九年级上册几何模型压轴题单元练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册几何模型压轴题单元练习(Word版含答案)
一、初三数学旋转易错题压轴题(难)
1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.
(1)如图①,若∠B、∠ADC都是直角,把ABE
△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;
(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有
EF=BE+DF;
(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.
【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3
【解析】
【分析】
(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;
(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即
180
ADG ADF
∠+∠=︒,即180
B D
∠+∠=︒;
(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.
【详解】
(1)解:如图,
∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,
∴AE=AG,∠BAE=∠DAG,BE=DG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠DAG+∠DAF=45°,
即∠EAF=∠GAF=45°,
在△EAF和△GAF中
AF AF
EAF GAF
AE AG
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△EAF≌△GAF(SAS),
∴EF=GF,
∵BE=DG,
∴EF=GF=BE+DF;
(2)解:∠B+∠D=180°,
理由是:
如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,
∵∠B+∠ADC=180°,
∴∠ADC+∠ADG=180°,
∴F、D、G在一条直线上,
和(1)类似,∠EAF=∠GAF=45°,
在△EAF和△GAF中
AF AF
EAF GAF
AE AG
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△EAF≌△GAF(SAS),
∴EF=GF,
∵BE=DG,
∴EF=GF=BE+DF;
故答案为:∠B+∠D=180°;
(3)解:∵△ABC中,2BAC=90°,
∴∠ABC=∠C=45°,由勾股定理得:22
AB AC
+,
如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .
则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,
∵∠DAE=45°,
∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,
∴∠FAD=∠DAE=45°,
在△FAD 和△EAD 中
AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩
∴△FAD ≌△EAD ,
∴DF=DE ,
设DE=x ,则DF=x ,
∵BD=1,
∴BF=CE=4﹣1﹣x=3﹣x ,
∵∠FBA=45°,∠ABC=45°,
∴∠FBD=90°,
由勾股定理得:222DF BF BD =+,
22(3)1x x =-+, 解得:x=
53, 即DE=53
. 【点睛】
本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.
2.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.
(1)写出线段ED 与线段EB 的关系并证明;
(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;
(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的
范围.
【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22=
最小值322
=. 【解析】
【分析】
(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;
(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.
【详解】
(1)∵DF ⊥AC ,点E 是AF 的中点
∴DE=AE=EF ,∠EDF=∠DFE
∵∠ABC=90°,点E 是AF 的中点
∴BE=AE=EF ,∠EFB=∠EBF
∴DE=EB
∵AB=BC ,
∴∠DAB=45°
∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°
∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)
=360°-2×135°=90°
∴DE ⊥EB
(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H
∵ME=EB,点E是AF的中点
∴四边形MFBA是平行四边形
∴MF∥AB,MF=AB
∴∠MHB=180°-∠ABC=90°
∵∠DCA=∠FCB=a
∴∠DCB=45°+a,∠CFH=90°-a
∵∠DCF=45°,∠CDF=90°
∴∠DFC=45°,△DCF是等腰直角三角形
∴∠DFM=180°-∠DFC-∠CFH=45°+a
∴∠DCB=∠DFM
∵△ABC和△CDF都是等腰直角三角形
∴DC=DF,BC=AB=MF
∴△DCB≌△DFM(SAS)
∴∠MDF=∠BDC,DB=DM
∴∠MDF+∠FDB=∠BDC+∠FDB=90°
∴△DMB是等腰直角三角形
∵点E是MB的中点
∴DE=EB,DE⊥EB
(3)当点F在AC上时,CF有最大值,图形如下:
∵BC=6,∴在等腰直角△ABC 中,AC=62 ∵CF=32,∴AF=32
∴CE=CF+FE=CF+12AF 922
= 当点F 在AC 延长线上时,CE 有最小值,图形如下:
同理,CE=EF -CF 322
=
【点睛】 本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM 是等腰直角三角形.
3.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .
(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积;
(2)将A B D
'''
△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与A B D
'''
△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''
△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.
【答案】(1)2
45
2
cm;(2)
2
2
3316
24(0)
225
88020016
(4)
3335
x x x
y
x x x
⎧
--+≤<
⎪⎪
=⎨
⎪-+≤≤
⎪⎩
;(3)存在,使得AA B''
△成为等腰三角形的x的值有:0秒、
3
2
秒、
69
5
.
【解析】
【分析】
(1)先用勾股定理求出BD的长,再根据旋转的性质得出10
B D BD cm
''==,
2
CD B D BC cm
'=''-=,利用B D A
∠'''的正切值求出CE的值,利用三角形的面积差即可求阴影部分的面积;
(2)分类讨论,当
16
5
x
≤<时和当
16
4
5
x
≤≤时,分别列出函数表达式;
(3)分类讨论,当AB A B
'=''时;当AA A B
'=''时;当AB AA
'='时,根据勾股定理列方程即可.
【详解】
解:(1)6
AB cm
=,8
AD cm
=,
10
BD cm
∴=,
根据旋转的性质可知10
B D BD cm
''==,2
CD B D BC cm
'=''-=,
tan
A B CE
B D A
A D CD
''
'''
∠==
'''
,
6
82
CE
∴=,
3
2
CE cm
∴=,
()2
86345
22
222
A B CE A B D CED
S S S cm
'
'''''
⨯
∴==-⨯÷=
-;
(2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22
CD E S x x '∴=△, 22133368242222
y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023
CE x =- ()221488020010223333
y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;
②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,
222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝
⎭⎝⎭, 解得:6695x -=秒,(6695
x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'
22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝
⎭⎝⎭ 解得:32
x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、
32秒、6695-.
【点睛】
本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.
4.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .
(1)求证:APQ QCE ∆∆≌;
(2)证明:DF BQ QF +=;
(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.
【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.
【解析】
【分析】
(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;
(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;
(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明
()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.
【详解】
(1)∵四边形ABCD 是正方形,
∴AB BC =,90B BCD DCM ∠=∠=∠=︒,
∵BP BQ =,
∴PBQ ∆是等腰直角三角形,AP QC =,
∴45BPQ ∠=︒,
∴135APQ ∠=︒
∵CE 平分DCM ∠,
∴45DCE ECM ∠=∠=︒,
∴135QCE ∠=︒,
∴135APQ QCE ∠=∠=︒,
∵AQ QE ⊥,
∴90AQB CQE ∠+∠=︒.
∵90AQB BAQ ∠+∠=︒.
∴BAQ CQE ∠=∠.
∴()APQ QCE ASA ∆≌.
(2)由(1)知APQ QCE ∆∆≌. ∴QA QE =.
∵90AQE ∠=︒,
∴AQE ∆是等腰直角三角形,
∴45QAE ∠=︒.
∴45DAF QAB ∠+∠=︒,
如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆, 其中点D 与点B 重合,且点F '在直线BQ 上, 则45F AQ '∠=︒,F A FA '=,AQ AQ =,
∴()F AQ FAQ SAS '∆∆≌.
∴QF QF BQ DF '==+.
(3)连结AC ,若QF CE , 则45FQC ECM ∠=∠=︒.
∴QCF ∆是等腰直角三角形,
∴2CF CQ x ==-,
∴DF BQ x ==.
∵AB AD =,90B D ∠=∠=︒,
∴()ABQ ADF SAS ∆∆≌.
∴AQ AF =,22.5QAB DAF ∠=∠=︒,
∴AC 垂直平分QF ,
∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =, ∴22FQ BQ x ==.
在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=.
解这个方程,得1222x =-+, 2222x =--(舍去). 当22
2x =-+时,QF
CE .
此时,QCF QEF S S ∆∆=,∴21
2
QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==, ∴()
2222111
222
AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=
-=- ()
222
112(2)4244222x x x x ⎡⎤=
+--=⋅==-+⎣
⎦ 【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.
5.如图,在直角坐标系中,已知点A (-1,0)、B (0,2),将线段AB 绕点A 按逆时针方向旋转90°至AC .
(1)点C 的坐标为( , ); (2)若二次函数的图象经过点C . ①求二次函数
的关系式;
②当-1≤x≤4时,直接写出函数值y 对应的取值范围;Z_X_X_K]
③在此二次函数的图象上是否存在点P (点C 除外),使△ABP 是以AB 为直角边的等腰直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理
由.
【答案】(1) ∴点C 的坐标为(-3,1) . (2)①∵二次函数的图象经过点C(-3,1),
∴
.解得
∴二次函数的关系式为
②当-1≤x≤4时,
≤y≤8;
③过点C作CD⊥x轴,垂足为D,
i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直
角三角形,过点作⊥轴,
∵=,∠=∠,∠=∠=90°,
∴△≌△,∴AE=AD=2,=CD=1,
∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;
ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证
△≌△∴BF =OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上
综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△
是以AB为直角边的等腰直角三角形.
【解析】
(1)根据旋转的性质得出C点坐标;
(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;
③分二种情况进行讨论.
6.(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-32≤PC≤5+32.
【解析】
【分析】
(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE 交AD于点F,由垂直定义得AD⊥BE.
(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;
(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-32≤BE≤5+32.【详解】
(1)结论:AD=BE,AD⊥BE.
理由:如图1中,
∵△ACB与△DCE均为等腰直角三角形,
∴AC=BC,CE=CD,
∠ACB=∠ACD=90°,
在Rt△ACD和Rt△BCE中
AC BC
ACD BCE
CD CE
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
∴△ACD≌△BCE(SAS),
∴AD=BE,∠EBC=∠CAD
延长BE交AD于点F,
∵BC⊥AD,
∴∠EBC+∠CEB=90°,
∵∠CEB=AEF,
∴∠EAD+∠AEF=90°,
∴∠AFE=90°,即AD⊥BE.
∴AD=BE,AD⊥BE.
故答案为AD=BE,AD⊥BE.
(2)结论:AD=BE,AD⊥BE.
理由:如图2中,设AD交BE于H,AD交BC于O.
∵△ACB与△DCE均为等腰直角三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=90°,
∴ACD=∠BCE,
在Rt△ACD和Rt△BCE中
AC BC
ACD BCE
CD CE
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CAD=∠CBE,
∵∠CAO+∠AOC=90°,∠AOC=∠BOH,
∴∠BOH+∠OBH=90°,
∴∠OHB=90°,
∴AD⊥BE,
∴AD=BE,AD⊥BE.
(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,
图3-1中,当P、E、B共线时,BE最小,最小值2,
图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,
∴5-32≤BE≤5+32,
即5-32≤PC≤5+32.
【点睛】
本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.
7.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为
2
2
2
+,此时
315
α=.
【解析】
【分析】
(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;
(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,
α=150°;
②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=2
+2,此时
α=315°.
【详解】
(1)如图1,延长ED交AG于点H,
∵点O是正方形ABCD两对角线的交点,
∴OA=OD
,OA ⊥OD , ∵OG=OE ,
在△AOG 和△DOE 中,
90OA OD AOG DOE OG OE =⎧⎪
∠=∠=︒⎨⎪=⎩
, ∴△AOG ≌△DOE , ∴∠AGO=∠DEO , ∵∠AGO+∠GAO=90°, ∴∠GAO+∠DEO=90°, ∴∠AHE=90°, 即DE ⊥AG ;
(2)①在旋转过程中,∠OAG′成为直角有两种情况: (Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时, ∵OA=OD=
12OG=1
2
OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=1
2
, ∴∠AG′O=30°, ∵OA ⊥OD,OA ⊥AG′, ∴OD ∥AG′,
∴∠DOG′=∠AG′O=30°∘, 即α=30°;
(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时, 同理可求∠BOG′=30°, ∴α=180°
−30°=150°. 综上所述,当∠OAG′=90°时,α=30°或150°
. ②如图3,当旋转到A. O 、F′在一条直线上时,AF′的长最大,
∵正方形ABCD的边长为1,
∴OA=OD=OC=OB=2
,
∵OG=2OD,
∴OG′=OG=2,∴OF′=2,
∴AF′=AO+OF′=
2
2
+2,
∵∠COE′=45°,
∴此时α=315°.
【点睛】
本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.
8.如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°< <360°)得到正方形
,如图2.
①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条直角边所对的锐角为30度)
②若正方形ABCD的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写出结果不必说明理由.
【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°
【解析】
分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;
(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.
详解:如图1,延长ED交AG于点H,
点O是正方形ABCD两对角线的交点,
,
,
在和中,
,
≌,
,
,
,
,
即;
在旋转过程中,成为直角有两种情况:
Ⅰ由增大到过程中,当时,
,
在中,sin∠AGO=,
,
,
,
,
即;
Ⅱ由增大到过程中,当时,
同理可求,
.
综上所述,当时,或.
如图3,
当旋转到A、O、在一条直线上时,的长最大,
正方形ABCD的边长为1,
,
,
,
,
,
,
此时.
点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.
二、初三数学圆易错题压轴题(难)
9.如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC 与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•
(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;
(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:
①当D、M、Q三点在同一直线上时,求运动时间t;
②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.
【答案】(1)平行四边形EFPQ是菱形;(2)t=;当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.
【解析】
试题分析:(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;
②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.
试题解析:(1)四边形EFPQ是菱形.
理由:过点Q作QH⊥AB于H,如图①,
∵t=5,∴AP=2×5=10.
∵点Q是AP的中点,
∴AQ=PQ=5.
∵∠EDF=90°,DE=4,DF=3,
∴EF==5,
∴PQ=EF=5.
∵AC∥EF,
∴四边形EFPQ是平行四边形,且∠A=∠FEB.
又∵∠QHA=∠FDE=90°,
∴△AHQ∽△EDF,
∵AQ=EF=5,
∴AH=ED=4.
∵AE=12-4=8,
∴HE=8-4=4,
∴AH=EH,
∴AQ=EQ,
∴PQ=EQ,
∴平行四边形EFPQ是菱形;
(2)①当D、M、Q三点在同一直线上时,如图②,
此时AQ=t,EM=EF=,AD=12-t,DE=4.
∵EF∥AC,
∴△DEM∽△DAQ,
∴,
∴,
解得t=;
②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,
过点Q作QH⊥AB于H,如图③,
则有∠HQD=∠HDQ=45°,
∴QH=DH.
∵△AHQ∽△EDF(已证),
∴,
∴QH=,AH=,
∴DH=QH=.
∵AB=AH+HD+BD=12,DB=t,
∴++t=12,
∴t=5;
Ⅱ.当点Q在∠FDB的角平分线上时,
过点Q作QH⊥AB于H,如图④,
同理可得DH=QH=,AH=.
∵AB=AD+DB=AH-DH+DB=12,DB=t,
∴-+t=12,
∴t=10.
综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.
考点:1.圆的综合题;2.线段垂直平分线的性质;3.勾股定理;4.菱形的判定;5.相似三角形的判定与性质.
10.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.
(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?
(3)当⊙O过BC中点时(如图3),求CE长.
【答案】(1)ED=EC;(2)成立;(3)3
【解析】
试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;
(2)证法同(1);
(3)根据直角三角形的性质结合圆的基本性质求解即可.
(1)连接OD
∵DE为⊙O的切线
∴∠ODE=90°
∴∠CDE+∠ADO=90°
∵AB=6,BC=8,AC=10
∴∠ABC=90°
∴∠A+∠C=90°
∵AO=DO
∴∠A=∠ADO
∴∠CDE=∠C
∴ED=EC;
(2)连接OD
∵DE为⊙O的切线
∴∠ODE=90°
∴∠CDE+∠ADO=90°
∵AB=6,BC=8,AC=10
∴∠ABC=90°
∴∠A+∠C=90°
∵AO=DO
∴∠A=∠ADO
∴∠CDE=∠C
∴ED=EC;
(3)CE=3.
考点:圆的综合题
点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.
11.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x 轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.
(1)求直线AB的解析式;
(2)点P从点A出发以每秒5AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.
【答案】(1)132y x =-
+(2)d =5t (3)故当 t =85
,或815,时,QR =EF ,N (-6,6)或(2,2).
【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-
a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;
(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;
(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;
试题解析:
(1)∵C (0,8),D (-4,0),
∴OC=8,OD=4,
设OB=a ,则BC=8-a ,
由折叠的性质可得:BD=BC=8-a ,
在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,
则(8-a )2=a 2+42,
解得:a=3,
则OB=3,
则B (0,3),
tan ∠ODB=34
OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=
34OA OC = , 则OA=6,
则A (6,0),
设直线AB 的解析式为:y=kx+b ,
则60{3k b b +== ,解得:1{23
k b =-= ,
故直线AB 的解析式为:y=-
12
x +3; (2)如图所示:
在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,
则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB
∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,
则AQ=
10cos AP t BAO
=∠ , ∵PR ∥AC ,
∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,
∴∠BAO=∠APR ,
∴PR=AR ,
∵∠RAP+∠PQA=∠APR+∠QPR=90°,
∴∠PQA=∠QPR ,
∴RP=RQ ,
∴RQ=AR ,
∴QR=
12
AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,
∵EF=QR ,
∴NS=NT ,
∴四边形NTOS 是正方形, 则TQ=TR=
1522QR t = , ∴1115151022224
NT AT AQ TQ t t t ==-=-=()() , 分两种情况,
若点N 在第二象限,则设N (n ,-n ),
点N 在直线132y x =-
+ 上, 则132
n n -=-+ , 解得:n=-6,
故N (-6,6),NT=6,
即
1564
t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),
可得:132
n n =-
+ , 解得:n=2,
故N (2,2),NT=2, 即
1524
t =, 解得:t=815
∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。
点睛:此题考查了折叠的性质、待定系数法求一次函数的解析式、正方形的判定与性质、等腰三角形的性质、平行线的性质以及三角函数等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用。
12.我们把“有两条边和其中一边的对角对应相等的两个三角形”叫做“同族三角形”,如图1,在△ABC 和△ABD 中,AB=AB ,AC=AD ,∠B=∠B ,则△ABC 和△ABD 是“同族三角形”.
(1)如图2,四边形ABCD内接于圆,点C是弧BD的中点,求证:△ABC和△ACD是同族三角形;
(2)如图3,△ABC内接于⊙O,⊙O的半径为32,AB=6,∠BAC=30°,求AC的长;(3)如图3,在(2)的条件下,若点D在⊙O上,△ADC与△ABC是非全等的同族三角
形,AD>CD,求AD
CD
的值.
【答案】(1)详见解析;(2)33+3;(3)AD
CD
=
62
+
或
6
.
【解析】
【分析】
(1)由点C是弧BD的中点,根据弧与弦的关系,易得BC=CD,∠BAC=∠DAC,又由公共边AC,可证得:△ABC和△ACD是同族三角形;
(2)首先连接0A,OB,作点B作BE⊥AC于点E,易得△AOB是等腰直角三角形,继而求得答案;
(3)分别从当CD=CB时与当CD=AB时进行分析求解即可求得答案.
【详解】
(1)证明:∵点C是弧BD的中点,即BC CD
=,
∴BC=CD,∠BAC=∠DAC,
∵AC=AC,
∴△ABC和△ACD是同族三角形.
(2)解:如图1,连接OA,OB,作点B作BE⊥AC于点E,
∵2,AB=6,
∴OA2+OB2=AB2,
∴△AOB是等腰直角三角形,且∠AOB=90°,
∴∠C=∠AOB=45°,
∵∠BAC=30°,
∴BE=AB=3,
∴22
AB BE
-3,
∵CE=BE=3,
∴3
(3)解:∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣30°﹣45°=105°,
∴∠ADC=180°﹣∠B=75°,
如图2,当CD=CB 时,∠DAC=∠BAC=30°,
∴∠ACD=75°,
∴AD=AC=33+3,CD=BC=2BE=32,
∴AD 333CD 32
+==622+; 如图3,当CD=AB 时,过点D 作DF ⊥AC ,交AC 于点F ,
则∠DAC=∠ACB=45°,
∴∠ACD=180°﹣∠DAC ﹣∠ADC=60°,
∴DF=CD•sin60°=6×3=33, ∴AD=2DF=36,
∴AD 36CD 6==62
. 综上所述:
AD CD =62+或6. 【点睛】
本题考查圆的综合应用问题,综合运用弧与弦的关系,等腰三角形的性质结合图形作辅助线进行分析证明以及求解,难度较大.
13.如图①、②、③是两个半径都等于2的⊙O 1和⊙O 2,由重合状态沿水平方向运动到互相外切过程中的三个位置,⊙O 1和⊙O 2相交于A 、B 两点,分别连结O 1A 、O 1B 、O 2A 、O 2B 和AB .
(1)如图②,当∠AO 1B =120°时,求两圆重叠部分图形的周长l ;
(2)设∠AO 1B 的度数为x ,两圆重叠部分图形的周长为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;
(3)在(2)中,当重叠部分图形的周长时,则线段O 2A 所在的直线与⊙O 1有何位置关
系?请说明理由.除此之外,它们是否还有其它的位置关系?如果有,请直接写出其它位置关系时的x的取值范
围.
【答案】(1)8
3
(2)(0≤x≤180)(3)O2A与⊙O1相切;当0≤x≤90和
0≤x≤180时,线段O2A所在的直线与⊙O1相交
【解析】
试题分析:(1)解法一、依对称性得,∠AO2B=∠AO1B=120°,
∴
解法二、∵O1A=O1B=O2A=O2B
∴AO1BO2是菱形∴∠AO2B=∠AO1B=120°∴l=2׈A=
(2)∵由(1)知,菱形AO1BO2中∠AO2B=∠AO1B=x度,
∴重叠图形的周长, 即(0≤x≤180)
(3) 当时,线段O2A所在的直线与⊙O1相切!
理由如下:∵,由(2)可知:,解之x=90度
∴AO1B=90°,因此菱形AO1BO2是正方形,∴O1AO2=90°,即O2A⊥O1A,
而O1A是⊙O1的半径,且A为半径之外端;∴O2A与⊙O1相切.
还有如下位置关系:当0≤x≤90和0≤x≤180时,线段O2A所在的直线与⊙O1相交
考点:直线与圆的位置关系
点评:本题主要考查直线与圆的位置关系,掌握判定直线与圆的位置关系是解本题的关键,会求函数的解析式,本题难度比较大
14.如图1,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF=2OD,连
接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=1
3
,BC=
8.
(1)求证:CF是⊙O的切线;
(2)求⊙O的半径OC;
(3)如图2,⊙O的弦AH经过半径OC的中点F,连结BH交弦CD于点M,连结FM,试
求出FM的长和△AOF的面积.
【答案】(1)见解析;(2)3233
2
2
32
【解析】【分析】
(1)由DF=2OD,得到OF=3OD=3OC,求得
1
3
OE OC
OC OF
==,推出△COE∽△FOE,根据相
似三角形的性质得到∠OCF=∠DEC=90°,于是得到CF是⊙O的切线;
(2)利用三角函数值,设OE=x,OC=3x,得到CE=3,根据勾股定理即可得到答案;(3)连接BD,根据圆周角定理得到角相等,然后证明△AOF∽△BDM,由相似三角形的性质,得到FM为中位线,即可求出FM的长度,由相似三角形的性质,以及中线分三角形的面积为两半,即可求出面积.
【详解】
解:(1)∵DF=2OD,
∴OF=3OD=3OC,
∴
1
3 OE OC
OC OF
==,
∵∠COE=∠FOC,
∴△COE∽△FOE,
∴∠OCF=∠DEC=90°,∴CF是⊙O的切线;(2)∵∠COD=∠BAC,
∴cos∠BAC=cos∠COE=
1
3 OE
OC
=,
∴设OE=x,OC=3x,
∵BC=8,
∴CE=4,
∵CE⊥AD,
∴OE2+CE2=OC2,
∴x2+42=9x2,
∴x2(负值已舍去),
∴OC =3x =32,
∴⊙O 的半径OC 为32;
(3)如图,连结BD ,
由圆周角定理,则∠OAF=∠DBM ,2AOF ADC ∠=∠,
∵BC ⊥AD ,
∴AC AB =,
∴∠ADC=∠ADB ,
∴2AOF ADC BDM ∠=∠=∠,
∴△AOF ∽△BDM ;
∵点F 是OC 的中点,
∴AO :OF=BD :DM=2,
又∵BD=DC ,
∴DM=CM ,
∴FM 为中位线,
∴322, ∴S △AOF : S △BDM =(326 2 34=
; ∵111118(322)4222222
BDM BCD S S BC DE ∆∆==⨯•=⨯⨯⨯= ∴S △AOF =3424=32 【点睛】
本题考查了圆的综合问题,圆周角定理,切线的判定和性质,相似三角形的判定和性质,利用勾股定理求边长,以及三角形中线的性质,解题的关键是熟练掌握所学的定理和性质,运用属性结合的思想进行解题.
15.如图,在ABC ∆中,90ACB ∠=︒,45ABC ∠=︒,12BC cm =,半圆O 的直径12DE cm =.点E 与点C 重合,半圆O 以2/cm s 的速度从左向右移动,在运动过程中,点D 、E 始终在BC 所在的直线上.设运动时间为()x s ,半圆O 与ABC ∆的重叠部分的
面积为()2S cm .
(1)当0x =时,设点M 是半圆O 上一点,点N 是线段AB 上一点,则MN 的最大值为_________;MN 的最小值为________.
(2)在平移过程中,当点O 与BC 的中点重合时,求半圆O 与ABC ∆重叠部分的面积S ;
(3)当x 为何值时,半圆O 与ABC ∆的边所在的直线相切?
【答案】(1)24cm ,()
926cm ;(2)2(189)cm π+;(3)0x =或6x =或932x =-【解析】
【分析】
(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时
121224()MN DB DE BC cm ==+=+=如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,MN ON OM =-,
261218()92()OB OC CB cm ON BN cm =+=+===
=,所以926()MN ON OM cm =-=; (2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,设半圆与AB 交于点H ,连接OH 、CH ,6OH OC OB ===,
29016669183602
BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,所以0x =(秒)或6(秒);当半圆O 与直线AB 相切时,如图③,连接OH ,则OH AB ⊥,6OH =,
262OB OH ==1262OC BC OB =-=-61262182()cm +--,运动时间为1862932x -==-). 【详解】
解:解(1)当N 与点B 重合,点M 与点D 重合时,MN 最大,此时
121224()MN DB DE BC cm ==+=+=
如图①,过点O 作ON AB ⊥于N ,与半圆交于点M ,此时MN 最小,
MN ON OM =-,
45ABC ∠=︒,
45NOB ∴∠=︒,
在Rt ONB ∆中,61218()OB OC CB cm =+=+=
292()2
ON BN OB cm ∴===, 926()MN ON OM cm ∴=-=-,
故答案为24cm ,(926)cm -;
(2)当点O 与BC 的中点重合时,如图②,点O 移动了12cm ,
设半圆与AB 交于点H ,连接OH 、CH .
BC 为直径,
90CHB ∴∠=︒,
45ABC ∠=︒
45HCB ∴∠=︒,
HC HB ∴=,
OH BC ∴⊥,6OH OC OB ===,
29016669183602
BOH HOC S S S ππ∆=+=⋅+⨯⨯=+阴影扇形; (3)当半圆O 与直线AC 相切时,运动的距离为0或12,
0x ∴=(秒)或6(秒);
当半圆O 与直线AB 相切时,如图③,
连接OH ,则OH AB ⊥,6OH =
45B ∠=︒,90OHB ∠=︒,
262OB OH ∴=,
12
62OC
BC OB =-=-, 移动的距离为612621862()cm +-=-,
运动时间为1862932x -==-(秒), 综上所述,当x 为0或6或932-时,半圆O 与ABC ∆的边所在的直线相切.
【点睛】
本题考查了圆综合知识,熟练掌握勾股定理以及圆切线定理是解题的关键.要注意分类讨论.
16.在O 中,AB 为直径,CD 与AB 相较于点H ,弧AC=弧AD
(1)如图1,求证:CD AB ⊥;
(2)如图2,弧BC 上有一点E ,若弧CD=弧CE ,求证:3EBA ABD ∠=∠;
(3)如图3,在(2)的条件下,点F 在上,连接,//FH FH DE ,延长FO 交DE 于点K ,若165,55
FK DB BE ==,求AB .
【答案】(1)证明见解析;(2)证明见解析;(3)1855
AB =
. 【解析】
【分析】 (1)连接,OC OD ,根据AC AD = 得出COA DOA ∠=再根据OC OD =得出
OCD ODC ∠=∠,从而得证;
(2)连接,BC BD ,根据AC AD =得出,BC BD BA CD =⊥,CBA ABD ∠=∠,再根据CE CD =,得出CBE CBD ∠=∠,从而得出结论;
(3)作,CM DB CN BE ⊥⊥,过点P 作,PT BE PS BD ⊥⊥,,5BE BP a DB a ===先证CDM CEN ∆≅∆,DM EN =,再证,CMB CNB BM BN ∆≅∆=,设DM b =,得出2b a =,再算出,CM CD 得出CPD ∆为等腰三角形,再根据BP 是角平分线利用角平
分线定理得出BCP EBP S DP BD S PE BE
∆==,从而算出,PE DE ,再根据三角函数值算出BG ,,,,AB r OG OH ,再根据//FH DE 得出
HO OF GO OK
=,从而计算AB . 【详解】。