大庆市一中2018-2019学年上学期高三数学10月月考试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大庆市一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如图,在正方体1111ABCD A B C D 中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )
A 1
C
A B A.直线 B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.
2. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )
A .
B .18
C .
D .
3. 一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112
【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 4. 已知a >b >0,那么下列不等式成立的是( )
A .﹣a >﹣b
B .a+c <b+c
C .(﹣a )2>(﹣b )2
D .
5. 下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
6. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80 D .S 21=84
7. 已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( )
A .M ∪N
B .(∁U M )∩N
C .M ∩(∁U N )
D .(∁U M )∩(∁U N )
8. 已知双曲线

=1的一个焦点与抛物线y 2=4
x 的焦点重合,且双曲线的渐近线方程为y=±x ,则
该双曲线的方程为( )
A .

=1
B .
﹣y 2=1 C .x 2﹣
=1 D .﹣=1
9. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( )
A .0
B .1
C .2
D .3
10.已知平面向量(12)=,
a ,(32)=-,
b ,若k +a b 与a 垂直,则实数k 值为( ) A .1
5
- B .119 C .11 D .19
【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力. 11.已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )
A .{2,1,1}--
B .{1,1,2}-
C .{1,1}-
D .{2,1}--
【命题意图】本题考查集合的交集运算,意在考查计算能力.
12.已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫
⎪⎝⎭
内变动 时,的取值范围是( )
A . ()0,1
B .3⎛
⎝ C .()1,33⎛⎫
⎪ ⎪⎝⎭
D .(
二、填空题
13.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;
③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
14.已知函数32
()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .
15.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .
16.已知tan()3αβ+=,tan()24
π
α+
=,那么tan β= .
三、解答题
17.(本题12分)
正项数列{}n a 满足2(21)20n n a n a n ---=. (1)求数列{}n a 的通项公式n a ; (2)令1
(1)n n
b n a =+,求数列{}n b 的前项和为n T .
18.(本小题满分10分)
已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θ
θ=⎧⎨
=⎩
,(α为参数),经过伸缩变
换32x x
y y '=⎧⎨'=⎩
后得到曲线2C .
(1)求曲线2C 的参数方程;
(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.
19.在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。

(1)已知在极坐标(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为
极轴)中,点的极坐标为(4,),判断点与直线的位置关系;
(2)设点是曲线上的一个动点,求它到直线的距离的最小值。

20.求下列函数的定义域,并用区间表示其结果.
(1)y=+

(2)y=.
21.已知α、β、是三个平面,且c αβ=,a βγ=,b αγ=,且a b O =.求证:、
、三线共点.
22.(本小题满分12分)
某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.
(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占
1
3
)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.
已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?
附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分 别为:^
1
2
1
()()
()
n
i
i
i n
i
i u u v v u u β==--=
-∑∑,^^
a v u β=-.
23.已知p :,q :x 2﹣(a 2+1)x+a 2
<0,若p 是q 的必要不充分条件,求实数a 的取值范围.
大庆市一中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1.【答案】D.
第Ⅱ卷(共110分)
2.【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×()+=,
故选:D.
3.【答案】C.
【解析】
4.【答案】C
【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,
故选C.
【点评】本题主要考查不等式的基本性质的应用,属于基础题.
5. 【答案】B 【解析】

点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 6. 【答案】
【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.
S 19=19a 1+19×18d
2=19(a 1+9d )=76,
同理S 20,S 21均不恒为常数,故选B. 7. 【答案】B
【解析】解:全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4}, ∴∁U M={0,1}, ∴N ∩(∁U M )={0,1}, 故选:B .
【点评】本题主要考查集合的子交并补运算,属于基础题.
8. 【答案】B
【解析】解:已知抛物线y 2
=4
x 的焦点和双曲线的焦点重合,
则双曲线的焦点坐标为(,0),
即c=

又因为双曲线的渐近线方程为y=±x ,
则有a 2+b 2=c 2
=10和=,
解得a=3,b=1.
所以双曲线的方程为:﹣y 2
=1.
故选B .
【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.
9. 【答案】B
【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,
∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .
10.【答案】A
11.【答案】C
【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .
12.【答案】C 【解析】1111]
试题分析:由直线方程1:L y x =,可得直线的倾斜角为0
45α=,又因为这两条直线的夹角在0,
12π⎛⎫
⎪⎝⎭
,所以直线2:0L ax y -=的倾斜角的取值范围是0
3060α<<且0
45α≠,所以直线的斜率为
00tan30tan 60a <<且0tan 45α≠1a <<或1a << C. 考点:直线的倾斜角与斜率.
二、填空题
13.【答案】 ①③⑤
【解析】解:建立直角坐标系如图:
则P 1(0,1),P 2(0,0),P 3(1,0),P 4(1,1).
∵集合M={x|x=
且i ,j ∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=
且i ,j ∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,
﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
14.【答案】5
【解析】
试题分析:'2'
()323,(3)0,5
f x x ax f a
=++∴-=∴=.
考点:导数与极值.
15.【答案】.
【解析】解:由题意图形折叠为三棱锥,底面为△EFC,高为AC,
所以三棱柱的体积:××1×1×2=,
故答案为:.
【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.
16.【答案】4 3
试题分析:由1tan tan()24
1tan π
ααα++
=
=-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβα
αβα
+-=++
1
34313133-
=
=+⨯
. 考点:两角和与差的正切公式.
三、解答题
17.【答案】(1)n a n 2=;(2)=
n T )
1(2+n n
.

点:1.一元二次方程;2.裂项相消法求和. 18.【答案】(1)3cos 2sin x y θ
θ=⎧⎨=⎩
(为参数);(2
【解析】

(1)将曲线1cos :sin x C y α
α
=⎧⎨
=⎩(α为参数),化为
221x y +=,由伸缩变换32x x y y '=⎧⎨
'=⎩化为1312
x x y y ⎧'=⎪⎪⎨⎪'
=⎪⎩, 代入圆的方程2
11132x y ⎛⎫⎛⎫
''+= ⎪ ⎪⎝⎭⎝⎭
,得到()()2
2
2:
194x y C ''+=, 可得参数方程为3cos 2sin x y α
α=⎧⎨=⎩

考点:坐标系与参数方程.
19.【答案】(1)点P 在直线上 (2)
【解析】(1)把极坐标系下的点化为直角坐标,得P (0,4)。

因为点P 的直角坐标(0,4)满足直线的方程,
所以点P 在直线上,
(2)因为点Q 在曲线C 上,故可设点Q 的坐标为,
从而点Q 到直线的距离为

20.【答案】
【解析】解:(1)∵y=+,


解得x ≥﹣2且x ≠﹣2且x ≠3,
∴函数y 的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=,

, 解得x ≤4且x ≠1且x ≠3,
∴函数y 的定义域是(﹣∞,1)∪(1,3)∪(3,4].
21.【答案】证明见解析. 【解析】
考点:平面的基本性质与推论.
22.【答案】(1)60N =,6n =;(2)8
15
P =;(3)115. 【解析】

题解析:
(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21
600.35
N =
=, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.
(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)A
A ,24(,)A A ,21(,)A
B ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.
其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,
21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为8
15
P =
. (3)1217178812
1001007
x --+-++=+
=;
6984416
1001007
y --+-+++=+=;
由于与y 之间具有线性相关关系,根据回归系数公式得到
^497
0.5994
b ==,^1000.510050a =-⨯=,
∴线性回归方程为0.550y x =+,
∴当130x =时,115y =.1
考点:1.古典概型;2.频率分布直方图;3.线性回归方程.
【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同. 23.【答案】
【解析】解:由p :
⇒﹣1≤x <2,
方程x 2﹣(a 2+1)x+a 2=0的两个根为x=1或x=a 2

若|a|>1,则q :1<x <a 2,此时应满足a 2
≤2,解得1<|a|≤

当|a|=1,q :x ∈∅,满足条件, 当|a|<1,则q :a 2
<x <1,此时应满足|a|<1,
综上﹣.
【点评】本题主要考查复合命题的应用,以及充分条件和必要条件的应用,结合一元二次不等式的解法是解决
本题的关键.。

相关文档
最新文档