源南乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
源南乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)方程组消去y后所得的方程是()
A.3x-4x+10=8
B.3x-4x+5=8
C.3x-4x-5=8
D.3x-4x-10=8
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:,
①代入②得:3x-2(2x-5)=8,
3x-4x+10=8.
故答案为:A.
【分析】利用整体替换的思想,由于y=2x-5,用2x-5替换②中的y,再去括号即可得出答案。
2、(2分)下列各式是一元一次不等式的是()
A.2x﹣4>5y+1
B.3>﹣5
C.4x+1>0
D.4y+3<
【答案】C
【考点】一元一次不等式的定义
【解析】【解答】解:根据一元一次不等式的概念,用不等号连接的,含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的式子叫做一元一次不等式,可知2x-4>5y+1含有两个未知数,故不正确;
3>-5没有未知数,故不正确;4x+1>0是一元一次不等式,故正确;根据4y+3<中分母中含有未知数,故不正确.
故答案为:C.
【分析】只含有一个未知数,并且未知数的次数都是1,系数不为0,左右两边为整式的不等式叫一元一次不等式。
根据这个定义依次对各选项作出判断即可。
3、(2分)在,,,,,,7.010010001…(每两个“1”之间依次多一个“0”),这7个数中,无理数共有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】C
【考点】无理数的认识
【解析】【解答】解:无理数有:,2 π,7.010010001…(每两个“1”之间依次多一个“0”)一共3个。
故答案为:C
【分析】根据无限不循环的小数是无理数或开方开不尽的数是无理数,有规律但不循环的小数是无理数,就可得出无理数的个数。
4、(2分)若不等式(a+1)x>a+1的解集是x<1,则a必满足()
A.a<-1
B.a>-1
C.a<1
D.a>1
【答案】A
【考点】不等式的解及解集,解一元一次不等式
【解析】【解答】解:根据不等式的不等号发生了改变,可知a+1<0,解得a<-1.
故答案为:A
【分析】根据不等式的性质3和所给不等式的解集可知a+1<0,即可求出a的取值范围.注意不等式的性质3:
不等式两边除以同一个负数时,不等式的方向改变.
5、(2分)若方程组的解为x,y,且x+y>0,则k的取值范围是()
A. k>4
B. k>﹣4
C. k<4
D. k<﹣4
【答案】B
【考点】解二元一次方程组,解一元一次不等式
【解析】【解答】解:两式相加得:4x+4y=k+4
∵x+y>0
∴4x+4y=4(x+y)>0
即k+4>0
k>﹣4
故答案为:B.
【分析】先观察x,y的系数,系数之和都是4,所以两式相加得x+y=(k+4)÷4,再让k+4>0,解得k>﹣4 6、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()
A. ∠1=∠2
B. ∠2=∠4
C. ∠3=∠4
D. ∠1+∠4=180°
【考点】平行线的判定
【解析】【解答】A选项,错误,所以不符合题意;
B选项,∠2与∠4不是同位角,错误,所以不符合题意;
C选项,∠3与∠4不是同位角,错误,所以不符合题意;
D选项,因为∠1+∠4=180°,所以a∥b,正确,符合题意;
故答案为:D。
【分析】根据判断直线平行的几个判定定理即可进行判别:同位角相同,两直线平行;同旁内角互补,两直线平行
内错角相等,两直线平行。
7、(2分)用代入法解方程组的最佳策略是()
A.消y,由②得y= (23-9x)
B.消x,由①得x= (5y+2)
C.消x,由②得x= (23-2y)
D.消y,由①得y= (3x-2)
【考点】解二元一次方程组
【解析】【解答】解:因为方程②中x的系数是方程①中x的系数的3倍,
所以用代入法解方程组的最佳策略是:
由①得
再把③代入②,消去x.
故答案为:B
【分析】因为方程②中x的系数是方程①中x的系数的3倍,故用代入法解该方程组的时候,将原方程组中的①方程变形为用含y的代数式表示x,得出③方程,再将③代入②消去x得到的方程也是整数系数,从而使解答过程简单。
8、(2分)高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指()
A.每100克内含钙150毫克
B.每100克内含钙高于150毫克
C.每100克内含钙不低于150毫克
D.每100克内含钙不超过150毫克
【答案】C
【考点】不等式及其性质
【解析】【解答】解:根据≥的含义,“每100克内含钙≥150毫克”,就是“每100克内含钙不低于150毫克”,故答案为:C
【分析】”≥”就是“不小于”,在本题中就是“不低于”的意思。
9、(2分)在4,—0.1,,中为无理数的是()
A. 4
B. —0.1
C.
D.
【答案】D
【考点】无理数的认识
【解析】【解答】解:这四个数中,4,—0.1,,是有理数
是无理数
故答案为:D
【分析】根据无理数的定义,无限不循环的小数是无理数;开方开不尽的数是无理数;含的数是无理数。
即可得解。
10、(2分)下列不等式中,是一元一次不等式的是()
A. 2x-1>0
B. -1<2
C. 3x-2y≤-1
D. y2+3>5
【答案】A
【考点】一元一次不等式的定义
【解析】【解答】解:A、是一元一次不等式;
B、不含未知数,不符合定义;
C、含有两个未知数,不符合定义;
D、未知数的次数是2,不符合定义;
故答案为:A
【分析】根据一元一次不等式的定义,只含有一个未知数,并且未知数的最高次数是一次,这样的不等式就是一元一次不等式,即可作出判断。
11、(2分)下列说法中,不正确的是().
A. 3是(﹣3)2的算术平方根
B. ±3是(﹣3)2的平方根
C. ﹣3是(﹣3)2的算术平方根
D. ﹣3是(﹣3)3的立方根
【答案】C
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:A. (﹣3)2=9的算术平方根是3,故说法正确,故A不符合题意;
B. (﹣3)2=9的平方根是±3,故说法正确,故B不符合题意;
C. (﹣3)2=9的算术平方根是3,故说法错误,故C符合题意;
D. (﹣3)3的立方根是-3,故说法正确,故D不符合题意;
故答案为:C.
【分析】一个正数的平方根有两个,且这两个数互为相反数.先计算(﹣3)2的得数,再得出平方根,且算术平方根是正的那个数;一个数的立方根,即表示这个立方根的立方得原数.
12、(2分)下列方程组中,是二元一次方程组的是()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程组的解
【解析】【解答】解:A、方程6xy=7是二元二次方程,故A不符合题意;
B、方程组是二元一次方程组,故B符合题意;
C、方程3x2﹣x﹣3=0,是一元二次方程,故此C不符合题意;
D、方程﹣1=y是分式方程,故D不符合题意.
故答案为:B.
【分析】二元一次方程组满足的条件:含有两个未知数;未知数的最高次数是1;是整式方程。
根据这三个条件即可判断。
二、填空题
13、(1分)如图,∠1=∠2,∠A=60°,则∠ADC=________度.
【答案】120
【考点】平行线的判定与性质
【解析】【解答】解:∵∠1=∠2
∴AB∥CD
∴∠A+∠ADC=180°
∵∠A=60°
∴∠ADC=180°-60°=120°
故答案为:120°【分析】根据平行线的判定,可证得AB∥CD,再根据平行线的性质得出∠A+∠ADC=180°,
从而可得出答案。
14、(1分)若m是的算术平方根,则 ________ .
【答案】5
【考点】算术平方根
【解析】【解答】解:,且m是的算术平方根,
,
则,
故答案为:5.
【分析】根据算术平方根的意义可得=4,由题意m==2,所以m + 3 = 5 。
15、(1分)图形在平移时,下列特征:①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系,其中不发生改变的有________ (把你认为正确的序号都填上)
【答案】①③④⑤⑥
【考点】平移的性质
【解析】【解答】解:∵平移只改变图形的位置
∴:①图形的形状;②图形的位置;③线段的长度;④角的大小;⑤垂直关系;⑥平行关系,都不会改变。
故答案为:①③④⑤⑥【分析】根据平移的性质,可知平移只改变图形的位置,即可得出答案。
16、(4分)如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:
解:∵AD∥BC(已知),
∴∠1=∠3(________).
∵∠1=∠2(已知),
∴∠2=∠3.
∴BE∥________(________).
∴∠3+∠4=180°(________).
【答案】两直线平行,内错角相等;DF;同位角相等,两直线平行;两直线平行,同旁内角互补
【考点】平行线的判定与性质
【解析】【分析】根据平行线性质:两直线平行,内错角相等;
根据平行线判定:同位角相等,两直线平行;
根据平行线性质:两直线平行,同旁内角互补.
17、(1分)若关于x,y的方程组的解满足x>y,则p的取值范围是________
【答案】p>-6
【考点】解二元一次方程组,解一元一次不等式
【解析】【解答】解:由(②-①)×2得
2x+2y=-4③
由①-③得:x=p+5
将x=p+5代入③得:y=-p-7
方程组的解为:
由题意可得p+5>-p-7,
解之:p>-6【分析】先由①-(②-①)×2,求出x的值,再求出y的值,然后根据x>y,建立不等式,求出p 的取值范围即可。
18、(1分)对于x、y定义一种新运算“◎”:x◎y=ax+by,其中a、b为常数,等式右边是通常的加法和乘法运算.已知3◎2=7,4◎(﹣1)=13,那么2◎3=________.
【答案】3
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:∵x◎y=ax+by,3◎2=7,4◎(﹣1)=13,
∴,①+②×2得,11a=33,解得a=3;把a=3代入①得,9+2b=7,解得b=﹣1,
∴2◎3=3×2﹣1×3=3.
故答案为:3.
【分析】由题意根据3◎2=7,4◎(﹣1)=13知,当x=3、y=2时可得方程3a+2b=7,;当x=4、-1时,可得方程4a-b=13,解这个关于a、b的方程组可求得a、b的值,则当x=2、y=3时,2◎3 的值即可求解。
三、解答题
19、(5分)如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.
【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°
【考点】对顶角、邻补角
【解析】【分析】根据图形得到对顶角∠3=∠1、∠2=∠4,∠1+∠2=180°,由∠1的度数求出∠2、∠3、∠4的度数.
20、(5分)把下列各数填入相应的集合中:
﹣22,﹣|﹣2.5|,3,0,,,﹣0.121221222……(每两个1之间多一个2),,
无理数集合:{ ……};
负有理数集合:{ ……};
整数集合:{ ……};
【答案】解:无理数集合:{ ,﹣0.121221222……(每两个1之间多一个2),……};
负有理数集合:{﹣22,﹣|﹣2.5|,……};
整数集合:{﹣22,﹣|﹣2.5|,3,0,……};
【考点】实数及其分类,有理数及其分类
【解析】【分析】无理数:无限不循环小数是无理数,常见的无理数有:开不尽的平方根或立方根,无限不循环小数,π;负有理数:负整数,负分数;整数:正整数,负整数.
21、(15分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:
(1)求该校七年一班此次预选赛的总人数;
(2)补全条形统计图,并求出书法所在扇形圆心角的度数;
(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?
【答案】(1)解:6÷25%=24(人).故该校七年一班此次预选赛的总人数是24人
(2)解:24﹣6﹣4﹣6=8(人),书法所在扇形圆心角的度数8÷24×360°=120°;
补全条形统计图如下:
(3)解:480÷24×2=20×2
=40(名)
故本次比赛全学年约有40名学生获奖
【考点】扇形统计图,条形统计图
【解析】【分析】(1)先根据版画人数除以所占的百分比可得总人数;
(2)先根据(1)中的总人数减去其余的人数可得书法参赛的人数,然后计算圆心角,补全统计图即可;(3)根据总数计算班级数量,然后乘以2可得获奖人数.
22、(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。
23、(5分)如图,直线BE、CF相交于O,∠AOB=90°,∠COD=90°,∠EOF=30°,求∠AOD的度数.
【答案】解:∵∠EOF=30°
∴∠COB=∠EOF=30°
∵∠AOB=90°,∠AOB=∠AOC+∠COB
∴∠AOC=90°-30°=60°
∴∠AOD=∠COD+∠AOC=150°
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等得出∠COB=∠EOF=30°,根据角的和差得出∠AOC=90°-30°=60°,∠AOD=∠COD+∠AOC=150°。
24、(5分)如图,AB∥CD.证明:∠B+∠F+∠D=∠E+∠G.
【答案】证明:作EM∥AB,FN∥AB,GK∥AB,
∵AB∥CD,
∴AB∥ME∥FN∥GK∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6,
又∵∠E+ ∠G=∠1+∠2+∠5+∠6,
∠B+ ∠F+ ∠D=∠B+ ∠3+∠4+ ∠D,
∴∠B+ ∠F+ ∠D=∠E+ ∠G.
【考点】平行公理及推论,平行线的性质
【解析】【分析】作EM∥AB,FN∥AB,GK∥AB,根据平行公理及推论可得AB∥ME∥FN∥GK∥CD,再由平行线性质得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,相加即可得证.
25、(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.
(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。
(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。
【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
26、(5分)一个三位数的各位数字的和等于18,百位数字与个位数字,的和比十位数字大14,如果把百位数字与个位数字对调,所得新数比原数大198,求原数!
【答案】解:设原数的个位数字为x,十位数字为y,百位数字为z根据题意得:
解这个方程组得:
所以原来的三位数是729
【考点】三元一次方程组解法及应用
【解析】【分析】此题的等量关系为:个位数字+十位数字+百位数字=18;百位数字+个位数字-十位数字=14;新的三位数-原三位数=198,设未知数,列方程组,解方程组求解,就可得出原来的三位数。
27、(5分)如图,∠ABE+ ∠DEB=180°,∠1= ∠2.求证:∠F= ∠G.
【答案】证明:∵∠ABE+ ∠DEB=180°,
∴AC∥DE,
∴∠CBO=∠DEO,
又∵∠1= ∠2,
∴∠FBO=∠GEO,
在△BFO中,∠FBO+∠BOF+∠F=180°,
在△GEO中,∠GEO+∠GOE+∠G=180°,
∴∠F=∠G.
【考点】平行线的判定与性质
【解析】【分析】根据平行线的判定得AC∥DE,再由平行线的性质内错角∠CBO=∠DEO,结合已知条件得∠FBO=∠GEO,在△BFO和△GEO中,由三角形内角和定理即可得证.
第21 页,共21 页。