黄金堤乡初中2018-2019学年初中七年级上学期数学第一次月考试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄金堤乡初中2018-2019学年初中七年级上学期数学第一次月考试卷
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.(2分)(2015•巴彦淖尔)﹣3的绝对值是()
A. ﹣3
B. 3
C. ﹣3﹣1
D. 3﹣1
2.(2分)(2015•鄂州)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()
A. B. C. D.
3.(2分)(2015•南京)计算:|﹣5+3|的结果是()
A. -2
B. 2
C. -8
D. 8
4.(2分)(2015•大连)﹣2的绝对值是()
A. 2
B. -2
C.
D.
5.(2分)(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()
A. 四棱锥
B. 四棱柱
C. 三棱锥
D. 三棱柱
6.(2分)(2015•莆田)﹣2的相反数是()
A. B. 2 C. - D. -2
7.(2分)(2015•六盘水)下列说法正确的是()
A. |﹣2|=﹣2
B. 0的倒数是0
C. 4的平方根是2
D. ﹣3的相反数是3
8.(2分)(2015•咸宁)方程2x﹣1=3的解是()
A. -1
B. -2
C. 1
D. 2
9.(2分)(2015•安顺)|﹣2015|等于()
A. 2015
B. ﹣2015
C. ±2015
D.
10.(2分)(2015•深圳)用科学记数法表示316000000为()
A. 3.16×107
B. 3.16×108
C. 31.6×107
D. 31.6×106
11.(2分)(2015•山西)计算﹣3+(﹣1)的结果是()
A. 2
B. -2
C. 4
D. -4
12.(2分)(2015•恩施州)恩施气候独特,土壤天然含硒,盛产茶叶,恩施富硒茶叶2013年总产量达64000吨,将64000用科学记数法表示为()
A. B. C. D.
二、填空题
13.(1分)(2015•资阳)太阳半径大约是696 000千米,用科学记数法表示为________ 米.
14.(1分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是________ .
15.(1分)(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=________ .
16.(1分)(2015•三明)观察下列图形的构成规律,依照此规律,第10个图形中共有________ 个“•”.
17.(1分)(2015•巴中)从巴中市交通局获悉,我市2015年前4月在巴陕高速公路完成投资8400万元,请你将8400万元用科学记数记表示为 ________元.
18.(1分)(2015•常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.最少经过下面5步运算可得1,即:

如果自然数m最少经过7步运算可得到1,则所有符合条件的m的值为________ .
三、解答题
19.(8分)(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.
(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?
(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪
3
7
①当三角形内有4个点时,最多剪得的三角形个数为________;
②你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加________个;
③猜想:当三角形内点的个数为n时,最多可以剪得________个三角形;
像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.(2)【问题拓展】请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?
20.(10分)某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费
元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).
购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.
试问:
(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得
到的优惠率?
21.(9分)已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:
(1)请直接写出a,b,c的值:a=________,b=________;
(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB=________,AC=________;(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C 时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t秒,请用含t的代数式表示M,N两点间的距离.
22.(12分)【新知理解】
如图①,点C在线段AB上,若B C=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,则AB=________;
(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)
(3)【解决问题】
如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
若点M、N是线段OC的圆周率点,求MN的长;
(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
23.(20分)(阅读理解)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.则奥运会的年份可排成如下一列数:
1896,1900,1904,1908,…
观察上面一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4叫做等差数列的公差.
(1)等差数列2,5,8,…的第五项多少;
(2)若一个等差数列的第二项是28,第三项是46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪明的小雪同学作了一些思考,如果一列数a1,a2,a3,…是等差数列,且公差为d,根据上述规定,应该有:
a 2-a1=d,a3-a2=d,a4-a3= d,…
所以a 2=a1+d,
a3=a2+d=(a1+d)+d=a1+2d,
a4=a3+d=(a1+2d)+d=a1+3d,

则等差数列的第n项a n多少(用含有a1、n与d的代数式表示);
(4)按照上面的推理,2008年中国北京奥运会是第几届奥运会,2050年会不会(填“会”或“不会”)举行奥运会.
24.(15分)已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值
(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速
度?
(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,
点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问
的值是否发生变化,请说明理由.
25.(4分)在一次数学社团活动中,指导老师给同学们提出了以下问题:
问题:有67张卡片叠在一起,按从上而下的顺序先把第一张拿走,把第二张放到底层,然后把第三张拿走,再把第四张放到底层,如此进行下去,直至只剩最后一张卡片.问仅剩的这张卡片是原来的第几张卡片?
由于卡片数量较多,指导老师建议同学们先对较少的张数进行尝试,以便熟悉游戏规则并发现一些规律!请你也试着在草稿纸上进行试验,填写相应结果:
(1)起初有2张卡片,按游戏规则最后剩下的卡片是原来的第________张;
(2)起初有4张卡片,按游戏规则最后剩下的卡片是原来的第________张;
(3)起初有8张卡片,按游戏规则最后剩下的卡片是原来的第________张.
(4)根据试验结果进行规律总结,直接判断若起初有64张卡片,最后剩下的卡片是原来的第________张. 回到最初的67张卡片情形,请你给出答案并简要说明理由.
26.(10分)某位同学做一道题:已知两个多项式A,B,求的值.他误将看成,求
得结果为,已知.
(1)求多项式A;
(2)求A-B的正确答案.
黄金堤乡初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)
一、选择题
1.【答案】B
【考点】绝对值及有理数的绝对值
【解析】【解答】﹣3的绝对值是3,
故选B.
【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.
2.【答案】A
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】39 400≈3.9×104.故选A.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39400有5位,所以可以确定n=5﹣1=4,由于结果保留2个有效数字,所以a=3.9.
3.【答案】B
【考点】绝对值及有理数的绝对值,有理数的加法
【解析】【解答】原式=|﹣2|
=2.
故选B.
【分析】先计算﹣5+3,再求绝对值即可.
4.【答案】A
【考点】绝对值
【解析】【解答】解:﹣2的绝对值是2,
即|﹣2|=2.
故选:A.
【分析】根据负数的绝对值等于它的相反数解答.
5.【答案】A
【考点】几何体的展开图
【解析】【解答】如图所示:这个几何体是四棱锥.
故选:A.
【分析】根据四棱锥的侧面展开图得出答案.
6.【答案】B
【考点】相反数及有理数的相反数
【解析】【解答】解:﹣2的相反数是2,故选:B.
【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.
7.【答案】D
【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,有理数的倒数,平方根
【解析】【解答】A、|﹣2|=2,错误;
B、0没有倒数,错误;
C、4的平方根为±2,错误;
D、﹣3的相反数为3,正确,
故选D.
【分析】利用绝对值的代数意义,倒数的定义,平方根及相反数的定义判断即可.
8.【答案】D
【考点】解一元一次方程
【解析】【解答】解:方程2x﹣1=3,
移项合并得:2x=4,
解得:x=2,
故选D.
【分析】方程移项合并,把x系数化为1,即可求出解.
9.【答案】A
【考点】绝对值及有理数的绝对值
【解析】【解答】|﹣2015|=2015
【分析】一个数到原点的距离叫做该数的绝对值.一个负数的绝对值是它的相反数.
10.【答案】B
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】将316000000用科学记数法表示为:3.16×108.故选B.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数
的绝对值<1时,n是负数.
11.【答案】D
【考点】有理数的加法
【解析】【解答】解:﹣3+(﹣1)=﹣(3+1)=﹣4,
故选:D.
【分析】根据同号两数相加的法则进行计算即可.
12.【答案】C
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】64000=6.4×104,故选C.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
二、填空题
13.【答案】6.96×108
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:696 000千米=696 000 000米=6.96×108米.
【分析】先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
14.【答案】-2
【考点】有理数大小比较
【解析】【解答】解:根据有理数比较大小的方法,可得
﹣2<﹣1<0,
所以在﹣1,0,﹣2这三个数中,最小的数是﹣2.
故答案为:﹣2.
【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
15.【答案】1﹣a
【考点】相反数,实数与数轴
【解析】【解答】解:∵a<﹣1,
∴a﹣1<0,
原式=|a﹣1|
=﹣(a﹣1)
=﹣a+1
=1﹣a.
故答案为:1﹣a.
【分析】根据数轴上的点与实数的一一对应关系得到a<﹣1,然后利用绝对值的意义得到原式=﹣(a﹣1),再去括号、合并即可.
16.【答案】111
【考点】探索图形规律
【解析】【解答】解:由图形可知:
n=1时,“•”的个数为:1×2+1=3,
n=2时,“•”的个数为:2×3+1=7,
n=3时,“•”的个数为:3×4+1=13,
n=4时,“•”的个数为:4×5+1=21,
所以n=n时,“•”的个数为:n(n+1)+1,
n=10时,“•”的个数为:10×11+1=111.
【分析】观察图形可知前4个图形中分别有:3,7,13,21个“•”,所以可得规律为:第n个图形中共有[n(n+1)+1]个“•”.再将n=10代入计算即可.
17.【答案】8.4×107
【考点】科学记数法—表示绝对值较大的数
【解析】【解答】解:将8400万用科学记数法表示为8.4×107.
故答案为8.4×107.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
18.【答案】128、21、20、3
【考点】探索数与式的规律
【解析】【解答】解:根据分析,可得
则所有符合条件的m的值为:128、21、20、3.
故答案为:128、21、20、3.
【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m的值为多少即可.
三、解答题
19.【答案】(1)9;2;2n+1
(2)解:1+3+5+7+…+(2n-1)+(2n+1)
=
= (n+1)(1+2n+1)
=(n+1)2
=n2+2n+1.
【考点】探索图形规律
【解析】【解答】解:(1)①∵当三角形内点的个数为1时,最多可以剪得3个三角形;
当三角形内点的个数为2时,最多可以剪得5个三角形;
当三角形内点的个数为3时,最多可以剪得7个三角形;
∴当三角形内点的个数为4时,最多可以剪得9个三角形;
故答案为:9;
②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;
故答案为:2;
③∵1×2+1=3,2×2+1=5,3×2+1=7,
∴当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
故答案为:2n+1;
【分析】(1)①探索图形规律的题,根据题意画出图形即可得出答案;②由①的结果可得出:三角形内的点每增加1个,最多剪得的三角形增加2个;③通过观察,三角形内的点每增加1个,所剪出的三角形的个数就增加两个,而所剪出的三角形的个数是从1开始的连续奇数个,根据奇数的表示方法,当三角形内点的个数为n时,最多可以剪得(2n+1)个三角形;
(2)根据补项法,1+3+5+7+…+(2n-1)+(2n+1)
=,根据连续奇数
和的计算方法,用首加尾的和为(2n+1+1)共有这样的加数和的个数为,从而利用用首加尾的和再乘以这样的和的个数即可算出答案。

20.【答案】(1)解:优惠额:1000×(1﹣80%)+130=330(元)
优惠率:×100%=33%
(2)解:设购买标价为x元的商品可以得到的优惠率.购买标价为500元与800元之间的商品时,消费金额a在400元与640元之间.
①当400≤a<500时,500≤x<625
由题意,得:0.2x+60= x
解得:x=450
但450<500,不合题意,故舍去;
②当500≤a≤640时,625≤x≤800
由题意,得:0.2x+100= x
解得:x=750
而625≤750<800,符合题意.
答:购买标价为750元的商品可以得到的优惠率.
【考点】一元一次方程的实际应用-销售问题
【解析】【分析】(1)根据题目中的促销方法,顾客在该商场购物可以获得双重优惠,由题意可得顾客得到的优惠=两种优惠之和,优惠率=优惠额商品的标价100%;
(2)根据顾客得到的优惠=两种优惠之和可列方程求解。

21.【答案】(1)-26;-10
(2)16;36
(3)解:点N运动的总时间为:2(36÷3)=12×2=24,24+16=40,设t秒时,M、N第一次相遇,3(t-16)=t,t=24,分五种情况:①当0≤t≤16时,如图2,点M在运动,点N在A处,此时MN=t,
②当16<t≤24时,如图3,M在N的右侧,此时MN=t-3(t-16)=-2t+48,
③M、N第二次相遇(点N从C点返回时):t+3(t-16)=36×2,t=30,当24<t≤30时,如图4,点M在N的左侧,此时MN=36×2-t-3(t-16)
=-4t+120,④当30<t≤36时,如图5,点M在N的右侧,此时MN=3(t-16)-36-(36-t)=4t-120,
⑤当36<t≤40时,如图6,点M在点C
处,此时MN=3(t-16)-36=3t-84,
【考点】数轴及有理数在数轴上的表示,偶次幂的非负性,绝对值的非负性
【解析】【解答】解:(1)∵c是最小的两位正整数,a,b满足(a+26)2+|b+c|=0,
∴c=10,a+26=0,b+c=0,
∴a=-26,b=-10,c=10,
故答案为:-26,-10,10;
(2 )①∵数轴上a、b、c三个数所对应的点分别为A、B、C,
∴点A表示的数是-26,点B表示的数是-10,点C表示的数是10,
所画的数轴如图1所示;
∴AB=-10+26=16,
AC=10-(-26)=36;
故答案为:16,36;
②∵点P为点A和C之间一点,其对应的数为x,
∴AP=x+26,PC=10-x;
故答案为:x+26,10-x;
【分析】(1)根据偶次方的非负性和绝对值的非负性可以求得a、b的值;
(2)根据数轴上两点的距离公式求出AB和AC的长;
(3)根据题意先求出t的范围:0≤t≤40,然后分五种情况讨论:M、N第一次相遇:①点M在运动,点N 在A处;②M在N的右侧;M、N第二次相遇(点N从C点返回时):③点M在N的左侧;④点M在N的右侧;⑤点M在点C处 .根据题意结合数轴上两点的距离表示MN的长.
22.【答案】(1)3+3
(2)=
(3)解:∵d=1,
∴c=d=,
∴C点表示的数为:+1,
∵M、N都是线段OC的圆周率点,
设点M离O点近,且OM=x,则CM=x,
∵OC=OM+ MC,
∴+1=x+x,
解得:x=1,
∴OM=CN=1,
∴MN=OC-OM-CN=+1-1-1=-1.
(4)解:设点D表示的数为x,则OD=x,
①若CD=OD,如图1,
∵OC=OD+CD,
∴+1=x+x,
解得:x=1,
∴点D表示的数为1;
②若OD=CD,如图2,
∵OC=OD+CD,
∴+1=x+,
解得:x=,
∴点D表示的数为;
③若OC=CD,如图3,
∵CD=OD-OC=x--1,
∴+1=(x--1),
解得:x=++1,
∴点D表示的数为++1;
④若CD=OC,如图4,
∵CD=OD-OC=x--1,
∴x--1=(+1),
解得:x=2+2+1,
∴点D表示的数为2+2+1;
综上所述:点D表示的数为:1、、++1、2+2+1.
【考点】数轴及有理数在数轴上的表示,一元一次方程的其他应用,定义新运算
【解析】【解答】解:(1)∵AC=3,BC=AC,
∴BC=3
∴AB=AC+CB=3+3.
故答案为:3+3.
(2)∵点D、C都是线段AB的圆周率点且不重合,
∴BC=AC,AD=BD,
设AC=x,BD=y,则BC=x,AD=y,
∵AB=AC+CB=AD+DB,
∴x+x=y+y,
∴x=y,
∴AC=BD.
故答案为:=.
【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.
(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,
由AB=AC+CB=AD+DB即可得AC=BD.
(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得. (4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.
23.【答案】(1)解:由等差数列2,5,8,…可知,公差为3,所以第四项是8+3=11,第五项是11+3=14 (2)解:由题意得:公差=46-28=18;第一项为:28-18=10,第五项为:46+18+18=82
(3)解:a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d=a1+(3-1)d,a4=a3+d=(a1+2d)+d=a1+(4-1)d,…则等差数列的第n项a n= a1+(n-1)d
(4)解:设第n届奥运会时2008年,由于每4年举行一次,∴数列{a n}是以1896为首项,4为公差的等差数列,∴a n=2008=1896+4(n-1),解得n=29,故2008年中国北京奥运会是第29届奥运会,令a n=2050,得1896+4
(n-1)=2050,解得n= ,∵n是正整数,∴2050年不会举行奥运会.
【考点】探索数与式的规律
【解析】【分析】(1)根据等差数列的定义,用第二项减去第一项即可算出公差,用第三项加上公差算出第四项,用第四项加上公差算出第五项;
(2)根据等差数列的定义,用第三项减去第二项即可算出公差,用第二项减去公差即可算出第一项,第5项就在第三项上连加两个公差即可;
(3)根据发现的规律,等差数列的第n项a n= a1+(n-1)d ;
(4)设第n届奥运会时2008年,由于每4年举行一次,数列{a n}是以1896为首项,4为公差的等差数列,根据(3)得出的通用公式即可列出方程2008=1896+4(n-1),求解即可;然后将a n=2050 代入a n= a1+(n-1)d ,求解根据结果是否是正整数即可得出结论。

24.【答案】(1)解:a=-3,b=9
(2)解:设3秒后,点C对应的数为x
则CA=|x+3|,CB=|x-9|
∵CA=3CB
∴|x+3|=3|x-9|=|3x-27|
当x+3=3x-27,解得x=15,此时点C的速度为
当x+3+3x-27=0,解得x=6,此时点C的速度为
(3)解:设运动的时间为t
点D对应的数为:t
点P对应的数为:-3-5t
点Q对应的数为:9+20t
点M对应的数为:-1.5-2t
点N对应的数为:4.5+10t
则PQ=25t+12,OD=t,MN=12t+6
∴为定值.
【考点】线段的长短比较与计算,一元一次方程的实际应用-几何问题,几何图形的动态问题
【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。

(2)根据点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,可表示出CA=|x+3|,CB=|x-9|,再由CA=3CB,建立关于x的方程,求出方程的解,然后求出点C的速度即可。

(3)根据点的运动速度和方向,分别用含t的代数式表示出点D、P、Q、M、N对应的数,再分别求出PQ、
OD、MN的长,然后求出的值时常量,即可得出结论。

25.【答案】(1)2
(2)4
(3)8
(4)6
【考点】探索数与式的规律
【解析】【解答】解:(1)根据上述操作,起初有2张卡片,按游戏规则最后剩下的卡片是原来的第二张;(2)根据上述操作,先拿走了第一张,再拿走了第三张,然后拿走了第二张,最后剩下的卡片是原来的第四张;
(3)按游戏规则最后剩下的卡片是原来的第八张;
(4)根据试验结果进行规律总结,当卡片个数N=2a时,剩下的一定是第2a张,直接判断若起初有64=26张卡片,最后剩下的卡片是原来的第64张.
当N=2a+M时,剩下的这张卡片是原来那一摞卡片的第2(N-2a)张.
回到最初的67张卡片情形卡片个数N=26+3,所以剩下的这种卡片为原来的6张.
【分析】(1)根据题意可知起初有2张卡片,按游戏规则最后剩下的卡片是原来的第二张。

(2)由已知起初有4张卡片,先拿走了第一张,再拿走了第三张,然后拿走了第二张,就可得出最后剩下的卡片就是原来的第四张。

即可得出答案。

(3)根据游戏规则,结合已知条件,可得出答案。

(4)根据试验结果进行规律总结,回到最初的67张卡片情形卡片个数N=26+3,所以剩下的这种卡片为原来的6张。

26.【答案】(1)解:由已知,A+B=3x2﹣3x+5,B=x2﹣x﹣1,则A=A+B-B=3x2﹣3x+5﹣(x2﹣x﹣1)=3x2﹣3x+5﹣x2+x+1=2x2﹣2x+6
(2)解:A﹣B=2x2﹣2x+6﹣(x2﹣x﹣1)=2x2﹣2x+6﹣x2+x+1=x2﹣x+7
【考点】整式的加减运算
【解析】【分析】(1)根据A+B=3x2﹣3x+5,将B代入求出A即可。

(2)再将A、B代入A-B,列式,去括号,再合并同类项就可求得答案。

相关文档
最新文档