印江土家族苗族自治县高中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

印江土家族苗族自治县高中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 函数2
1()ln 2
f x x x ax =+
+存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞
【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 2. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36
【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力. 3. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )
A .{x|x ≥0}
B .{x|x ≤1}
C .{﹣1,0,1}
D .R
4. α是第四象限角,,则sin α=( )
A .
B .
C .
D .
5. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )
A .0°
B .45°
C .60°
D .90°
6. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)
7. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120
8. 已知椭圆C :
+
=1(a >b >0)的左、右焦点为F 1、F 2,离心率为
,过F 2的直线l 交C 于A 、B
两点,若△AF
1B 的周长为4
,则C 的方程为( )
A . +=1
B .
+y 2=1
C . +=1
D . +=1
9. 已知集合A={y|y=x 2+2x ﹣3},,则有( )
A .A ⊆B
B .B ⊆A
C .A=B
D .A ∩B=φ
10.函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( ) A .f (2)<f (π)<f (5) B .f (π)<f (2)<f (5)
C .f (2)<f (5)<f (π)
D .f (5)<
f (π)<f (2)
11.(文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 12.在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78,则此数列前12项和等于( ) A .96
B .108
C .204
D .216
二、填空题
13.设函数f (x )=
,则f (f (﹣2))的值为 .
14.已知抛物线1C :x y 42
=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :122
22=-b
y a x
(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .
【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.
15.已知线性回归方程=9,则b= .
16.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值
为 .
17.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点
B .存在定点P 不在M 中的任一条直线上
C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上
D .M 中的直线所能围成的正三角形面积都相等
其中真命题的代号是 (写出所有真命题的代号).
18.某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .
三、解答题
19.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.
20.(本小题满分12分)
如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.
(1)求证:BD⊥MC1;
(2)求四棱柱ABCD-A1B1C1D1的体积.
21.(本小题满分10分) 已知函数()2f x x a x =++-.
(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.
22.(本小题满分12分)
如图长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =4,D 1F =8,过点E ,F ,C 的平面α与长方体的面
相交,交线围成一个四边形.
(1)在图中画出这个四边形(不必说明画法和理由); (2)求平面α将长方体分成的两部分体积之比.
23.(本小题满分12分)
设p :实数满足不等式39a ≤,:函数()()32331
932
a f x x x x -=+
+无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;
(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛
⎫-+++> ⎪ ⎪⎝⎭⎝
⎭,若是t ⌝的必要不充分
条件,求正整数m 的值.
24.已知直角梯形ABCD 中,AB ∥CD ,
,过A 作AE ⊥CD ,垂足为E ,
G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC . (1)求证:FG ∥面BCD ;
(2)设四棱锥D ﹣ABCE 的体积为V ,其外接球体积为V ′,求V :V ′的值.
印江土家族苗族自治县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】D 【解析】因为1
()f x x a x
'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,
因为1
2x x
+
?,所以1a £,故选D . 2. 【答案】A
【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有121
21223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.
3. 【答案】A
【解析】解:由A={x|x ≥0},且A ∩B=B ,所以B ⊆A .
A 、{x|x ≥0}={x|x ≥0}=A ,故本选项正确;
B 、{x|x ≤1,x ∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;
C 、若B={﹣1,0,1},则A ∩B={0,1}≠B ,故本选项错误;
D 、给出的集合是R ,不合题意,故本选项错误.
故选:A .
【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.
4. 【答案】B
【解析】解:∵α是第四象限角,
∴sin α=,
故选B .
【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.
5. 【答案】C 【解析】解:连结A 1D 、BD 、A 1B ,
∵正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,∴EF ∥A 1D ,
∵A 1B ∥D 1C ,∴∠DA 1B 是CD 1与EF 所成角,
∵A 1D=A 1B=BD , ∴∠DA 1B=60°.
∴CD1与EF所成角为60°.
故选:C.
【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
6.【答案】D
【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.
若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),
若f(x)存在唯一的零点x0,且x0>0,
若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,
由f′(x)<0得0<x<,此时函数单调递减,
故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.
若a<0,由f′(x)>0得<x<0,此时函数递增,
由f′(x)<0得x<或x>0,此时函数单调递减,
即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),
若存在唯一的零点x0,且x0>0,
则f()>0,即2a()3﹣3()2+1>0,
()2<1,即﹣1<<0,
解得a<﹣1,
故选:D
【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.
7. 【答案】C
【解析】解析:本题考查程序框图中的循环结构.12
1123
m
n n n n n m S C m
---+=
⋅⋅⋅⋅
=,当8,10m n ==时,82101045m n C C C ===,选C .
8. 【答案】A
【解析】解:∵△AF
1B 的周长为4,
∵△AF 1B 的周长=|AF 1|+|AF 2|+|BF 1|+|BF 2|=2a+2a=4a ,
∴4a=4,
∴a=

∵离心率为,
∴,c=1,
∴b=
=

∴椭圆C 的方程为+=1.
故选:A .
【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.
9. 【答案】B
【解析】解:∵y=x 2+2x ﹣3=(x+1)2
﹣4,
∴y ≥﹣4.
则A={y|y≥﹣4}.
∵x>0,
∴x+≥2=2(当x=,即x=1时取“=”),
∴B={y|y≥2},
∴B⊆A.
故选:B.
【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.
10.【答案】B
【解析】解:∵函数y=f(x)在[1,3]上单调递减,且函数f(x+3)是偶函数,
∴f(π)=f(6﹣π),f(5)=f(1),
∵f(6﹣π)<f(2)<f(1),
∴f(π)<f(2)<f(5)
故选:B
【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.
11.【答案】C
【解析】
试题分析:()2222
==+=+,故向上平移个单位.
g x x x x
log2log2log1log
考点:图象平移.
12.【答案】B
【解析】解:∵在等差数列{a n}中,a1+a2+a3=﹣24,a10+a11+a12=78,
∴3a2=﹣24,3a11=78,解得a2=﹣8,a11=26,
∴此数列前12项和=
=6×18=108,
故选B.
【点评】本题考查了等差数列的前n项和公式,以及等差数列的性质,属于基础题.
二、填空题
13.【答案】﹣4.
【解析】解:∵函数f(x)=,
∴f(﹣2)=4﹣2=,
f(f(﹣2))=f()==﹣4.
故答案为:﹣4.
14.【答案】3
15.【答案】4.
【解析】解:将代入线性回归方程可得9=1+2b,∴b=4
故答案为:4
【点评】本题考查线性回归方程,考查计算能力,属于基础题.
16.【答案】6.
【解析】解:∵=(2x﹣y,m),=(﹣1,1).
若∥,
∴2x﹣y+m=0,
即y=2x+m,
作出不等式组对应的平面区域如图:
平移直线y=2x+m,
由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大.
由,
解得,代入2x﹣y+m=0得m=6.
即m的最大值为6.
故答案为:6
【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值.根据向量平行的坐标公式是解决本题的关键.
17.【答案】BC
【解析】
【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,
B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.
【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离
d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集
合,
A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;
B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;
C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;
D.如下图,M中的直线所能围成的正三角形有两类,
其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,
故本命题不正确.
故答案为:BC.
18.【答案】12
【解析】
考点:分层抽样
三、解答题
19.【答案】
【解析】解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(2)﹣f(1)=4=4×1.
f(3)﹣f(2)=8=4×2,
f(4)﹣f(3)=12=4×3,
f(5)﹣f(4)=16=4×4
∴f(5)=25+4×4=41.…
(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…
∴f(2)﹣f(1)=4×1,
f(3)﹣f(2)=4×2,
f(4)﹣f(3)=4×3,

f(n﹣1)﹣f(n﹣2)=4•(n﹣2),
f(n)﹣f(n﹣1)=4•(n﹣1)…
∴f (n )﹣f (1)=4[1+2+…+(n ﹣2)+(n ﹣1)]=2(n ﹣1)•n ,
∴f (n )=2n 2
﹣2n+1.…
20.【答案】 【解析】解:(1)证明:如图,连接AC ,设AC 与BD 的交点为E ,
∵四边形ABCD 为菱形,
∴BD ⊥AC ,
又AA 1⊥平面ABCD ,
BD ⊂平面ABCD ,∴A 1A ⊥BD ;
又A 1A ∩AC =A ,∴BD ⊥平面A 1ACC 1,
又MC 1⊂平面A 1ACC 1,∴BD ⊥MC 1.
(2)∵AB =BD =2,且四边形ABCD 是菱形,
∴AC =2AE =2AB 2-BE 2=23,
又△BMC 1为等腰三角形,且M 为A 1A 的中点,
∴BM 是最短边,即C 1B =C 1M .
则有BC 2+C 1C 2=AC 2+A 1M 2,
即4+C 1C 2=12+(C 1C 2
)2, 解得C 1C =463
, 所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C
=12AC ×BD ×C 1C =12×23×2×463
=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2.
21.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.
【解析】 试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上
恒成立,即10a -≤≤.
试题解析:
(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨
-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩, 解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;

点:不等式选讲.
22.【答案】
【解析】解:
(1)交线围成的四边形EFCG (如图所示).
(2)∵平面A 1B 1C 1D 1∥平面ABCD ,
平面A 1B 1C 1D 1∩α=EF ,
平面ABCD ∩α=GC ,
∴EF ∥GC ,同理EG ∥FC .
∴四边形EFCG 为平行四边形,
过E 作EM ⊥D 1F ,垂足为M ,
∴EM =BC =10,
∵A 1E =4,D 1F =8,∴MF =4.
∴GC =EF =
EM 2+MF 2=102+42=116, ∴GB =GC 2-BC 2=116-100=4(事实上Rt △EFM ≌Rt △CGB ).
过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .
∴平面α将长方体分成的右边部分由三棱柱EHG -FC 1C 与三棱柱HB 1C 1­GBC 两部分组成.
其体积为V 2=V 三棱柱EHG -FC 1C +V 三棱柱HB 1C 1­GBC
=S △FC 1C ·B 1C 1+S △GBC ·BB 1
=12×8×8×10+12
×4×10×8=480, ∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800.
∴V 1V 2=800480=53
, ∴其体积比为53(35
也可以). 23.【答案】(1){}
125a a a <<≤或;(2)1m =. 【解析】
(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题.
若p 为真命题,为假命题,则2115a a a a ≤⎧⇒<⎨<>⎩
或.………………………………5分 若为真命题,p 为假命题,则22515a a a >⎧⇒<≤⎨≤≤⎩
.……………………………………6分 于是,实数的取值范围为{}
125a a a <<≤或.……………………………………7分
考点:1、不等式;2、函数的极值点;3、命题的真假;4、充要条件. 24.【答案】
【解析】解:
(1)证明:取AB中点H,连接GH,FH,
∴GH∥BD,FH∥BC,
∴GH∥面BCD,FH∥面BCD
∴面FHG∥面BCD,
∴GF∥面BCD
(2)V=
又外接球半径R=
∴V′=π
∴V:V′=
【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.。

相关文档
最新文档