由于价格变动引起销量变化,进而影响销售利润的二次函数应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于价格变动引起销量变化,进而影响销售利润的二次函数应用题
1、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨。
该经销店为提高经营利润,准备采取降价的方式进行促销。
经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨。
综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元,设每吨材料售价为x元,该经销店的月利润为y元。
(1)当每吨售价为240元时,计算此时的月销售量;
(2)求y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
(4)小静说:“当月利润最大时,月销售额也最大”你认为对吗?请说明理由。
2、为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯。
已知太阳能路灯售价为5000元/个,目前两个商家有此产品。
甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个。
乙店一律按原价的80%销售.现购买太阳能路灯×个,如果全部在甲商家购买,则所需金额为y元;如果全部在乙商家购买,则所需金额为y元。
(1)分别求出y1、y2与x之间的函数关系式;
(2)若市政府投资140万元,最多能购买多少个太阳能路灯?
3、恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香
菇远销日本和韩国等地。
上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中。
据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售。
(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y与x之间的函数关系式。
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额一收购成本一各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
4、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡"政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y 元,请写出y 与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
5、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。
设每件商品的售价上涨X元(x为正整数),每个月的销售利润为y元。
(1)求y 与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接﹑写出售价在什么范围时,每个月的利润不低于2200元?。