圆柱体的练习

合集下载

圆柱练习题及答案

圆柱练习题及答案

圆柱练习题及答案一、选择题1. 圆柱的两个底面是圆,且平行,它的侧面是一个矩形,这个矩形被平行于底面的平面所切割得到的截面形状是:A. 圆B. 长方形C. 正方形D. 椭圆答案:B. 长方形2. 一个圆柱的直径是10厘米,高度是20厘米,则它的底面积是:A. 50π平方厘米B. 100π平方厘米C. 200π平方厘米D. 400π平方厘米答案:B. 100π平方厘米3. 圆柱的侧面积是200π平方厘米,底面直径是8厘米,求圆柱的高。

A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:C. 15厘米4. 一个圆柱的体积是800π立方厘米,底面半径是5厘米,求圆柱的高。

A. 10厘米B. 20厘米C. 25厘米D. 40厘米答案:B. 20厘米二、计算题1. 已知一个圆柱的高度为8厘米,底面积为16π平方厘米,求圆柱的体积和侧面积。

解析:圆柱的体积公式为 V = 底面积 ×高度,侧面积公式为 S = 周长 ×高度,由题可知底面积为16π平方厘米,高度为8厘米,代入公式可得:V = 16π × 8 = 128π 立方厘米,底面的周长为2π × 半径= 2π × (16/2π) = 16厘米,侧面积为 16 × 8 = 128 平方厘米。

所以,该圆柱的体积为128π立方厘米,侧面积为128平方厘米。

2. 一个圆柱的底面半径为6厘米,高度为10厘米,求该圆柱的体积和侧面积。

解析:根据已知数据,底面半径为6厘米,高度为10厘米。

圆柱的体积公式为 V = 底面积 ×高度,侧面积公式为 S = 周长 ×高度,底面积为πr^2 = π × 6^2 = 36π 平方厘米,周长为2πr = 2π × 6 = 12π厘米。

代入公式可得:V = 36π × 10 = 360π 立方厘米,S = 12π × 10 = 120π 平方厘米。

圆柱练习题及答案

圆柱练习题及答案

圆柱练习题及答案一、选择题1. 圆柱的侧面展开图是什么形状?A. 圆形B. 长方形C. 正方形D. 三角形答案:B2. 圆柱的体积公式是什么?A. πr²hB. 2πrhC. πr²D. πrh答案:A3. 如果圆柱的底面半径为3厘米,高为5厘米,那么它的体积是多少立方厘米?A. 141.3B. 282.6C. 423.9D. 565.2答案:B二、填空题4. 圆柱的底面积是_________(用πr²表示)。

答案:πr²5. 圆柱的侧面积是_________(用2πrh表示)。

答案:2πrh三、计算题6. 已知圆柱的底面半径为4厘米,高为7厘米,求圆柱的体积。

解:根据圆柱体积公式V = πr²h,代入 r = 4厘米,h = 7厘米,得V = π × 4² × 7 = 3.14 × 16 × 7 = 351.68(立方厘米)答案:圆柱的体积是351.68立方厘米。

四、解答题7. 如何计算圆柱的表面积?答:圆柱的表面积由两个底面积和一个侧面积组成。

计算公式为:表面积= 2 × 底面积 + 侧面积即:表面积= 2 × πr² + 2πrh8. 一个圆柱形油桶,底面半径为2米,高为3米,求油桶的表面积。

解:根据表面积公式,代入 r = 2米,h = 3米,得表面积= 2 × π × 2² + 2π × 2 × 3= 2 × 3.14 × 4 + 12.56 × 3= 25.12 + 37.68= 62.8(平方米)答案:油桶的表面积是62.8平方米。

五、应用题9. 一个圆柱形的蓄水池,底面直径为6米,高为5米。

如果每立方米水的质量是1吨,那么这个蓄水池最多可以蓄多少吨水?解:首先计算蓄水池的体积,底面半径 r = 直径÷ 2 = 6 ÷ 2 = 3米。

小学数学圆柱体练习题

小学数学圆柱体练习题

小学数学圆柱体练习题
题目一:圆柱体的表面积计算
1. 小明制作了一个圆柱体的模型,底面直径为6cm,高度为8cm。

请计算该圆柱体的表面积。

2. 小红要用纸板制作一个纸筒,底圆的半径为3cm,高度为10cm。

请计算纸筒的表面积。

3. 一个圆柱体的底面直径为10cm,高度为12cm。

请你计算该圆柱
体的表面积。

题目二:圆柱体的容积计算
1. 小明有一个纯水圆柱体容器,底面半径为5cm,高度为12cm。

请计算该容器中水的容积。

2. 小红买了一桶果汁,桶的形状是圆柱体,底面半径为8cm,高度
为16cm。

请计算该桶中果汁的容积。

3. 请你计算一个圆柱体,底面半径为6cm,高度为10cm的容积。

题目三:应用题
1. 小明想做一个蜡烛,他用一个空心的圆柱体作为烛台,烛台底面
半径为4cm,高度为5cm。

每个蜡烛的直径为0.5cm,高度为10cm。

请计算烛台最多可以摆放多少支蜡烛。

2. 小红用一个空心的圆柱体作为铅笔盒,底面半径为2cm,高度为12cm。

她想要将铅笔竖立起来放进圆柱体中,每支铅笔的直径为
0.5cm。

请问最多可以放多少支铅笔。

3. 请你设计一个圆柱体水桶,能够容纳30升的水。

桶的底面半径可以自由选择,但请确保桶的高度不超过100cm。

注意事项:
- 所有计算结果请精确到小数点后一位。

- 题目内容仅限于小学数学圆柱体知识,不涉及政治等其他内容。

圆柱体积表面积较难的练习题

圆柱体积表面积较难的练习题

〔1〕把一个圆柱体的侧面展开,得到一个长31.4厘米,宽10厘米的长方形,这个圆柱体的侧面积是〔〕平方厘米,外表积是〔〕平方厘米。

〔2〕一台压路机的前轮是圆柱形,轮宽1.3米,直径1.2米,前轮转动一周,压路的面积是〔〕平方米。

〔3〕一个圆柱体的侧面积是31.4平方厘米,底面周长是6.28厘米,这个圆柱体的侧面积是〔〕平方厘米。

〔4 〕、用一长2.5米, 宽1.5米的铁皮做一个圆柱形烟筒, 这个烟筒的侧面积是〔〕。

(接口处忽略不计)〔5〕、一个无盖的圆柱形铁皮水桶, 高50厘米, 底面直径30厘米, 做这个水桶大约需用〔〕铁皮。

(得数保存整数)〔6〕用一边长是20厘米的正方形铁皮, 围成一个圆柱体, 这个圆柱体的侧面积是〔〕。

〔7〕直圆柱的底面周长6.28分米, 高1分米, 它的侧面积是( )平方分米,外表积是〔〕平方米。

〔8〕做一个圆柱体, 侧面积是9.42平方厘米, 高是3厘米, 它的底面半径是〔〕厘米,外表积是〔〕平方厘米。

〔9〕一种压路机滚筒,半径是4分米,长1.2米,每分钟转10周,每分钟压路〔〕平方米。

〔10〕一种圆柱形油桶,高48厘米,底面直径是20厘米,做这水桶至少要用铁皮〔〕平方厘米。

〔11〕一辆压路机的前轮是圆柱形,轮宽1.6米,直径是0.8米。

前轮转动一周,压路的面积是〔〕平方米。

〔12〕把一根直径是20厘米,长是2米的圆柱形木材锯成同样的3段,外表积增加了〔〕立方厘米。

〔13〕把一个圆柱体的侧面展开后,正好得到一个边长为15.7厘米的正方形,圆柱体的高是〔〕厘米。

〔14〕将一根长5米的圆柱形木料锯成2段,外表积增加60平方分米。

这根木料的底面面积是〔〕平方分米。

圆柱外表积和体积练习题一、选择题1.圆柱体的底面半径和高都扩大2倍,它的体积扩大〔〕倍.①2 ②4 ③6 ④82.体积单位和面积单位相比拟,〔〕.①体积单位大②面积单位大③一样大④不能相比3.等底等高的圆柱体、正方体、长方体的体积相比拟,〔①正方体体积大②长方体体积大③圆柱体体积大④一样大二、填空题1.0.9平方米=〔〕平方分米〕.2.3立方米5立方分米=〔〕立方米3.4.5立方分米=〔〕立方分米〔〕立方厘米4.一个棱长为4厘米的正方体,它的外表积是〔〕.5.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是〔〕,外表积是〔〕,体积是〔〕.6.一个圆柱体的底面直径是4厘米,高8厘米,它的侧面积是〔〕,外表积是〔〕,体积是〔〕.7.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是〔〕,外表积是〔〕,体积是〔〕.8.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积〔1个〕是〔〕平方厘米,这个圆柱体的体积是〔〕立方厘米.9.圆柱体的底面周长是62.8厘米,高是20厘米,这圆柱体的外表积是〔〕,体积是〔〕.10.一个圆柱体,它的高增加3厘米,侧面积就增加18.84平方厘米,这个圆柱体的底面积是〔〕.11.一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其外表积增加40平方厘米,原来这个圆柱体的体积是〔〕.12.一个圆柱体的体积是125.6立方厘米.底面直径是4厘米,它的侧面积是〔〕平方厘米.三、判断题1.一个正方体切成两个体积相等的长方体后,每个长方体的外表积是原正方体的1/2 .〔〕2.正方体的外表积是6平方厘米,它的体积一定是6立方厘米.〔〕3.所有圆的直径都相等.〔〕4.一长40厘米,宽15厘米的长方形卡纸,围成一个圆柱纸筒,它的侧面积是600平方厘米.〔〕5.一个圆柱的高缩小2倍,底面半径扩大2倍,体积不变.〔〕四、计算题*+1.5×1/3 =2 4 *-8/5 *=3.6〔*+35/8 〕×2=10.25 3.14×*+8=20.56五、应用题1.把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米.2.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.3.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米.4.一个圆柱形油桶,装满了油,把桶里的油倒出3/4 ,还剩20升,油桶高8分米,油桶的底面积是多少平方分米.5.把一种空心混凝土管道,直径是40厘米,外直径是80厘米,长300厘米,求浇制100节这种管道需要多少混凝土.6.一个圆柱体的底面半径是4厘米,高8厘米,求它的体积和外表积.7.做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮.这个水桶能装多少千克的水.〔1立方分米水重1千克〕小学数学六年级下册:圆柱外表积和体积提高练习例1:外表积变化1、一个圆柱的高减少2厘米侧面积就减少50.24平方厘米,它的体积减少多少立方厘米? 练习:一个圆柱的高增加3分米,侧面积就增加56.52平方分米,它的体积增加多少立方分米?2、一个圆柱的侧面展开是一个正方形。

六年级数学下册《圆柱的认识》练习题(附答案解析)

六年级数学下册《圆柱的认识》练习题(附答案解析)

六年级数学下册《圆柱的认识》练习题(附答案解析)学校:___________姓名:___________班级:___________一、选择题1.一个圆柱的底面半径是2cm,高是12.56cm,它的侧面沿高剪开是()。

A.长方形B.正方形C.平行四边形2.用一个高9厘米的圆锥形容器盛满水,再将水倒入和它等底等高的圆柱形容器中,水的高度是()厘米。

A.3B.6C.9D.273.压路机滚筒滚动一周能压多少路面是求滚筒的()。

A.表面积B.侧面积C.体积4.用一块长18.84厘米,宽12.56厘米的长方形铁皮,以长方形的宽为高,配上下面()圆形铁片可以做成一个无盖的圆柱形容器。

(单位:厘米)A.B.C.D.5.下面物体中,()的形状是圆柱。

A.B.C.D.6.王大伯挖一个底面直径是3m,深是1.2m的圆柱体水池。

求这个水池占地多少平方米?实际是求这个水池的()。

A.底面积B.容积C.表面积D.体积7.圆柱的高和底面上任意一条半径所组成的角是()。

A.锐角B.直角C.钝角8.()可以立起来,放倒后很容易滚动。

A.长方体B.圆柱体C.球9.圆柱的底面半径扩大2倍,高不变。

它的底面积扩大()倍。

A.2B.4C.8D.1610.一个长方形的长是8cm,宽是4cm。

分别以长和宽为轴旋转一周,得到两个圆柱体,它们的体积相比,()。

A.以长为轴旋转一周得到的圆柱体积大B.以宽为轴旋转一周得到的圆柱体积大C.一样大二、填空题11.小明用一张边长为20cm的正方形彩纸和两张圆形彩纸刚好可以围成一个圆柱,这个圆柱的侧面积是( )2cm。

12.把一块体积是60cm3的正方体木块削成一个最大的圆柱体,圆柱体的体积是( )。

13.圆柱的表面有个________面,圆锥的表面有________个面。

14.下面各图中h表示的是圆柱的高吗?是的在括号里画“√”,不是的画“×”。

( )( )( )( )( )15.把一张长6.28分米、宽3.14分米的长方形纸卷成一个圆柱并把它直立在桌面上,它的容积可能是( )立方分米或( )立方分米。

圆柱练习题含答案

圆柱练习题含答案

圆柱练习题含答案1. 计算圆柱的体积和表面积已知圆柱的底面半径为r,高为h,请计算该圆柱的体积和表面积。

解答:- 圆柱的体积计算公式为:V = π * r^2 * h- 圆柱的表面积计算公式为:A = 2 * π * r^2 + 2 * π * r * h其中,π(pi)取3.14。

根据给定的底面半径和高,代入公式进行计算即可得到圆柱的体积和表面积。

2. 计算圆柱的侧面积和母线长度已知圆柱的底面半径为r,高为h,请计算该圆柱的侧面积和母线长度。

解答:- 圆柱的侧面积计算公式为:S = 2 * π * r * h- 圆柱的母线长度计算公式为:L = √(r^2 + h^2)根据给定的底面半径和高,代入公式进行计算即可得到圆柱的侧面积和母线长度。

3. 圆柱的应用场景圆柱是一种常见的几何体,在生活和工程中有着广泛的应用。

下面列举几个圆柱的应用场景:- 水桶:水桶的形状就是一个圆柱,圆柱的设计使得水桶能够存储大量的液体,并且容易倒出。

- 柱形雕塑:许多雕塑作品采用圆柱形状,例如公园中的柱形雕塑。

圆柱形状使得雕塑具有更好的稳定性。

- 管道:在建筑工程中,许多管道采用圆柱形状。

圆柱的设计使得管道具有较大的容纳空间,并且易于连接和安装。

这些场景都体现了圆柱的特点和优势,圆柱在不同领域中发挥着重要的作用。

总结:通过以上练习题,我们学习了如何计算圆柱的体积、表面积、侧面积和母线长度。

圆柱在生活和工程中有着广泛的应用,了解和掌握圆柱的相关知识对我们理解和应用几何学具有重要意义。

希望以上内容能够帮助到您,并且满足您的需求。

如有其他问题或需要进一步解答,请随时告知。

圆柱体专项练习题

圆柱体专项练习题

圆柱体专项练习题问题1. 计算一个半径为5cm、高度为8cm的圆柱体的体积和表面积。

2. 如果一个圆柱体的体积为200π cm³,它的半径是多少?3. 一个圆柱体的体积为1000cm³,它的高度是8cm,它的半径是多少?4. 一个非常长的钢柱被切成了5个高度为10cm的圆柱体,它们的半径分别是3cm、4cm、5cm、6cm和7cm。

计算这5个圆柱体的总表面积。

解答1. 圆柱体的体积可以通过公式V=πr²h 计算,其中 V 是体积,π 是圆周率,r 是半径,h 是高度。

将半径 r 替换为 5cm,将高度 h 替换为 8cm,将π的近似值替换为 3.14,可以进行计算如下:V = 3.14 × 5² × 8 = 628.8 cm³圆柱体的表面积可以通过公式A=2πr²+2πrh 计算,将半径 r 替换为 5cm,将高度 h 替换为 8cm,将π的近似值替换为 3.14,可以进行计算如下:A = 2 × 3.14 × 5² + 2 × 3.14 × 5 × 8 = 314 + 251.2 = 565.2 cm²2. 若一个圆柱体的体积为200π cm³,我们可以使用体积公式解出半径 r,此时高度 h 没有给出。

将体积 V 替换为200π,将体积公式V=πr²h 中的 r²替换为 r²,可以进行计算如下:200π = πr²h=> r² = 200=> r = √200 ≈ 14.14 cm该圆柱体的半径约为 14.14 cm。

3. 若一个圆柱体的体积为1000cm³,高度为8cm,我们可以使用体积公式解出半径 r。

将体积 V 替换为 1000,将体积公式V=πr²h 中的 h 替换为 8,可以进行计算如下:1000 = πr² × 8=> r² = 1000 / (8π)=> r ≈ √(1000 / (8π)) ≈ 6.29 cm该圆柱体的半径约为 6.29 cm。

二年级圆柱练习题

二年级圆柱练习题

二年级圆柱练习题一、填空题1. 圆柱的底面是一个__________。

2. 圆柱的侧面沿__________展开是一个长方形。

3. 圆柱的高是指__________之间的距离。

4. 圆柱的体积公式是__________。

5. 圆柱的底面积是__________。

二、判断题(对的打“√”,错的打“×”)1. 圆柱的侧面是曲面。

()2. 圆柱的底面直径等于高。

()3. 圆柱的体积等于底面积乘以高。

()4. 圆柱的侧面展开后一定是一个正方形。

()5. 圆柱的底面积是半径的平方乘以π。

()三、选择题1. 圆柱的底面周长是()。

A. π×直径B. π×半径C. π×半径×22. 圆柱的体积是()。

A. 底面积×高B. 底面周长×高C. 侧面积3. 圆柱的侧面积是()。

A. 底面积×2B. 底面周长×高C. 底面直径×高4. 一个圆柱的底面半径是5厘米,高是10厘米,它的体积是()。

A. 2500立方厘米B. 314立方厘米C. 785立方厘米5. 一个圆柱的底面直径是10厘米,高是20厘米,它的侧面积是()。

A. 2000平方厘米B. 1570平方厘米C. 3140平方厘米四、计算题1. 一个圆柱的底面半径是4厘米,高是5厘米,求它的体积。

2. 一个圆柱的底面直径是8厘米,高是10厘米,求它的侧面积。

3. 一个圆柱的底面积是78.5平方厘米,高是6厘米,求它的体积。

4. 一个圆柱的体积是1884立方厘米,底面半径是14厘米,求它的高。

5. 一个圆柱的侧面积是942平方厘米,底面直径是18厘米,求它的高。

五、应用题1. 一个圆柱形的水桶,底面直径是60厘米,高是80厘米,这个水桶能装多少升水?2. 一个圆柱形铁块,底面半径是10厘米,高是15厘米,这个铁块的体积是多少立方厘米?3. 制作一个圆柱形灯笼,底面周长是25.12厘米,高是30厘米,需要多少平方厘米的彩纸?4. 一个圆柱形铅笔,底面直径是7毫米,高是10厘米,这支铅笔的侧面积是多少平方毫米?5. 工厂要制作一批圆柱形铁管,每根铁管的底面直径是20厘米,高是2米,每根铁管的体积是多少立方厘米?六、图形题底面半径为3厘米,高为5厘米的圆柱。

圆柱的认识练习题(选择题部分有解析)

圆柱的认识练习题(选择题部分有解析)

圆柱认识选择题练习1、下面的物体为圆柱的是( )。

A、香皂B、桌面C、排水管道D、牙膏盒2、圆柱有()个面。

A、两B、三C、四D、无数3、圆柱的侧面展开后不可能是( )。

A、三角形B、平行四边形C、正方形D、长方形4、圆柱的高有( )条。

A、2B、5C、1D、无数5、一个圆柱的侧面展开正好是一个正方形,这个圆柱的底面直径与高的比是()A、1:πB、π:1C、1:2πD、 2π:16、当圆柱的高与底面周长相等时,沿高剪开,它的侧面是( )[来#源~:中*教%网&]A、圆形B、平行四边形C、长方形D、正方形7、圆柱的侧面积等于()乘以高。

A、底面积B、底面周长C、底面半径8、圆柱的底直径是d,高为πd,圆柱的侧面展开图是()A、长方形B、正方形C、梯形解析:因为圆柱的底直径是d,则底面周长是πd,圆柱的高是πd,即底面周长和高相等,根据圆柱的侧面展开后是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,可知:该圆柱的侧面展开图是正方形.故选:B9、把一个圆柱的侧面展开可以得到一个()A、长方形B、长方形或正方形C、长方形和圆D、长方形或正方形和圆解析:圆柱的侧面是一个曲面,侧面沿高展开是一个长方形,如果圆柱体的底面周长和高相等时,侧面展开是正方形;由此得出:把一个圆柱的侧面展开可以得到一个长方形或正方形。

故选:B10、从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的()相等.A、底半径和高B、底面直径和高C、底周长和高解析:从圆柱的正面看,看到的轮廓是一个正方形,说明圆柱的圆柱的底面直径和高相等。

故选B。

11、用一张正方形的纸围成一个圆柱形(接口处忽略不算),这个圆柱的()相等.A、底面直径和高B、底面周长和高C、底面积和侧面积解析:正方形围成圆柱后,圆柱的底面周长和高相等;故选:B12、一个物体上下两个面是面积相等的两个圆,那么()A、它一定是圆柱B、它可能是圆柱C、它的侧面展开图一定是正方形解析:因为圆柱每个横截面都是相等的,而不止是上下两个面相等,且圆柱的侧面展开是一个长方形,如:生活中我们认识的腰鼓,上下两个面都是相等的圆,但它不是圆柱体,所以一个物体上下两个面是面积相等的两个圆,它可能是圆柱体.故选B13、连接圆柱(),得到的线段一定是圆柱的高.A、上、下底面圆心B、下底面任意两点C、侧面上任意两点14、将圆柱的侧面展开成一个平行四边形与展开成一个长方形比()A、面积小一些,周长大一些B、面积相等,周长大一些C、面积相等,周长小一些解析:因为侧面积一定,所以无论展开成什么形状,面积都是一样的;可由长方形展成平行四边形后,上下边长没变,左右两边由垂直底边变成倾斜的,所以周长变长了。

人教版六年级数学下册圆柱练习题

人教版六年级数学下册圆柱练习题

人教版六年级数学下册圆柱练习题1、填空。

一个圆柱体,底面周长是125.6厘米,高是12厘米,它的侧面积是平方厘米。

一个圆柱体,底面半径是3厘米,高是5厘米,它的侧面积是平方厘米,表面积是平方厘米。

把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是平方分米。

一个圆柱体,底面半径是3厘米,高是15厘米,它的表面积是平方厘米。

2、判断。

圆柱体的表面积=底面积×2+底面积×高。

圆柱体的表面积一定比它的侧面积大。

圆柱体的底面积越大,它的表面积就越大。

3、选择。

做一个无盖的圆柱体的水桶,需要的铁皮的面积是A.侧面积+一个底面积 B.侧面积+两个底面积C.×2一个圆柱的底面直径是10厘米,高是4分米,它的侧面积是平方厘米。

A.1256B.314C.3140D.282.6圆柱的体积1、填空。

一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积。

一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是立方厘米。

2、判断题。

圆柱体体积与长方体体积相等。

长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。

圆柱体的底面积越大,它的体积越大。

圆柱体的高越长,它的体积越大。

圆锥的体积1、填空。

把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是立方厘米。

一个圆柱和一个圆锥的体积和底面积相等,圆锥的高是9厘米,圆柱的高是厘米。

圆锥的底面半径是2厘米,体积是6.28厘米,这个圆锥的高是厘米。

一个棱长是4分米的正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是分米。

2、判断题。

一个圆柱与一个圆锥的底面积和体积相等,那么圆锥的高是圆柱高的1。

把一个圆柱削成一个圆锥,这个圆锥的体积是圆柱体积的13。

圆柱体积比与它等底等高的圆锥体的体积大2倍。

圆锥的底面周长是12.56分米,高是4分米,它的体积是立方分米。

3、解决问题。

圆柱体练习题

圆柱体练习题

圆柱体练习题一、选择题1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍。

①2 ②4 ③6 ④82.体积单位和面积单位相比较,()。

①体积单位大②面积单位大③一样大④不能相比3.等底等高的圆柱体、正方体、长方体的体积相比较,()。

①正方体体积大②长方体体积大③圆柱体体积大④一样大二、填空题1.0.9平方米=()平方分米 3立方米5立方分米=()立方米4.5立方分米=()立方分米()立方厘米2.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是(),表面积是(),体积是()。

3.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是(),表面积是(),体积是()。

4.一个圆柱体的`侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积是()平方厘米,这个圆柱体的体积是()立方厘米。

5,一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是()。

三、应用题。

一个圆柱形烟囱,底面半径为1.2米,高2.5米,它的体积是多少立方米?2.把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米3.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?4.做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)四、圆柱体的定义1、旋转定义法:一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。

2、平移定义法:以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。

性质1.圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。

2.圆柱体的两个底面是完全相同的两个圆面。

两个底面之间的距离是圆柱体的高。

3.圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个长方形或正方形。

圆柱的侧面积=底面周长x高,即:S侧面积=Ch=2πrh底面周长C=2πr=πd圆柱的表面积=侧面积+底面积x2=2πr2+Ch=2πr(r+h)4.圆柱的体积=底面积x高即 V=S底面积×h=(π×r×r)h5.等底等高的圆柱的体积是圆锥的3倍6.圆柱体可以用一个平行四边形围成圆柱的表面积= 圆柱的表面积=侧面积+底面积x26.把圆柱沿底面直径分成两个同样的部分,每一个部分叫半圆柱。

圆柱体练习题

圆柱体练习题

圆柱体练习题圆柱体是一种常见的几何体,具有广泛的应用领域。

掌握圆柱体的相关概念和计算方法对于解决实际问题非常重要。

在本篇文章中,我们将通过一些练习题来帮助读者加深对圆柱体的理解和应用。

练习一:计算圆柱体的体积已知一个圆柱体的底面半径为r,高度为h,求解该圆柱体的体积。

解答:圆柱体的体积公式为V = πr²h,其中π取近似值3.14。

练习二:计算圆柱体的侧面积已知一个圆柱体的底面半径为r,高度为h,求解该圆柱体的侧面积。

解答:圆柱体的侧面积公式为S侧= 2πrh,其中π取近似值3.14。

练习三:计算圆柱体的表面积已知一个圆柱体的底面半径为r,高度为h,求解该圆柱体的表面积。

解答:圆柱体的表面积包括底面积和侧面积两部分。

底面积为S底= πr²,侧面积为S侧= 2πrh。

所以圆柱体的表面积为S = S底 + S侧= πr² +2πrh。

练习四:已知圆柱体的体积和高度,求解底面半径已知一个圆柱体的体积为V,高度为h,求解该圆柱体的底面半径。

解答:根据圆柱体的体积公式V = πr²h,可以得到底面半径r = √(V / (πh))。

练习五:已知圆柱体的表面积和高度,求解底面半径已知一个圆柱体的表面积为S,高度为h,求解该圆柱体的底面半径。

解答:根据圆柱体的表面积公式S = πr² + 2πrh,可以整理得到底面半径r = (√(S - 2πrh)) / π。

通过以上练习题,我们掌握了圆柱体的基本计算方法和公式。

在实际应用中,我们可以根据已知条件,利用这些公式解决各种与圆柱体相关的问题。

同时,通过这些练习题的实践操作,读者对于圆柱体的性质和几何特征也会更加深入理解。

总结:本文通过一些圆柱体的练习题,帮助读者巩固了对圆柱体的理解和计算能力。

通过学习圆柱体的相关公式,读者可以更好地解决与圆柱体相关的实际问题,并且加深对于圆柱体几何特性的认识。

在日常生活和学习中,圆柱体是一种常见的几何体,掌握与之相关的知识和技巧将为我们的生活和学习带来很多便利和灵感。

圆柱的体积专项练习60题(有答案)ok

圆柱的体积专项练习60题(有答案)ok

圆柱的体积专项练习60题(有答案)ok1.一个长为4米,宽为2米的长方形,以其长边为轴旋转一周后,得到一个圆柱体。

该圆柱体的体积为16π立方米。

2.根据所给的数据,利用圆柱体的表面展开图计算其体积。

答案为75.36立方米。

3.以长方形纸片的虚线为剪切线,将阴影部分剪下,围成一个圆柱体。

圆柱体的体积可以表示为V=πr^2h。

当r=8.91厘米,π取3.14时,圆柱体的体积为1976.28立方毫米。

4.把长为18.84米,宽为12米的长方形铁皮卷成一个圆筒,再加上一个底部,形成一个铁桶。

该铁桶的最大容积为1357.17立方米。

5.将长为3米,宽为2米,高为5米的长方体木料削成一个最大的圆柱体。

该圆柱体的体积为6.283π立方米。

6.将长方体木料,长为8厘米,宽为6厘米,高为10厘米加工成一个最大的圆柱形模型。

该圆柱形模型的体积为150.796π立方厘米。

7.将长为30厘米的圆柱钢筋锯成两段同样的小圆柱,表面积增加了40平方厘米。

原来圆柱形钢筋的体积为141.371π立方厘米。

8.已知圆柱的高为5dm,过底面圆心垂直切开,将圆柱分成相等的两半,表面积增加60dm^2.该圆柱的体积为29.166π立方分米。

9.将圆柱形木料沿底面直径劈成两半,表面积增加120平方厘米。

若拦腰截成两个小圆柱,表面积增加157平方厘米。

原圆柱形木料的体积为1047.198π立方毫米。

10.将圆柱体削成最大的圆锥体,削去的体积为12.56立方米。

已知圆柱的底面周长为6.28米,求圆柱的高。

圆柱的高为2.5米。

11.将长为1.5米的圆柱形钢材截成三段后,表面积比原来增加了9.6平方分米。

该钢材原来的体积为44.178π立方分米。

12.将长为2米的圆柱形木料截成相等的三段,表面积增加24平方厘米。

原来的木料的体积为314.159π立方厘米。

13.将长方体木块,长为10米,宽为8米,高为6米削成一个最大的圆柱体。

该圆柱的体积为100π立方米。

圆柱练习题大全

圆柱练习题大全

圆柱练习题大全圆柱是几何学中的一个重要概念,常常在数学和物理学的学习中出现。

本文将为大家提供一系列的圆柱练习题,以帮助读者更好地理解和掌握圆柱的相关知识。

练习题一:计算圆柱的体积已知一个圆柱的半径为 r,高度为 h,请计算其体积 V。

解析:圆柱的体积公式为V = πr^2h,其中π 取近似值3.14。

练习题二:计算圆柱的表面积已知一个圆柱的半径为 r,高度为 h,请计算其表面积 S。

解析:圆柱的表面积由三部分组成:底面积、侧面积和顶面积。

底面积为πr^2,侧面积为2πrh,顶面积为πr^2。

因此,圆柱的表面积公式为S = 2πr^2 + 2πrh。

练习题三:已知圆柱的体积求半径已知一个圆柱的体积为 V,高度为 h,请计算其半径 r。

解析:通过圆柱的体积公式V = πr^2h,可以得到半径 r 的计算公式为r = √(V / (πh))。

练习题四:已知圆柱的体积求高度已知一个圆柱的体积为 V,半径为 r,请计算其高度 h。

解析:通过圆柱的体积公式V = πr^2h,可以得到高度 h 的计算公式为h = V / (πr^2)。

练习题五:已知圆柱的表面积求半径已知一个圆柱的表面积为 S,高度为 h,请计算其半径 r。

解析:将圆柱的表面积公式S = 2πr^2 + 2πrh 改写为关于半径 r 的方程,然后求解该方程即可。

练习题六:已知圆柱的表面积求高度已知一个圆柱的表面积为 S,半径为 r,请计算其高度 h。

解析:将圆柱的表面积公式S = 2πr^2 + 2πrh 改写为关于高度 h 的方程,然后求解该方程即可。

练习题七:已知圆柱的体积和表面积求半径已知一个圆柱的体积为 V,表面积为 S,请计算其半径 r。

解析:根据题意,可以得到两个方程:V = πr^2h 和S = 2πr^2 +2πrh。

将这两个方程联立,然后求解该方程组,即可得到半径 r。

练习题八:已知圆柱的表面积和高度求半径已知一个圆柱的表面积为 S,高度为 h,请计算其半径 r。

圆柱体的体积练习题

圆柱体的体积练习题

圆柱体的体积练习题1.一个棱长为6厘米的正方体木块,被削成了最大的圆柱体。

求这个圆柱体的体积。

2.一个高为6.28厘米的圆柱体机件,展开后的侧面积正好是一个正方形。

求这个机件的体积。

3.制作一个容量为62.8升的圆柱形铁桶,底面半径为2米。

求这个铁桶的高度。

4.一个圆柱形油桶被倒出了3/4的油,剩下了20升。

油桶的高度为8厘米,底面积是多少平方厘米?5.一种空心混凝土管道,内直径为40厘米,外直径为80厘米,长度为300厘米。

求浇制100节这种管道需要多少混凝土?6.一个圆柱体的底面半径为4厘米,高为8厘米。

求这个圆柱体的体积和表面积。

7.制作一个无盖的圆柱形铁皮水桶,高为30厘米,底面直径为20厘米。

至少需要多少平方厘米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)1.一个圆柱形油桶,内部底面半径为20厘米,高为2米。

求这个油桶的容积。

2.一个棱长为6厘米的正方形木块被削成了最大的圆柱体。

求需要削去多少立方厘米的木块?3.一个圆柱体的体积为10立方厘米,底面积为2.5平方厘米。

求这个圆柱体的高度。

4.一个圆柱的底面周长为12.56厘米,高为3米。

求这个圆柱的体积。

5.一根长2米的圆木被截成两段后,表面积增加了24平方厘米。

这根圆木原来的体积是多少?6.一个底面直径为6厘米的茶杯里装有7厘米高的水。

放入一块小石头后,水面上升到10厘米。

这个石头的体积是多少立方厘米?7.一张长62.8厘米,宽31.4厘米的长方形硬纸片被卷成了一个圆柱形纸筒。

求这个纸筒的体积。

8.一个圆柱体的侧面积为31.4平方厘米,底面周长为6.28厘米。

求这个圆柱体的体积。

1.一个圆柱体汽油桶,内部底面半径为20厘米,高为1米。

如果每立方米汽油重0.73千克,这个油桶最多能装多少千克的汽油?2.一个棱长为6厘米的正方体木块被切削成了一个体积最大的圆柱体。

这个圆柱的体积是多少立方厘米?3.一个棱长为6厘米的正方体钢材被熔铸成了底面半径为3厘米的圆柱体。

圆柱体上的数字练习题

圆柱体上的数字练习题

圆柱体上的数字练习题一、计算圆柱体的表面积和体积1. 已知圆柱体的底面半径为5cm,高为10cm,求其表面积和体积。

2. 已知圆柱体的底面直径为8cm,高为15cm,求其表面积和体积。

3. 已知圆柱体的底面周长为18.84cm,高为20cm,求其表面积和体积。

4. 已知圆柱体的体积为314cm³,底面半径为7cm,求其高。

5. 已知圆柱体的表面积为439.6cm²,高为12cm,求其底面半径。

二、比较圆柱体的大小1. 圆柱体A的底面半径为3cm,高为5cm;圆柱体B的底面半径为4cm,高为4cm。

比较两个圆柱体的表面积和体积。

2. 圆柱体C的底面直径为10cm,高为8cm;圆柱体D的底面直径为8cm,高为10cm。

比较两个圆柱体的表面积和体积。

3. 圆柱体E的底面周长为31.4cm,高为6cm;圆柱体F的底面周长为25.12cm,高为8cm。

比较两个圆柱体的表面积和体积。

三、应用题1. 一个圆柱体容器的底面半径为10cm,高为30cm,求容器内最多能装多少水(水的密度为1g/cm³)。

2. 制作一个圆柱体铁皮水桶,底面直径为40cm,高为60cm,求至少需要多少平方厘米的铁皮。

3. 一根直径为20cm的圆柱形木棍,要将其截成两段,使两段的体积比为1:3,求截取的位置。

4. 一个圆柱体的高等于底面直径,底面半径为5cm,求该圆柱体的侧面积。

5. 有一根直径为10cm的圆柱形铜丝,长度为1m,求其体积。

6. 一个圆柱体的底面半径为4cm,高为6cm,求该圆柱体侧面积与底面积的比值。

7. 有一圆柱体,其表面积为376.8cm²,体积为602.88cm³,求该圆柱体的底面半径和高。

8. 一个圆柱体的底面直径和高均为10cm,求该圆柱体的对角线长度。

圆柱体上的数字练习题(续)四、圆柱体的切割与拼接1. 将一个底面半径为5cm的圆柱体沿高切成两半,求切割后的两个半圆柱体的表面积之和。

圆柱体练习题

圆柱体练习题

圆柱体练习题(1)一、填空。

(每空1分,21分)1、一个圆柱的底面直径是4厘米,高是5厘米,这个圆柱的侧面积是( )平方厘米,体积是( )立方厘米2、一根长4米,横截面半径为2分米的圆柱形木料截成同样长的4段,表面积比原来增加()平方分米。

3、把棱长为3分米的正方体木块,削成一个最大的圆柱,圆柱的体积是()立方分米。

4、把一个底面直径6分米的圆锥形木料沿底面直径竖直剖开,表面积增加30平方分米,圆锥体的高是()分米。

5、自来水管的内直径是2厘米,水管内水的流速是每秒8厘米。

一位同学去洗手,走时忘记关掉水龙头,5分钟浪费()升水。

6.把底面半径2厘米、高10厘米的圆柱切成若干等分,拼成一个近似的长方体。

这个长方体的底面积是()平方厘米,表面积是( )平方厘米,体积是( )立方厘米。

7.一个圆柱体的底面周长是6.28分米,高3分米,这个圆柱的侧面积是( )平方分米,表面积是( )平方分米,体积是()立方分米。

8.一个圆柱的底面直径为8分米,高12分米,它的侧面积是( ),体积是( )。

9.一个圆锥体的底面半径是6厘米,高是1分米,体积是()平方厘米。

10.把一根圆柱行木料截成3段,表面积增加了12.56平方分米,这根木料的底面积是()平方分米。

11.一个棱长为4分米的正方体,削成一个最大的圆柱体,体积减少( )立方分米。

12.一个圆柱与圆锥底面周长相等、高也相等。

圆锥的体积是1.8立方分米,圆柱体积是( )。

13.一个圆锥体积比它等底等高的圆柱体积少48立方米,圆锥体积是( )。

14.一个圆锥体积与一个圆柱体积相等,已知圆柱的底面积是圆锥底面积的,高是5厘米,圆锥的高是( )厘米。

15. (1) 一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的(),圆柱的体积是圆锥体积的().(2) 一个直圆柱底面半径是1厘米,高是2.5厘米。

它的侧面积是( )平方厘米。

(3) 一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是( )厘米。

小学一年级数的圆柱体练习题

小学一年级数的圆柱体练习题

小学一年级数的圆柱体练习题题目一:圆柱体的认识与性质
1.请根据下面的图片,选择正确的说法()。

A. 图中物体形状属于长方体
B. 图中物体形状属于正方体
C. 图中物体形状属于圆柱体
D. 图中物体形状属于球体
2.根据下面提供的信息,填空。

一个圆柱体有一个平面底,它的底是一个(),底的边缘是一个(),一个圆柱体有()个面。

3.根据下面的图片,选择正确的说法()。

A. 图中物体是一个立方体
B. 图中物体是一个长方体
C. 图中物体是一个圆柱体
D. 图中物体是一个球体
题目二:圆柱体的计算
1. 一个圆柱体的底半径是5cm,高度是8cm,求圆柱体的侧面积和体积。

2. 一个圆柱体的体积是200cm³,底半径是3cm,求圆柱体的高度。

3. 一个圆柱体的高度是10cm,体积是150cm³,求圆柱体的底面半径。

题目三:圆柱体的应用
小明要用一个圆柱形的花瓶装鲜花,他知道花瓶的底半径是2cm,底高是3cm,鲜花的高度是7cm。

请回答下面的问题。

1. 这个花瓶的侧面积是多少平方厘米?
2. 这个花瓶最多能放多少升水?
3. 花瓶中一共可以放多少朵鲜花?
请根据题目给出的信息计算答案,写出详细的解题过程。

圆柱练习

圆柱练习

1、一个圆柱形容器的底面半径是4分米,高是6分米,里面盛满了水,把水倒入一个棱长是8分米的正方体容器里,水深是多少?
2、一根圆柱形钢材长4分米,如果沿底面直径截成相等两段后,表面积比原来增加2.4平方分米。

(1)、这根圆柱底面积是多少平方分米?
(2)、它的体积是多少?
(3)、如果每立方分米钢材重7.8千克,那么这根钢材重多少千克?(保留整数)
3、一个长方体和一个圆柱体积相等,长方体的体面积是圆柱底面积的2/3,长方体的高是圆柱高的()
4、有一个圆柱,底面直径是10厘米,如果高增加2厘米,那么它的侧面积
增加多少?
5、自来水管的内直径为2厘米,水管内水的流速为每秒8厘米,5分钟可流水多少升?
6、有一个圆柱体积是785立方厘米,底面半径是10厘米,侧面积是多少平方厘米?
7、有一段方钢长2米,横截面是边长为4厘米的正方形,如果把它车成一个最大的圆柱,需要车掉多少立方厘米?
8、某学校教学楼的前面有几根大圆柱子要油漆,圆柱的底面周长是2.4米,高是5米,按1千克油漆可漆5平方米计算,漆一根柱子要多少千克油漆?
9、一个塑料大棚长15米,横截面是一个半径为2米的半圆,
(1)、覆盖在这个大棚上的塑料约多少平方米?
(2)、这个大棚的内部空间是多大?
10、把一个高10厘米的圆柱分割成若干块后拼成一个长方体,表面积增加了60平方厘米,这个圆柱的体积和表面积分别是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱体的练习
一、选择题
1.圆柱体的底面半径和高都扩大2倍,它的体积扩大()倍.
①2②4③6④8
2.体积单位和面积单位相比较,().
①体积单位大②面积单位大③一样大④不能相比
二、填空题
1.0.9平方米=()平方分米
2.3立方米5立方分米=()立方米
3.4.5立方分米=()立方分米()立方厘米
4.一个棱长为4厘米的正方体,它的表面积是().
5.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是(),表面积是(),体积是().
6.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是(),表面积是(),体积是().
7.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积(1个)是()平方厘米,这个圆柱体的体积是()立方厘米.
三、判断题
1.一个正方体切成两个体积相等的长方体后,每个长方体的表面积是原正方体的
1/2 .()
2.正方体的表面积是6平方厘米,它的体积一定是6立方厘米.()
3.所有圆的直径都相等.()
四、应用题
1.把一个棱长是6分米的正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米?
2.有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,
求这个机件的体积.
3.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?
4.一个圆柱形油桶,装满了油,把桶里的油倒出3/4 ,还剩20升,油桶高8分米,油桶的底面积是多少平方分米?
5.把一种空心混凝土管道,内直径是40厘米,外直径是80厘米,长300厘米,求浇制100节这种管道需要多少混凝土?
6.一个圆柱体的底面半径是4厘米,高8厘米,求它的体积和表面积.
7.做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少
要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)。

相关文档
最新文档