函数信号发生器的设计

合集下载

《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电路知识,运用AD画图软件,设计并制作完成一简易函数信号发生器,要求能产生方波和三角波,且频率可调,自行设计电路所需电源电路。

1.2 整机实现的基本原理及框图1.函数信号发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。

其电路中使用的器件可以是分立器件,也可以是集成电路。

本课题需要完成一个能产生方波、三角波的简易函数信号发生器。

产生方波、三角波的方案有很多种,本课题采用运放构成电压比较器出方波信号,采用积分器将方波变为三角波输出,其原理框图如图1所示。

2 硬件电路设计直流电源电路一般由“降压——整流——滤波——稳压”这四个环节构成。

基本组成框图如图2所示。

(1)电源变压器的作用是将电网220V的交流电压变成整流电路所需要的电压u。

因此,uj=nu;(n 为变压器的变比)。

整流电路的作用是将交流电压u.变换成单方向脉动的直流Uz。

整流电路主要有半波整流、全波整流方式。

以单相桥式整流电路为例,U=0.9u。

每只二极管所承受的最大反向1 0.45u电压uey=、2u,,平均电流/ouv)=之 R R对于RC滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC=(3~5)T/2,T为50Hz交流电压的周期,即20ms。

(2)器件选择①变压器将220V交流电压变成整流电路所需要的电压u。

②整流电路将交流电压u:转换成单方向脉动的直流U2,有半波整流、全波整流,可以利用整流二极管构成整流桥堆来实现。

此题建议用二极管搭建全波整流电路实现。

③滤波电路将脉动直流电压Uz滤除纹波,变成纹波较小的U,有RC滤波电路、LC滤波电路等。

此题建议采用大电容滤波。

④稳压器常用集成稳压器有固定式三端稳压器和可调式三端稳压器。

下面分别介绍其典型应用及选择原则。

固定式三端稳压器的常见产品有:78XX系列稳压器输出固定的正电压,如7805输出为+5V;79XX系列稳压器输出固定的负电压,如7905输出为-5V。

函数信号发生器的设计

函数信号发生器的设计

函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。

它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。

本文将介绍函数信号发生器的设计原理和实现方法。

一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。

振荡电路是由放大器、反馈电路和滤波电路组成的。

其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。

函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。

例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。

二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。

下面分别介绍这两种方法的实现步骤和注意事项。

1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。

具体步骤如下:(1)选择合适的集成电路。

NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。

(2)按照电路图连接。

根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。

同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。

(3)调节参数。

根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。

同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。

(4)测试验证。

连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。

函数信号发生器(三角波,梯形波,正弦波)

函数信号发生器(三角波,梯形波,正弦波)

电子课程设计题目:函数信号发生器的设计学院:机械工程学院班级:测控技术与仪器071班作者:学号:指导教师:2010年7月7日摘要:该函数发生器采用AT89S51 单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(1458N)等。

电路采用AT89S51单片机和一片DAC0832数模转换器组成函数信号发生器,在单片机的输出端口接DAC0832进行DA转换,再通过运放进行波形调整,最后输出波形接在示波器上显示。

它具有价格低、性能高和在低频范围内稳定性好、操作方便、体积小、耗电少等特点。

由于采用了1458N运算放大器,使其电路更加具有较高的稳定性能,性能比高。

此电路清晰,出现故障容易查找错误,操作简单、方便。

本设计主要应用AT89S51作为控制核心。

硬件电路简单,软件功能完善,控制系统可靠,性价比较高等特点,具有一定的使用和参考价值。

关键词:AT89S51、DAC0832、波形调整【Abstract】: For special requirement the function generator usingAT89S51 microcontroller as the control, external analog / digital conversion circuit (DAC0832), op-amp circuit (1458C) and so on. AT89S51 microcontroller circuit and an integral function DAC0832 digital-signal generator, the microcontroller output port connected to DA converter DAC0832, and then wave through the op amp to adjust the final output connected to the oscilloscope waveform display. It has a low cost, high performance and low frequency range, good stability, easy operation, small size, low power consumption and so on. As a result of 1458G operational amplifier circuit to a more stable performance with high performance is high. The circuit clear, easy to find failure error, simple and convenient.The design of the main application AT89S51 as the control center. Simple hardware circuit, software, functional, and reliable control system, high cost performance characteristics, has some use and reference.Key words:AT89S51, DAC0832, waveform adjust目录1、设计概述1.1、设计任务----------------------------------4 1.2、方案选择与论证----------------------------41.3、系统设计框图------------------------------52、硬件电路设计--------------------------------53、软件系统设计3.1、阶梯波设计思想及流程图--------------------133.3、三角波和正弦波设计思想--------------------144、系统软件仿真4.1、protues仿真原理图------------------------154.2、仿真波形图--------------------------------165、课程设计心得体会---------------------------176、参考文献------------------------------------177、附录附录一:protel原理图----------------------------18 附录二:PCB图 ----------------------------------18 附录三:焊接后的电路板实物图---------------------19 附录四:实际电路板调试后发生阶梯波图-------------19附录五:实验源程序-------------------------------191.1设计任务与要求:1采用AT89S51及DAC0832设计函数信号发生器;2输出信号为正弦波或三角波或阶梯波;3输出信号频率为100Hz,幅度-5V—+5V可调;4必须具有信号输出及外接电源、公共地线接口,程序在线下载接口。

函数信号发生器设计

函数信号发生器设计

函数信号发生器设计一实验内容1、基本要求:1)设计制作一个可输出正弦波、三角波和方波的函数信号发生器。

2)输出频率能在10HZ—10KHZ范围内连续可调,无明显失真。

3)方波输出电压Upp<20V、三角波Upp=6V、正弦波Upp>1V。

4) 设计、组装、调试函数发生器2、设计目标:1).掌握电子系统的一般设计方法2).掌握模拟IC器件的应用3).培养综合应用所学知识来指导实践的能力4).掌握常用元器件的识别和测试5).熟悉常用仪表,了解电路调试的基本方法3、电路仿真电路设计完成后,用仿真软件Multisim进行电路的仿真,记录仿真过程,分析仿真结果,对电路进行完善。

电路安装、调试进行电路的焊接二实验原理1、原理框图由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

2、各组成部分的工作原理a) 方波---三角波转换电路的工作原理方波—三角波产生电路(线6处输出电压UT、7处输出电压为Uo2)\工作原理如下:若a 点断开,运算发大器A1与R1、R2及R3、组成电压比较器,C1为加速电容,可加速比较器的翻转。

运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R1称为平衡电阻。

比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee 跳到高电平Vcc 。

设Uo1=+Vcc,则U+=[R1/(R1+R2)]*(+Vcc)+[R2/(R1+R2)]*Uia=0将上式整理得比较器翻转的下限门Uia-为 Uia-=-(R1/R3)*Vcc若Uo1=-Vee,则比较器翻转的上限门Uia+为 Uia+=(R1/R2)*Vcc比较器的门限宽度Uh=2(R1/R3)*Vcca 点断开后,运放A2与R6、R12、C1及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为Uo2=[-1/(R6+R12)]*∫Uo1 (dt)1O CC U V =+时,Uo2=[-Vcc/(R6+R12)C1]*t1O EE U V =-时,Uo2=[ Vcc/(R6+R12)C1]*t可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波. a 点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。

简易函数信号发生器设计报告

简易函数信号发生器设计报告

简易函数信号发生器设计报告一、引言信号发生器作为一种测试设备,在工程领域具有重要的应用价值。

它可以产生不同的信号波形,用于测试和调试电子设备。

本设计报告将介绍一个简易的函数信号发生器的设计方案。

二、设计目标本次设计的目标是:设计一个能够产生正弦波、方波和三角波的函数信号发生器,且具有可调节频率和幅度的功能。

同时,为了简化设计和降低成本,我们选择使用数字模拟转换(DAC)芯片来实现信号的输出。

三、设计原理1.信号产生原理正弦波、方波和三角波是常见的函数波形,它们可以通过一系列周期性的振荡信号来产生。

在本设计中,我们选择使用集成电路芯片NE555来产生可调节的方波和三角波,并通过滤波电路将其转换为正弦波。

2.幅度调节原理为了实现信号的幅度调节功能,我们需要使用一个可变电阻,将其与输出信号的放大电路相连。

通过调节可变电阻的阻值,可以改变放大电路的放大倍数,从而改变信号的幅度。

3.频率调节原理为了实现信号的频率调节功能,我们选择使用一个可变电容和一个可变电阻,将其与NE555芯片的外部电路相连。

通过调节可变电容和可变电阻的阻值,可以改变NE555芯片的工作频率,从而改变信号的频率。

四、设计方案1.正弦波产生方案通过NE555芯片产生可调节的方波信号,并通过一个电容和一个电阻的RC滤波电路,将方波转换为正弦波信号。

2.方波产生方案直接使用NE555芯片产生可调节的方波信号即可。

3.三角波产生方案通过两个NE555芯片,一个产生可调节的方波信号,另一个使用一个电容和一个电阻的RC滤波电路,将方波转换为三角波信号。

五、电路图设计设计的电路图如下所示:[在此插入电路图]六、实现效果与测试通过实际搭建电路,并连接相应的调节电位器,我们成功地实现了信号的幅度和频率调节功能。

在不同的调节范围内,我们可以得到稳定、满足要求的正弦波、方波和三角波信号。

七、总结通过本次设计,我们成功地实现了一个简易的函数信号发生器,具有可调节频率和幅度的功能。

《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技在此处键入公式。

术知识,运用AD软件设计并制作一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源1.2 整机实现的基本原理及框图1.电源电路组成由变压器—整流电路—滤波电路—滤波电路—稳压电路组成。

变压器将220V 电源降压至双15V,经整流电路变换成单方向脉冲直流电压,此电源使用四个整流二极管组成全波整流桥电源变压器的作用是将电网220V 的交流电压变成整流电路所需要的电压u1。

因此,u1=nu i(n 为变压器的变比)。

整流电路的作用是将交流电压山变换成单方向脉动的直流U2。

整流电路主要有半波整流、全波整流方式。

以单相桥式整流电路为例,U2=0.9u1。

每只二极管所承受的最大反向电压u RN= √2u1,平均电流I D(A V),=12I R=0.45U1R对于RC 滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC= (3~5)T/2,T 为50Hz 交流电压的周期,即20ms。

此电源使用大电容滤波,稳压电路,正电压部分由三端稳压器7812输出固定的正12V电压,负电压部分由三端稳压器7912输出固定-12V电压。

并联两颗LED灯分别指示正负电压。

2.该函数发生器由运放构成电压比较器出方波信号,方波信号经过积分器变为三角波输出。

2 硬件电路设计硬件电路设计使用Altium Designer 8.3设计PCB,画好NE5532P,7812及7912的原理图和封装后,按照电路图画好原理图后生成PCB图。

合理摆放好各器件后设置规则:各焊盘大小按实际情况设置为了更容易的进行打孔操作,设置偏大一些,正负12V电源线路宽度首选尺寸1.2mm,最小宽度1mm,最大宽度1.2mm,GND线路宽度首选尺寸1mm,最小宽度1mm,最大宽度1.5mm,其他线路首选尺寸0.6mm,最小宽度1mm,最大宽度1.2mm。

函数信号发生器设计方案

函数信号发生器设计方案

函数信号发生器设计方案函数信号发生器是一种能够产生各种类型的电信号的测试设备。

它广泛应用于电子和通信领域的研发和生产过程中,用于测试电路的各种性能参数。

为了设计一个高性能、高精度的函数信号发生器,我们可以采取以下方案。

首先,选择合适的信号发生器芯片。

常用的信号发生器芯片有DDS(直接数字合成)芯片和信号调制芯片。

DDS芯片具有数字处理能力强、干扰小的优点,可以产生高精度、宽频带的各种信号波形。

信号调制芯片则可以实现各种调制方式,如AM、FM、PM等。

根据需要,我们可以选择适合的芯片。

其次,设计合理的电路结构。

函数信号发生器的电路结构一般包括时钟发生电路、数字信号处理电路和模拟输出电路。

时钟发生电路用于产生高精度的时钟信号,为后续的数字信号处理提供基准。

数字信号处理电路利用DDS芯片或信号调制芯片产生各种类型的信号波形,并对波形进行加工、调制等。

模拟输出电路将数字信号转换为模拟信号,用于输出到被测设备。

接下来,需要设计合适的控制界面。

函数信号发生器通常配备有操作面板和显示屏,用于用户对信号发生器进行设置和监控。

操作面板需要设计合理的按键和旋钮,方便用户操作。

显示屏可以显示当前的设置参数和输出波形,保证用户对信号的监测。

此外,为了提高信号发生器的性能,我们可以考虑增加一些附加功能。

例如,可以增加RS232、USB等接口,实现信号发生器与计算机之间的数据交互,方便用户对信号发生器进行远程控制和数据采集。

还可以增加自动测试功能,根据用户设定的测试要求,自动产生相应的信号波形并进行测试。

最后,需要进行严格的测试和调试。

在设计完成后,需要对整个信号发生器进行严格的测试和调试,确保各个模块之间正常工作,信号的输出符合要求。

可以利用示波器、频谱仪等测试仪器对信号进行检测和分析,校准信号发生器的性能参数。

综上所述,设计一个高性能、高精度的函数信号发生器,需要选择合适的芯片、设计合理的电路结构和控制界面、增加附加功能,并进行严格的测试和调试。

函数信号发生器设计方案

函数信号发生器设计方案

函数信号发生器设计方案设计一个函数信号发生器需要考虑的主要方面包括信号的类型、频率范围、精度、输出接口等等。

下面是一个关于函数信号发生器的设计方案,包括硬件和软件两个方面的考虑。

硬件设计方案:1.信号类型:确定需要的信号类型,如正弦波、方波、三角波、锯齿波等等。

可以根据需求选择合适的集成电路或FPGA来实现不同类型的信号生成。

2.频率范围:确定信号的频率范围,例如从几Hz到几十MHz不等。

根据频率范围选择合适的振荡器、计数器等电路元件。

3.精度:考虑信号的精度要求,如频率精度、相位精度等。

可以通过使用高精度的时钟源和自动频率校准电路来提高精度。

4.波形质量:确定信号的波形质量要求,如波形畸变、谐波失真等。

可以使用滤波电路、反馈电路等技术来改善波形质量。

5.输出接口:确定信号的输出接口,如BNC接口、USB接口等,并考虑电平范围和阻抗匹配等因素。

软件设计方案:1.控制界面:设计一个易于操作的控制界面,可以使用按钮、旋钮、触摸屏等各种方式来实现用户与信号发生器的交互。

2.参数设置:提供参数设置功能,用户可以设置信号的频率、幅度、相位等参数。

可以通过编程方式实现参数设置,并通过显示屏或LED等方式来显示当前参数值。

3.波形生成算法:根据用户设置的参数,设计相应的波形生成算法。

对于简单的波形如正弦波可以使用数学函数来计算,对于复杂的波形如任意波形可以使用插值算法生成。

4.存储功能:可以提供存储和读取波形的功能,这样用户可以保存和加载自定义的波形。

存储可以通过内置存储器或外部存储设备实现,如SD卡、U盘等。

5.触发功能:提供触发功能,可以触发信号的起始和停止,以实现更精确的信号控制。

总结:函数信号发生器是现代电子测量和实验中常用的仪器,可以产生各种不同的信号类型,提供灵活的信号控制和生成能力。

在设计过程中,需要综合考虑信号类型、频率范围、精度、波形质量、输出接口等硬件方面的因素,以及控制界面、参数设置、波形生成、存储和触发等软件方面的功能。

函数信号发生器的设计

函数信号发生器的设计

折线法是一种使用最为普遍、实现也较简 单的正弦函数转换方法。折线法的转换原理是, 根据输入三角波的电压幅度,不断改变函数转 换电路的传输比率,也就是用多段折线组成的 电压传输特性,实现三角函数到正弦函数的逐 段校正,输出近似的正弦电压波形。由于电子 器件(如半导体二极管等)特性的非线性,使 各段折线的交界处产生了钝化效果。因此,用 折线法实现的正弦函数转换电路,实际效果往 往要优于理论分析结果。
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。
➢ 模拟电路实现信号产生电路的多种方式
方案一
RC文氏电桥振荡器产生正弦波,方波-三角波产生电路可正弦波振荡器采用波形 变换电路, 通过迟滞比较器变换为方波,经积分器获得三角波输出。此电路的输出 频率就是就是RC文氏电桥振荡器的振荡频率.
0.1u
负反馈电路:R1和R2决定起振条
2
件,调节波形与稳幅控制。
10k
6
3
R3并联D1.D2:正向非线性电阻
RV1 C2
7
起振时:电阻大负反馈小;
9%
R2
0.1u
3k
UA741
振荡幅值大时:电阻小负反馈大,
10k
整形限幅。
改变R 调频率
电路调整的关键是:负反馈电路中的电位器RW的 调节, RW过大:输出方波! RW过小:电路不起 振!
二、总体方案讨论
频率调节
幅度调节
振荡部分
输出电路
输出
频率指示
幅度指示
函数信号发生器的原理框图
➢ 信号产生部分的多种实现方案
▪ 模拟电路实现方案 ▪ 数字电路实现方案 ▪ 模数结合的实现方案

函数信号发生器的设计与制作

函数信号发生器的设计与制作

函数信号发生器的设计、与装配实习一.设计制作要求:掌握方波一三角波一正弦波函数发生器的设计方法与测试技术。

学会由分立器件与集成电路组成的多级电子电路小系统的布线方法。

掌握安装、焊接与调试电路的技能。

掌握在装配过程中可能发生的故障进行维修的基本方法。

二.方波一三角波一正弦波函数发生器设计要求函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。

其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。

本次电子工艺实习,主要介绍由集成运算放大器与晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计与制作方法。

产生正弦波、方波、三角波的方案有多种:1:如先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。

2:先产生三角波一方波,再将三角波变成正弦波或将方波变成正弦波。

33:本次电路设计,则采用的图1函数发生器组成框图是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。

此钟方法的电路组成框图。

如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。

为了使大家能较快地进入设计与制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理:所谓比较器,是一种用来比较输入信号v1和参考电压V,并判REF断出其中哪个大,在输出端显示出比较结果的电路。

在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。

一、单门限电压比较器所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

如果比较器的输入信号从运放的同相端输入,则称为:同相输入单门限电压比较器。

如果比较器的输入信号从运放的反相端输入,则称为:反相输入单门限电压比较器它们的基本电路结构相同,如图2a所示,不同的是输入信号的接法。

函数信号发生器的设计

函数信号发生器的设计

函数信号发生器的设计
函数信号发生器是一种用于产生各种常用电信号和波形的多功能信号产生器。

它也可
以产生各种频率、幅度范围可调的宽带或窄带信号。

在科学研究,工程设计和信号测量领
域中,函数信号发生器发挥着重要作用。

函数信号发生器的设计一般包括信号控制模块、信号发生模块和信号监控模块三部分。

信号控制模块用于控制信号的产生以及信号的参数,如波形、频率、幅度等。

它根据
外部控制信号的指令,通过把信号控制参数转换成相应的电气量并输出至发生模块。

常用
的参数控制方法有时序逻辑控制、数字逻辑控制和模拟控制,各司其职。

信号发生模块经过控制模块传来控制信号后,将其转换成相应的电信号或波形及参数,完成发生功能,输出至信号检测模块。

信号发生模块的选择取决于所要求的发生的信号的
频率、波幅和类型等参数,如果只是产生低频、幅度小的信号,可以使用简单的开关电路;对于需要产生宽带信号和高频信号,则可采用电声变换器、振荡器、综合器或调制器等元
件辅以专用外围电路实现。

信号监控模块起到信号检测、监测和放大作用,其主要功能是通过增益放大信号,而
其增益可以由控制模块实现调节,具体实现方案取决于信号的类型,对于数字信号可以采
用数字信号处理技术,而对于模拟信号可以采用模拟信号放大器。

函数信号发生器的设计实际上是信号生成、控制、测量和监测的一整套系统,是通过
控制仪表发送信号,然后把发出的信号放大,然后利用函数信号发生器产生恒定频率和恒
定幅度的信号,以及根据外部控制指令动态调整频率、幅度等信号参数,从而实现测量结
果的视觉化和长期信号测量自动化等功能。

函数信号发生器设计

函数信号发生器设计

函数信号发生器设计函数信号发生器是一种可以输出各种形式的信号的电子设备,如正弦波、方波、脉冲等。

它通常用于科学研究、电子工程实验、教学以及通信系统的测试和调试等领域。

本文将介绍函数信号发生器的设计原理、关键模块以及一些常见的应用。

一、设计原理1.参考振荡器:参考振荡器是整个函数信号发生器的核心部分,它负责产生一个稳定的基准频率,通常采用石英晶体振荡器作为参考源。

2.频率调节电路:频率调节电路通过改变参考振荡器的频率来控制信号发生器输出的信号频率。

通常采用电压控制振荡器(VCO)或者数字频率合成技术来实现。

3.振幅调节电路:振幅调节电路用于调节信号发生器输出信号的幅值,通常采用放大电路或者可变增益放大器来实现。

4.波形调节电路:波形调节电路用于调节信号发生器输出信号的波形,可以实现正弦波、方波、脉冲等不同形式的信号输出。

二、关键模块设计在函数信号发生器的设计中,有几个关键模块需要特别注意。

1.参考振荡器设计:参考振荡器的设计要求具有高稳定性和低噪声,可以选择石英晶体振荡器或者TCXO(温度补偿石英晶振)作为参考源。

2.频率调节电路设计:频率调节电路的设计要求具有较大的频率范围和较高的分辨率。

可以采用电压控制振荡器(VCO)和锁相环(PLL)等技术来实现。

3.振幅调节电路设计:振幅调节电路的设计要求具有较大的增益范围和较低的失真。

可以选择可变增益放大器和反馈控制技术来实现。

4.波形调节电路设计:波形调节电路的设计要求具有较高的波形质量和波形稳定性。

可以选择滤波电路、比较器和数字信号处理器等技术来实现。

三、常见应用1.信号测试与调试:函数信号发生器可以用于测试和调试各种电子设备和电路,如滤波器、放大器、通信系统等。

通过调节信号的频率、幅值和波形等参数,可以对电路性能进行评估和优化。

2.教学和实验:函数信号发生器可以用于电子教学实验室和科研实验室的教学和研究。

通过实际操作和观测信号的变化,学生和研究人员可以更好地理解和掌握信号处理和调制技术。

函数信号发生器设计报告

函数信号发生器设计报告

目录1设计的目的及任务1.1 课程设计的目的1.2 课程设计的任务与要求2函数信号发生器的总方案及原理图2.1 电路设计原理框图2.2 电路设计方案设计3 各部分电路设计及选择3.1 方波发生电路的工作原理3.2 方波、三角波发生电路的选择3.3三角波---正弦波转换电路的选择3.4总电路图4 电路仿真与调试4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果5 PCB制版6 设计总结7仪器仪表明细清单8 参考文献1.课程设计的目的和设计的任务1.1 设计目的1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。

2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。

2.2设计任务与要求:设计一台波形信号发生器,具体要求如下:1.输出波形:方波、三角波、正弦波。

2.频率围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz等三个波段。

3.频率控制方式:通过改变RC时间常数手控信号频率。

4.输出电压:方波UP-P≤24V,三角波UP-P=8V,正弦波UP-P>1V。

5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。

6.选用常用的电器元件(说明电器元件选择过程和依据)。

7.画出设计的原理电路图,作出电路的仿真。

8.提交课程设计报告书一份,A3图纸两,完成相应答辩。

2.函数发生器总方案及原理框图图1-1 整体原理框图2.2 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。

基于单片机的函数信号发生器设计

基于单片机的函数信号发生器设计

基于单片机的函数信号发生器设计引言:函数信号发生器是一种能够产生各种不同波形的仪器,广泛应用于电子实验、仪器仪表测试等领域。

传统的函数信号发生器通常由模拟电路实现,但使用单片机来设计函数信号发生器具有灵活性高、可编程性强的优点。

本文将介绍一种基于单片机的函数信号发生器的设计。

一、设计原理单片机函数信号发生器的设计基于数字信号处理技术,通过使用单片机的计时器和IO口来产生各种不同形状和频率的波形。

其主要步骤如下:1.选择适当的单片机选择一款拥有足够IO口和计时器功能的单片机作为控制核心。

可以使用常见的单片机如ATmega16、STM32等。

2.设计时钟电路通过外部晶振或者内部时钟源,提供稳定的时钟信号。

3.波形生成算法选择合适的波形生成算法,根据算法设计相应的程序来生成正弦、方波、三角波等不同波形。

4.输出接口设计设计输出接口,可以使用模拟输出电路将数字信号转化为模拟信号输出到外部设备,也可以使用DAC芯片来实现模拟输出。

二、硬件设计1.单片机选型在选择单片机时,需要考虑到所需的IO口数量、计时器数量和存储器容量等因素。

对于初学者来说,可以选择ATmega16单片机,它拥有足够的IO口和计时器资源。

2.时钟电路设计为了使单片机能够稳定工作,需要提供合适的时钟信号。

可以使用外部晶振电路或者内部时钟源。

同时,还需要添加滤波电路来排除干扰。

3.输入电路设计如果需要通过键盘或者旋钮来调节频率和幅度等参数,可以设计相应的输入电路。

可以使用AD转换器来将模拟信号转化为数字信号输入到单片机。

4.输出电路设计为了将数字信号转化为模拟信号输出到外部设备,可以使用RC电路或者声音音箱等输出装置。

三、软件设计1.程序框架设计设计程序框架,包括初始化配置、波形生成循环、参数调整等部分。

2.波形生成算法编写根据所选的波形生成算法,编写相应的程序代码。

可以使用数学函数来生成正弦波、三角波等形状,也可以采用查表法。

3.输入参数处理根据设计要求,编写处理输入参数的程序代码,实现参数调整、频率设置等功能。

函数信号发生器的设计

函数信号发生器的设计

函数信号发生器的设计首先,函数信号发生器的设计目的是输出一定的频率范围内的连续可变信号,并且可以调整信号的振幅、频率、相位等参数。

为了实现这一目标,函数信号发生器通常由以下几个主要部分组成:1.振荡电路:振荡电路是函数信号发生器的核心部分,它通常采用电容和电感构成的谐振电路,实现正弦波、方波等不同形状的振荡信号。

振荡电路的频率可以通过调整电容或电感的参数来实现。

2.控制电路:控制电路是用于控制振荡电路参数的一部分电路,它通常由微处理器或可编程逻辑器件实现。

通过控制电路,用户可以通过面板上的按钮或旋钮来设置信号的振幅、频率、相位等参数。

3.输出电路:输出电路将振荡电路产生的信号放大并输出到外部设备或电路中。

输出电路通常由放大电路和阻抗匹配电路组成,以确保信号能够正确地传输到外部设备。

4.显示与控制界面:函数信号发生器通常配备有显示屏和控制按钮,用于显示当前设置的信号参数和控制信号的生成。

通过显示界面,用户可以方便地调整信号的频率、振幅等参数。

了解了函数信号发生器的主要组成部分,接下来我们来了解一下其运行原理。

当函数信号发生器接通电源后,控制电路会读取用户设置的参数并进行处理。

然后,控制电路会通过控制振荡电路的参数,从而产生相应的频率、振幅和相位等信号。

振荡信号经过放大电路放大后,通过输出电路输出到外部设备。

总结起来,函数信号发生器是一种常用的仪器设备,用于产生可变的信号波形,通常用于电子设计和实验室测试中。

它由振荡电路、控制电路、输出电路和显示与控制界面等部分组成,并通过控制电路的设置来产生相应的信号。

函数信号发生器不仅可以产生正弦波、方波等常见形式的信号,还可以通过附加功能实现信号的调频、调相等特殊操作。

函数信号发生器的设计

函数信号发生器的设计

函数信号发生器的设计一、设计原理函数信号发生器的设计原理是通过数字信号处理(DSP)技术将数字信号转换为模拟信号输出。

首先,将需要的信号波形用数字补偿(D/A)转换为模拟信号,然后通过滤波电路去除混叠频率,最后通过放大电路输出到外界。

二、主要组成部分1.数字信号处理(DSP)模块:负责将数字信号转换为模拟信号输出。

DSP模块通常由高性能的数字信号处理器(DSP芯片)和相应的存储器组成,用于实现各种信号处理算法和波形生成。

2.数字补偿(D/A)模块:负责将数字信号转换为模拟信号输出。

D/A模块通常由高精度的数字到模拟转换器(D/A芯片)和相应的放大电路组成,用于将数字信号转换为模拟电压输出。

3.滤波电路:负责去除混叠频率。

滤波电路可以使用各种类型的滤波器,如低通滤波器、带通滤波器等,根据需求选用适当的滤波器进行设计。

4.放大电路:负责将输出信号放大到适当的幅度。

放大电路通常由放大器和电源电路组成,用于放大信号并提供稳定的电源供电。

三、关键技术1.数字信号处理技术:函数信号发生器的核心技术是数字信号处理技术。

需要使用高性能的DSP芯片和相应的算法实现各种信号处理功能,如频率合成、相位调制、幅度调制等。

2.数字到模拟转换技术:数字信号转换为模拟信号的关键是使用高精度的D/A转换器。

需要选择合适的D/A芯片,具备高分辨率、低失真、高速度等特点。

3.滤波技术:信号在数字到模拟转换过程中会产生一定的混叠频率,需要通过滤波电路去除混叠频率。

滤波电路的设计需要考虑滤波器的类型选择、通带和阻带的频率范围、滤波器的阶数等因素。

4.放大技术:输出信号需要经过放大电路放大到适当的幅度。

放大电路的设计需要考虑功率放大器的选择、电源电路的设计以及稳定性等因素。

综上所述,函数信号发生器的设计原理是通过数字信号处理技术将数字信号转换为模拟信号输出。

其主要组成部分包括DSP模块、D/A模块、滤波电路和放大电路。

关键技术包括数字信号处理技术、数字到模拟转换技术、滤波技术和放大技术。

函数信号发生器设计报告

函数信号发生器设计报告

函数信号发生器设计报告
以下是一份函数信号发生器设计报告的范本,供参考:
设计报告:函数信号发生器
一、概述
函数信号发生器是一种能够产生各种波形(如正弦波、方波、三角波等)的电子设备。

本设计报告将介绍如何设计一个简易的函数信号发生器。

二、设计原理
函数信号发生器的核心是波形生成电路。

本设计采用基于555定时器的波形生成电路,通过调节电阻和电容的值,可以生成不同频率和幅值的波形。

三、电路设计
1.电源电路:采用7805稳压芯片,为整个电路提供稳定的5V电源。

2.波形生成电路:基于555定时器,通过调节R1、R2和C1的值,可以生成不
同频率和幅值的波形。

3.输出电路:采用OP07运算放大器,将波形信号放大后输出。

四、测试结果
经过测试,本设计的函数信号发生器能够产生正弦波、方波和三角波三种波形,频率范围为1Hz~10kHz,幅值范围为0~5V。

在测试过程中,未发现明显的失真现象。

五、结论
本设计报告成功地介绍了一种简易的函数信号发生器的设计和制作过程。

测试结果表明,该函数信号发生器能够产生高质量的波形,具有较宽的频率和幅值调节范围。

在实际应用中,可以根据需要调节波形、频率和幅值,以满足不同的
需求。

课程设计--函数信号发生器

课程设计--函数信号发生器

函数信号发生器的设计函数信号发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电压或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如视频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块5G8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题要求设计由集成运算放大器与晶体管差分放大器共同组成的方波-三角波-正弦波函数发生器。

一、设计任务书1.设计课题函数信号发生器设计。

2.主要技术指标1)输出波形:正弦波、方波、三角波等2)频率范围:1~10Hz,10~100Hz3) 输出电压:方波U p-p=24V,三角波U p-p=6V,正弦波U>1V;4) 波形特征:方波t r<10s(1kHz,最大输出时),三角波失真系数THD<2%,正弦波失真系数THD<5%。

二、设计过程举例1.课题分析根据任务,函数信号发生器一般基本组成框图如图4.2.15所示。

图4.2.15 函数信号发生器框图2.方案论证(1)确立电路形式及元器件型号1)方波-三角波电路 图4.2.16所示为产生方波-三角波电路。

工作原理如下:若a 点短开,运算放大器A1与R 1、R 2及R 3、R P 1组成电压比较器,C 1为加速电容,可加速比较器的翻转。

图4.2.16 方波-三角波产生电路由图4.2.16分析可知比较器有两个门限电压CC th V RP R R U 1321+-= CC th V RP R R U 1322+=运放A2与R 4、R P 2、C 2及R 5组成反相积分器,其输入信号为方波U o1时,则输出积分器的电压为t U C RP R U o o d )(112242⎰+-= 当U o1=+V CC 时t C RP R U o 224CC 2)(V +-= 当U o1=-V EE 时t C RP R U o 224EE 2)(V += 可见积分器输入方波时,输出是一个上升速率与下降速率相等的三角波,其波形如图4.2.17所示。

函数信号发生器课程设计

函数信号发生器课程设计

函数信号发生器课程设计一、课程目标知识目标:1. 理解函数信号发生器的原理与功能,掌握其基本组成部分及其作用。

2. 掌握使用函数信号发生器产生常见波形(如正弦波、方波、三角波等)的方法。

3. 学会读取和解释函数信号发生器显示的波形参数,如频率、幅度、相位等。

技能目标:1. 能够独立操作函数信号发生器,进行基本波形的设置与调整。

2. 能够运用函数信号发生器设计简单的信号处理电路,并进行调试。

3. 培养学生动手实践能力,学会使用函数信号发生器解决实际问题的方法。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发他们探索科学原理的精神。

2. 增强学生的团队合作意识,培养他们在实践过程中互帮互助、共同进步的精神。

3. 培养学生严谨、务实的学习态度,使他们认识到实践操作中规范操作的重要性。

课程性质:本课程为电子技术学科的课程设计,以实践操作为主,理论讲解为辅。

学生特点:学生处于高中年级,具有一定的电子技术基础,对实践操作充满兴趣。

教学要求:结合学生特点,注重理论与实践相结合,强调动手实践能力的培养。

通过课程设计,使学生将所学知识应用于实际电路设计中,提高他们的综合运用能力。

同时,关注学生的情感态度价值观的培养,使他们形成积极向上的学习态度。

课程目标的分解与实施将贯穿于整个教学设计和评估过程,以确保学生达到预期学习成果。

二、教学内容本课程教学内容主要包括以下三个方面:1. 函数信号发生器原理及功能:介绍函数信号发生器的基本原理、组成部分、工作方式及其在电子技术中的应用。

- 教材章节:第五章第三节“函数信号发生器”- 内容列举:原理讲解、组成部分、波形种类、应用领域2. 函数信号发生器操作与使用:学习如何操作函数信号发生器,掌握各种波形参数的设置与调整方法。

- 教材章节:第五章第四节“函数信号发生器的使用”- 内容列举:面板介绍、操作步骤、参数设置、波形观察3. 函数信号发生器应用案例:通过实际案例,让学生学会使用函数信号发生器解决实际问题,培养动手实践能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章方案设计
1.1设计要求
设计产生正弦波、三角波和方波的波形发生器,具体设计要求如下:
1)、输出波形工作频率范围为2HZ~20KHZ,并且输出波形的频率可调;
2)、正弦波的幅值±10V,失真度小于1.5%;
3)、方波幅度±10V;
4)、三角波峰峰值为20V,输出波形幅值可调;
1.2方案思路设计
随着集成制造技术的不断发展,信号发生器已被制造成专用集成电路。

目前用的较多的集成函数发生器是ICL8038。

ICL8038波形发生器只需连接少量外部元件就能产生高精度的正弦波、方波、三角波。

其主要的输出频率范围:0.001Hz~300Hz;
最高温度系数:±250*10-6/℃;
电源电压范围:单电源供电:10~30V;
双电源供电:(±5~±15)V;
正弦波失真度:1%;
三角波线性度:0.1%;
由以上述指标可以看出,若选用ICL8038芯片组成函数发生器,只要加一级放大器调节输出幅值完全能达到题目要求,而且与前几种实现方案相比较具有电路简单的优势。

所以在本次设计中我采用该芯片来设计。

设计原理框图如图1.2:
图1.2 集成芯片ICL8038设计框图
第2章硬件电路设计
2.1硬件原理图
Proteus中硬件电路如下图2.1所示,其总电路图由ICL8038芯片、固定电阻、电容、可变电阻、多路选择开关和示波器组成。

对于其中ICL8038芯片用来产生信号,电容和电阻用来改变的波形的频率和控制波形的正常显示范围,确保波形不失真。

图2.1总硬件图
2.2单元电路设计
(1)ICL8038芯片外部图2.2-1如下:
图2.2-1 ICL8038芯片外部图
(2)管脚说明:1. 正弦波线性调节;2. 正弦波输出;3. 三角波输出;4. 恒流源调节;5. 恒流源调节;6. 正电源;7. 调频偏置电压;8. 调频控制输入端;9. 方波输出(集电极开路输出);10. 外接电容;11. 负电源或接地;12.正弦波线性调节。

(3)管脚8为调频电压控制输入端,管脚7输出调频偏置电压,其值(指管脚6与7之间的电压)是(VCC+VEE/5),它可作为管脚8的输入电压。

此外,该器件的方波输出端为集电极开路形式,一般需在正电源与9脚之间外接一电阻,其值常选用10k左右,如图3-3所示。

当电位器Rp1动端在中间位置,并且图中管脚8与7短接时,管脚9、3和2的输出分别为方波、三角波和正弦波。

电路的振荡频率f约为0.3/[C(R1+RP1/2)]。

调节RP1、RP2可使正弦波的失真达到较理想的程度。

在图2-2-1中,当RP1动端在中间位置,断开管脚8与7之间的连线,若在+VCC与-VEE之间接一个电位器,使其移动端与8脚相连,改变正电源+VCC与管脚8之间的控制电压,则振荡频率随之变化,因此该电路是一个频率可调的函数发生器。

如果控制电压按一定规律变化,则可构成扫频式函数发生器。

(4)、基本电路的工作原理如图2.2-2
图2.2-2 集成函数发生器ICL8038的原理框图
其中,振荡电容C由外部接入,它是由内部两个恒流源来完成充电放电过程。

恒流源2的工作状态是由恒流源1对电容器C连续充电,增加电容电压,从而改变比较器的输入电平,比较器的状态改变,带动触发器翻转来连续控制的。

当触发器的状态使恒流源2处于关闭状态,电容电压达到比较器1输入电压规定值的2/3倍时,比较器1状态改变,使触发器工作状态发生翻转,将模拟开关K由B点接到A点。

由于恒流源2的工作电流值为2I,是恒流源1的2倍,电容器处于放电状态,在单位时间内电容器端电压将线性下降,当电容电压下降到比较器2的输入电压规定值的1/3倍时,比较器2状态改变,使触发器又翻转回到原来的状态,这样周期性的循环,完成振荡过程。

在以上基本电路中很容易获得3种函数信号,假如电容器在充电过程和在放电过程的时间常数相等,而且在电容器充放电时,电容电压就是三角波函数,三角波信号由此获得。

由于触发器的工作状态变化时间也是由电容电压的充放电过程决定的,所以,触发器的状态翻转,就能产生方波函数信号,在芯片内部,这两种函数信号经缓冲器功率放大,并从管脚3和管脚9输出。

适当选择外部的电阻RA和RB和C可以满足方波函数等信号在频率、占空比调节的全部范围。

因此,对两个恒流源在I和2I电流不对称的情况下,可以循环调节,从最小到最大,任意选择调整,所以,只要调节电容器充放电时间
不相等,就可获得锯齿波等函数信号。

正弦函数信号由三角波函数信号经过非线性变换而获得。

利用二极管的非线性特性,可以将三角波信号的上升成下降斜率逐次逼近正弦波的斜率。

ICL8038中的非线性网络是由4级击穿点的非线性逼近网络构成。

一般说来,逼近点越多得到的正弦波效果越好,失真度也越小,在本芯片中N=4,失真度可以小于1。

在实测中得到正弦信号的失真度可达0.5左右。

第3章仿真与调试
3.1仿真步骤
首先按照电路原理和单元电路的设计在Proteus上画好电路图,点击Play,观察仿真现象,观察ICL8038芯片的2脚、3脚和9脚是否分别输出正弦波、三角波和方波。

若没有实现波形的输出或者输出的波形失真,这是我们调节滑动变阻器,通过相关的资料确定电阻的大致范围,然后对滑动变阻器进行调节,直到达到我们预期想要的结果。

3.2 仿真结果
在proteus中运行的结果如图3.2-1、图3.2-2、图3.2-3。

我还设置的多路选择开关SW2来进行粗调频率的大小,设置RV1进行细调。

(1)管脚2三角波的输出仿真图如图3.2-1。

图3.2-1三角波输出
调节RV1或者改变SW2指向不同的电容时,输出的波形如图图3.2-2
图3.2-2 变频后的输出三角波
(2)管脚3正弦波的输出仿真图如图3.2-3。

图3.2-3正弦波输出
(3)管脚9方波的输出仿真图如图3.2-4。

图3.2-4方波输出
通过仿真结果,能够很明显的看出,ICL8038芯片产生的波形能够实现我们预期的要求。

相关文档
最新文档