蜀山区民族中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蜀山区民族中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 复数z=
(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2. 已知点A (﹣2,0),点M (x ,y )为平面区域
上的一个动点,则|AM|的最小值是( )
A .5
B .3
C .2
D .
3. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )
A .﹣1<a <2
B .﹣3<a <6
C .a <﹣3或a >6
D .a <﹣1或a >2
4. 若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n α
γ=,则//αβ
C .若,//m m βα⊥,则αβ⊥
D .若,αγαβ⊥⊥,则βγ⊥
5. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论
中错误的是( )
A .AC ⊥BE
B .EF ∥平面ABCD
C .三棱锥A ﹣BEF 的体积为定值
D .异面直线A
E ,B
F 所成的角为定值
6. 函数f (x )=sin ωx (ω>0)在恰有11个零点,则ω的取值范围( ) A . C . D .时,函数f (x )的最大值与最小值的和为( )
A .a+3
B .6
C .2
D .3﹣a
7. 设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5} D .{1,2}
8. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )
A .
B 2=A
C B .A+C=2B
C .B (B ﹣A )=A (C ﹣A )
D .B (B ﹣A )=C (C ﹣A )
9. 若cos (﹣α)=,则cos (
+α)的值是( )
A .
B .﹣
C .
D .﹣
10.如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,就称有序集对
(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么
“好集对” 一共有( )个
A .个
B .个
C .个
D .个 11.设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
12.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )
A .
B .ln (x 2+1)>ln (y 2+1)
C .x 3>y 3
D .sinx >siny
二、填空题
13.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④
sin sin sin a b c
A B C
+=+.其中恒成立的等式序号为_________. 14.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .
15.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .
16.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .
17.在(2x+
)6
的二项式中,常数项等于 (结果用数值表示).
18.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)
三、解答题
19.一艘客轮在航海中遇险,发出求救信号.在遇险地点A 南偏西45方向10海里的B 处有一艘海 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向 一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.
(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; (2)若最短时间内两船在C 处相遇,如图,在ABC ∆中,求角B 的正弦值.
20.(本小题满分14分)
设函数2
()1cos f x ax bx x =++-,0,2
x π⎡⎤∈⎢⎥⎣⎦
(其中a ,b R ∈).
(1)若0a =,1
2
b =-
,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上零点的个数.
【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.
21.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点P ⎛ ⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.
(1)求椭圆C 的方程;
(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.
22.已知全集U 为R ,集合A={x|0<x ≤2},B={x|x <﹣3,或x >1}
求:(I )A ∩B ;
(II )(C U A )∩(C U B );
(III )C U (A ∪B ).
23.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12
(1)求a ,b 的值.
(2)当x ∈[1,2]时,求f (x )的最大值.
(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x
﹣m 的图象恒有两个交点.
24.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD 的中点,求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
蜀山区民族中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】C
【解析】解:z====+i,
当1+m>0且1﹣m>0时,有解:﹣1<m<1;
当1+m>0且1﹣m<0时,有解:m>1;
当1+m<0且1﹣m>0时,有解:m<﹣1;
当1+m<0且1﹣m<0时,无解;
故选:C.
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
2.【答案】D
【解析】解:不等式组表示的平面区域如图,
结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,
即|AM|min=.
故选:D.
【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.3.【答案】C
【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,
有f′(x)=3x2+2ax+(a+6).
若f(x)有极大值和极小值,
则△=4a2﹣12(a+6)>0,
从而有a>6或a<﹣3,
故选:C.
【点评】本题主要考查函数在某点取得极值的条件.属基础题.
4.【答案】C
【解析】
试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.
考点:空间直线、平面间的位置关系.
5.【答案】D
【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;
∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱
锥A﹣BEF的体积为定值,故C正确;
∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面
直线AE、BF所成的角不是定值,故D错误;
故选D.
6.【答案】A
【解析】A. C. D.恰有11个零点,可得5π≤ω•<6π,
求得10≤ω<12,
故选:A.
7.【答案】D
【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5}, ∴∁U Q={1,2,6},又P={1,2,3,4}, ∴P ∩(C U Q )={1,2} 故选D .
8. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;
故排除A ,D ; 若公比q ≠1,
则A=S n =,B=S 2n =
,C=S 3n =

B (B ﹣A )=(﹣)=
(1﹣q n
)(1﹣q n
)(1+q n

A (C ﹣A )=

﹣)=
(1﹣q n )(1﹣q n )(1+q n
);
故B (B ﹣A )=A (C ﹣A );
故选:C .
【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.
9. 【答案】B
【解析】解:∵cos (﹣α)=

∴cos (+α)=﹣cos=﹣cos (
﹣α)=﹣

故选:B .
10.【答案】B 【解析】
试题分析:因为{}{}{}{}1,2,3,41,1,1A
B B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当
{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.
考点:元素与集合的关系的判断.
【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]
11.【答案】B
【解析】解:∵z=cos θ+isin θ对应的点坐标为(cos θ,sin θ), 且点(cos θ,sin θ)位于复平面的第二象限,
∴,∴θ为第二象限角,
故选:B .
【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.
12.【答案】C
【解析】解:∵实数x 、y 满足a x <a y
(1>a >0),∴y <x .
对于A .取x=1,y=0,
不成立,因此不正确;
对于B .取y=﹣2,x=﹣1,ln (x 2+1)>ln (y 2
+1)不成立; 对于C .利用y=x 3在R 上单调递增,可得x 3>y 3
,正确;
对于D .取y=﹣π,x=,但是sinx=,siny=,sinx >siny 不成立,不正确.
故选:C .
【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.
二、填空题
13.【答案】②④ 【解析】
试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2
A B π
+=
,所以三角形为等腰三角
形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正
确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知
sin sin sin a b c
A B C
+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换. 14.【答案】 2n ﹣1 .
【解析】解:∵a 1=1,a n+1=a n +2n
, ∴a 2﹣a 1=2, a 3﹣a 2=22, …
a n ﹣a n ﹣1=2n ﹣1,
相加得:a n ﹣a 1=2+22+23+2…+2n ﹣1

a n =2n ﹣1,
故答案为:2n
﹣1,
15.【答案】 ﹣2 .
【解析】解:∵曲线y=x n+1(n ∈N *
), ∴y ′=(n+1)x n
,∴f ′(1)=n+1,
∴曲线y=x
n+1
(n ∈N *
)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),
该切线与x 轴的交点的横坐标为x n =,
∵a n =lgx n ,
∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99
=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2.
故答案为:﹣2.
16.【答案】 2016 .
【解析】解:∵f (x )=f (2﹣x ),
∴f (x )的图象关于直线x=1对称,即f (1﹣x )=f (1+x ). ∵f (x+1)=f (x ﹣1),∴f (x+2)=f (x ), 即函数f (x )是周期为2的周期函数,
∵方程f (x )=0在[0,1]内只有一个根x=,
∴由对称性得,f ()=f ()=0,
∴函数f (x )在一个周期[0,2]上有2个零点, 即函数f (x )在每两个整数之间都有一个零点, ∴f (x )=0在区间[0,2016]内根的个数为2016, 故答案为:2016.
17.【答案】 240
【解析】解:由(2x+
)6
,得
=

由6﹣3r=0,得r=2. ∴常数项等于

故答案为:240.
18.【答案】 真命题
【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,
则命题的逆否命题也为真命题,
故答案为:真命题.
【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.
三、解答题
19.【答案】(1)23小时;(2 【解析】

题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=,10AB =,9AC t =,21BC t =. 由余弦定理得:2
2
2
2cos BC AB AC AB AC BAC =+-∠,
所以222
1(21)10(9)2109()2
t t t =+-⨯⨯⨯-,
化简得2
369100t t --=,解得23t =
或512t =-(舍去). 所以,海难搜救艇追上客轮所需时间为2
3
小时.
(2)由2963AC =⨯=,2
21143
BC =⨯=.
在ABC ∆
中,由正弦定理得6sin 6sin120
2sin 14
14AC BAC B BC ⨯
∠===
=. 所以角B 的正弦值为
14
. 考点:三角形的实际应用.
【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键. 20.【答案】
【解析】(1)∵0a =,1
2
b =-, ∴1()1cos 2f x x x =-
+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦
. (2分) 令()0f x '=,得6
x π
=.
当06x π<<时,()0f x '<,当62
x ππ
<<时,()0f x '>,
所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤
⎢⎥⎣⎦
. (5分)

112a -
<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭
,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫
⎪⎝⎭上单调减.
又(0)0f =,2
()124
f a ππ=
+. 故当2142a -<≤-π时,2()1024f a ππ=
+≤,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=
+>,此时()f x 在0,2π⎡⎤
⎢⎥⎣⎦
上只有一个零点.
21.【答案】(1)2
212
x
y +=;(2)证明见解析. 【解析】

题解析:
(1)22PF QO =,∴212PF F F ⊥,∴
1c =, 2222
221
121,1a b c b a b +==+=+, ∴22
1,2b a ==,
即2
212
x y +=; (2)设AB 方程为y kx b =+代入椭圆方程
222
12102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22
221
,112
2
A B A B kb b x x x x k k --+==++,
11,A B MA MB A B y y k k x x --==,∴()
11
2A B A B A B A B MA MB A B
A B
y x x y x x y y k k x x x x +-+--+=+=
=,
∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.
【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解. 22.【答案】
【解析】解:如图:
(I )A ∩B={x|1<x ≤2};
(II )C U A={x|x ≤0或x >2},C U B={x|﹣3≤x ≤1}
(C U A )∩(C U B )={x|﹣3≤x ≤0};
(III )A ∪B={x|x <﹣3或x >0},C U (A ∪B )={x|﹣3≤x ≤0}.
【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.
23.【答案】 【解析】解:(1)∵f (x )=lg (a x
﹣b x
),且f (1)=lg2,f (2)=lg12,
∴a ﹣b=2,a 2﹣b 2
=12,
解得:a=4,b=2;
(2)由(1)得:函数f (x )=lg (4x ﹣2x
),
当x ∈[1,2]时,4x
﹣2x
∈[2,12], 故当x=2时,函数f (x )取最大值lg12,
(3)若函数g (x )=a x 的图象与h (x )=b x
﹣m 的图象恒有两个交点.
则4x ﹣2x =m 有两个解,令t=2x
,则t >0,
则t 2
﹣t=m 有两个正解;
则,
解得:m ∈(﹣,0)
【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.
24.【答案】
【解析】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.
又因为EF不在平面PCD中,PD⊂平面PCD
所以直线EF∥平面PCD.
(2)连接BD.因为AB=AD,∠BAD=60°.
所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.
因为平面PAD⊥平面ABCD,BF⊂平面ABCD,
平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.
又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.
【点评】本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.。

相关文档
最新文档