的竖直高度d =0.8m ,水平距离x =1.2m ,水平轨道CD 长为L 1=1m ,DE 长为L 2=3m .轨道除CD 和DE 部分粗糙外,其余均光滑,小球与CD 和DE 间的动摩擦因数μ=0.2,重力加速度g =10m/s 2.求:
(1)小球通过第二个圆形轨道的最高点时的速度; (2)小球通过第一个圆轨道最高点时对轨道的压力的大小;
(3)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球从A 点释放时的高度的范围是多少?
【答案】(1)1m/s (2)40N (3)0.450.8m h m ≤≤或 1.25h m ≥ 【解析】
⑴小球恰能通过第二个圆形轨道最高点,有:
22
v mg m R
=
求得:υ2 ①
⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: −μmgL 1=
12mv 22−1
2
mv 12 ②
求得:υ1
在最高点时,合力提供向心力,即F N +mg=2
1m R
υ ③ 求得:F N = m(
2
1R
υ−g)= 40N
根据牛顿第三定律知,小球对轨道的压力为:F N ′=F N =40N ④
⑵若小球恰好通过第二轨道最高点,小球从斜面上释放的高度为h1,在这一过程中应用动能定理有:mgh 1 −μmgL 1 −mg 2R =
1
2
mv 22 ⑤ 求得:h 1=2R+μL 1+2
22g
υ=0.45m 若小球恰好能运动到E 点,小球从斜面上释放的高度为h 1,在这一过程中应用动能定理有:
mgh 2−μmg(L 1+L 2)=0−0 ⑥ 求得: h 2=μ(L 1+L 2)=0.8m
使小球停在BC 段,应有h 1≤h≤h 2,即:0.45m≤h≤0.8m 若小球能通过E 点,并恰好越过壕沟时,则有
d =
12gt 2 ⑦ x=v E t →υE =
x
t
=3m/s ⑧ 设小球释放高度为h 3,从释放到运动E 点过程中应用动能定理有: mgh 3 −μmg(L 1+L 2)=
2
12
E mv −0 ⑨ 求得:h 3=μ(L 1+L 2)+22E
g
υ=1.25m 即小球要越过壕沟释放的高度应满足:h≥1.25m
综上可知,释放小球的高度应满足:0.45m≤h≤0.8m 或 h≥1.25m ⑩
7.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨
道BC 相切。

质量m 2=0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m 1=0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B 时对轨道的压力为小球a 重力的2倍,忽略空气阻力,重力加速度g =10 m/s 2。

求:
(1)小球a 由A 点运动到B 点的过程中,摩擦力做功W f ;
(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能E p ; (3)小球a 通过弹簧与小球b 相互作用的整个过程中,弹簧对小球b 的冲量I 。

【答案】(1) (2)E P =0.2J (3) I =0.4N ⋅s
【解析】
(1)小球由静止释放到最低点B 的过程中,据动能定理得
小球在最低点B 时:
据题意可知
,联立可得
(2)小球a 与小球b 把弹簧压到最短时,弹性势能最大,二者速度相同, 此过程中由动量守恒定律得:
由机械能守恒定律得
弹簧的最大弹性势能E p =0.4J
小球a 与小球b 通过弹簧相互作用的整个过程中,a 球最终速度为,b 求最终速度为,由动量守恒定律
由能量守恒定律:
根据动量定理有:
得小球a 通过弹簧与小球b 相互作用的整个过程中,弹簧对小球b 的冲量I 的大小为
I =0.8N·s
8.如图所示倾角45θ=o 的粗糙直导轨与半径0.4R m =的光滑圆(部分)导轨相切,切点为B ,O 为圆心,CE 为竖直直径,整个轨道处在竖直平面内.一质量1m kg =的小滑块从直导轨上的D 点无初速度下滑,小滑块滑上圆环导轨后恰好能从圆环导轨的最高点C 水平
飞出.已知滑块与直导轨间的动摩擦因数0.5μ=,重力加速度2
10/g m s =,不计空气阻
力.求:
()1滑块在圆导轨最低点E 时受到的支持力大小;
()2滑块从D 到B 的运动过程中损失的机械能.(计算结果可保留根式)
【答案】(1) 60N F = (2)(
6J E =+V 【解析】 【详解】
()1滑块在C 点时由重力提供向心力,有:2
c mv mg R
= 滑块从E 点到C 点的运动过程中,由机械能守恒可知:
2211222
E C mv mg R mv =⨯+ 在E 点有:2E
mv F mg R
-=
解得:60F N =
()2滑块从B 点到E 点过程,由机械能守恒可知:()2
2111cos452
2
B
E mv mgR mv +-=o 滑块从D 点到B 点过程有:2
2B v ax =
根据牛顿第二定律知sin45cos45mg mg ma o o
μ-= 由功能关系可知,损失的机械能cos45E mg x o
V μ=⋅
解得:(6E J =+V . 【点睛】
该题的突破口是小滑块滑上圆环导轨后恰好能从圆环导轨的最高点C 水平飞出,由重力提供向心力.要分析清楚滑块的运动情况,抓住每个过程的物理规律.
9.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面
AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数
0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,
求:
(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?
(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)
(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标
(),x y 应满足什么条件?
【答案】(1)0.1R m = (2) 2
4.0310J p E -=⨯ (3)3
8y x =,或38y x =,或83
x y = 【解析】 【详解】
(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:
2mv mg R
= 要使滑块恰好能到达B 点,即:
0B v =
从圆轨道最高点至B 点的过程:
21
sin 2cos 02
mgL mgR mgL mv θμθ-+-=-
代入数据可得
0.1R m =
(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :
2h t g
=
y gt =v
3sin y v v θ=
代入数据可得:
10
m/s 3
B v =
从弹射至点的过程:
2B 代入数据可得: 24.0310J Ep -=⨯
(3)同理根据平抛规律可知:
1tan 372
y x =︒ 即38
y x = 或38y x =
或83
x y =
10.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心O 等高的P 点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB 间的动摩擦因数为μ,重力加速度为g .试求:
(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s ;
(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力的大小;
(3)为使物体能顺利到达圆弧轨道的最高点D (E 、O 、D 为同一条竖直直径上的3个点),释放点距B 点的距离L 应满足什么条件.
【答案】(1)2(sin cos )tan B gR v θμθθ
-=;R L μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )
R L θθμθ+-…
【解析】
【分析】
【详解】
(1)设物体释放后,第一次到达B 处的速度为1v ,根据动能定理可知:
1sin 2
θ解得:
B v = 物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有
cos cos 0mgR mgL θμθ-=
得物体在AB 轨道上通过的总路程为
R
L μ=
(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为2v v ,由动能定理知:
221(1cos )2
v mgR m θ-=
在E 点,由牛顿第二定律有 22N mv F mg R
-= 解得物体受到的支持力
(32cos )N F mg θ=-
根据牛顿第三定律,物体对轨道的压力大小为(32cos )N N F F mg θ'==-,方向竖直向
下.
(3)设物体刚好到达D 点时的速度为D v 此时有
2D mv mg R
= 解得:
D v =设物体恰好通过D 点时释放点距B 点的距离为0L ,有动能定理可知:
2001[sin (1cos )]cos 2
D mg L R mg L mv θθμθ-+-= 联立解得:
0(32cos )2(sin cos )
R L θθμθ+=
- 则: (32cos )2(sin cos )
R L θθμθ+-…
答案:(1)B v =;R L μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )R L θθμθ+-…。

相关文档
最新文档