华龙区第二中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华龙区第二中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,
﹣),∠AOC=α,若|BC|=1,则cos2﹣sin cos﹣的值为()
A.B.C.﹣D.﹣
2.有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为()A.3,6,9,12,15,18 B.4,8,12,16,20,24
C.2,7,12,17,22,27 D.6,10,14,18,22,26
3100“光盘”行动,得到所示联表:
2.706
3.841 6.635
附:K2=,则下列结论正确的是()
A.在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”
B.有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”
C.在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”
D.有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”
4.若函数f(x)=2sin(ωx+φ)对任意x都有f(+x)=f(﹣x),则f()=()
A.2或0 B.0 C.﹣2或0 D.﹣2或2
5. 已知函数(5)2()e 22()2x
f x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩
,则(2016)f -=( )
A .2
e B .e C .1 D .
1
e
【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.
6. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a
必过;④在吸烟
与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某
人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0
B .1
C .2
D .3
7. 圆2
2
2
(2)x y r -+=(0r >)与双曲线2
2
13
y x -=的渐近线相切,则r 的值为( ) A
B .2 C
D
.【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.
8. 已知角α的终边经过点(sin15,cos15)-,则2
cos α的值为( )
A
.
124+
B
.124
- C. 34 D .0 9. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为
36p , 则正方体棱长为( )
A .2
B .3
C .4
D .5
【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 10.已知x ,y
满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( ) A .1
B
.
C
.
D
.
11.设m 是实数,若函数f (x )=|x ﹣m|﹣|x ﹣1|是定义在R 上的奇函数,但不是偶函数,则下列关于函数f (x )的性质叙述正确的是( )
A .只有减区间没有增区间
B .是f (x )的增区间
C .m=±1
D .最小值为﹣3
12.如图所示,程序执行后的输出结果为( )
A .﹣1
B .0
C .1
D .2
二、填空题
13.函数y=a x +1(a >0且a ≠1)的图象必经过点 (填点的坐标)
14.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB
最小则直线的方程是 .
15.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .
16.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定
(),A B
k k A B AB
ϕ-=
(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:
①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线2
1y x =+上不同的两点,则(),2A B ϕ≤;
④设曲线x
y e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1
t A B ϕ⋅<
恒成立,则实数t 的取值范围是(),1-∞.
其中真命题的序号为________.(将所有真命题的序号都填上)
17.已知函数f (x )=,g (x )=lnx ,则函数y=f (x )﹣g (x )的零点个数为 .
18.在矩形ABCD 中,
=(1,﹣3),,则实数k= .
三、解答题
19.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,其余人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,其余人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;
(2)能否在犯错误的概率不超过0.01的前提下,认为休闲方式与性别有关系.独立性检验观察值计算公式
,独立性检验临界值表:
20.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.
(1)若x0=﹣4,y0=1,求圆M的方程;
(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.
21.
22.已知函数f (x )
=sin2x+(1﹣2sin 2
x ).
(Ⅰ)求f (x )的单调减区间;
(Ⅱ)当x ∈[
﹣
,
]时,求f (x )的值域.
23.已知函数()()2
1+2||02
()1()102
x x x x f x x ⎧-≤⎪⎪=⎨⎪->⎪⎩.
(1)画出函数()f x 的图像,并根据图像写出函数()f x 的单调区间和值域;
(2)根据图像求不等式3
(x)2
f ≥的解集(写答案即可)
24.已知f (x )=x 3+3ax 2+bx 在x=﹣1时有极值为0. (1)求常数 a ,b 的值;
(2)求f (x )在[﹣2,﹣]的最值.
华龙区第二中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】 A
【解析】解:∵|BC|=1,点B 的坐标为(,﹣),故|OB|=1,∴△BOC 为等边三角形,∴∠BOC=,
又∠AOC=α,∴∠AOB=﹣α,∴cos (
﹣α)=
,﹣sin (
﹣α)=﹣
,
∴sin (
﹣α)=
.
∴cos α=cos[﹣(
﹣α)]=cos
cos (
﹣α)+sin sin (
﹣α)
=
+
=,
∴sin α=sin[﹣(﹣α)]=sin
cos (
﹣α)﹣cos sin (
﹣α)
=﹣=.
∴cos 2
﹣sin cos ﹣=(2cos
2
﹣1)﹣sin α=cos α﹣sin α
=
﹣
=,
故选:A .
【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.
2. 【答案】C
【解析】解:从30件产品中随机抽取6件进行检验, 采用系统抽样的间隔为30÷6=5, 只有选项C 中编号间隔为5,
故选:C .
3. 【答案】C
【解析】解:由2×2列联表得到a=45,b=10,c=30,d=15. 则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.
代入K 2
=
,
得k 2
的观测值k=
.
因为2.706<3.030<3.841.
所以有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”.
即在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关” 故选C .
【点评】本题是一个独立性检验,我们可以利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关,此题是基础题.
4. 【答案】D
【解析】解:由题意:函数f (x )=2sin (ωx+φ),
∵f (
+x )=f (﹣x ),
可知函数的对称轴为x=
=
,
根据三角函数的性质可知,
当x=时,函数取得最大值或者最小值.
∴f (
)=2或﹣2
故选D .
5. 【答案】B
【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B .
6. 【答案】C
【解析】解:对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,正确;
对于②,设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 应平均减少5个单位,②错误;
对于③,线性回归方程y=bx+a 必过样本中心点,正确;
对于④,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关
系时,
我们说某人吸烟,那么他有99%的可能患肺病,错误; 综上,其中错误的个数是2. 故选:C .
7. 【答案】C
8.【答案】B
【解析】
考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
9.【答案】C
10.【答案】B
【解析】解:由约束条件作出可行域如图,
由图可知A(a,a),
化目标函数z=2x+y为y=﹣2x+z,
由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解
得:a=.
故选:B.
【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
11.【答案】B
【解析】解:若f(x)=|x﹣m|﹣|x﹣1|是定义在R上的奇函数,
则f(0)=|m|﹣1=0,则m=1或m=﹣1,
当m=1时,f(x)=|x﹣1|﹣|x﹣1|=0,此时为偶函数,不满足条件,
当m=﹣1时,f(x)=|x+1|﹣|x﹣1|,此时为奇函数,满足条件,
作出函数f(x)的图象如图:
则函数在上为增函数,最小值为﹣2,
故正确的是B,
故选:B
【点评】本题主要考查函数的奇偶性的应用,根据条件求出m的值是解决本题的关键.注意使用数形结合进行求解.
12.【答案】B
【解析】解:执行程序框图,可得
n=5,s=0
满足条件s<15,s=5,n=4
满足条件s<15,s=9,n=3
满足条件s<15,s=12,n=2
满足条件s<15,s=14,n=1
满足条件s<15,s=15,n=0
不满足条件s <15,退出循环,输出n 的值为0.
故选:B .
【点评】本题主要考查了程序框图和算法,正确判断退出循环时n 的值是解题的关键,属于基础题.
二、填空题
13.【答案】 (0,2)
【解析】解:令x=0,得y=a 0
+1=2 ∴函数y=a x
+1(a >0且a ≠1)的图象必经过点 (0,2)
故答案为:(0,2). 【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求
函数的图象必过的定点
14.【答案】30x y -+= 【解析】
试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距
()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时
11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.
考点:直线与圆的位置关系的应用. 15.【答案】12π 【解析】
考
点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键. 16.【答案】②③ 【解析】
试题分析:①错:(1,1),(2,5),|||7,
A B A B AB k k -=(,)A B ϕ∴=
<
②对:如1y =
;③对;(,)2A B ϕ==
≤;
④错;1212(,)x x x x A B ϕ=
=
,
1211,(,)A B ϕ==因为1(,)
t A B ϕ<
恒成立,故1t ≤.故答案为②③.111] 考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.
【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题. 17.【答案】 3
【解析】解:令g (x )=f (x )﹣log 4x=0得f (x )=log 4x
∴函数g (x )=f (x )﹣log 4x 的零点个数即为函数f (x )与函数y=log 4x 的图象的交点个数, 在同一坐标系中画出函数f (x )与函数y=log 4x 的图象,如图所示, 有图象知函数y=f (x )﹣log 4 x 上有3个零点. 故答案为:3个.
【点评】此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力.
18.【答案】 4 .
【解析】解:如图所示,
在矩形ABCD中,=(1,﹣3),,
∴=﹣=(k﹣1,﹣2+3)=(k﹣1,1),
∴•=1×(k﹣1)+(﹣3)×1=0,
解得k=4.
故答案为:4.
【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.
三、解答题
19.【答案】
【解析】解:(1)
(2)
所以不能在犯错误的概率不超过0.01的前提下认为休闲方式与性别有关系﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)
【点评】独立性检验是考查两个分类变量是否有关系,并且能较精确的给出这种判断的可靠程度的一种重要的统计方法,主要是通过k2的观测值与临界值的比较解决的
20.【答案】
【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0
圆的方程为x2+y2﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点
则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,
又∠CAO=∠ACO,∴∠DOB=∠COD
又OC=OB,所以△BOD≌△COD
∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切.…
(其他方法亦可)
21.【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),
(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)
【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.
【专题】概率与统计.
【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20
根据平均数值公式求解即可.
(2)X~B(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,
求解数学期望即可.
【解析】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1
解得a=0.03;
又由最高矩形中点的横坐标为20,
可估计盒子中小球重量的众数约为20,
而50个样本小球重量的平均值为:
=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)
故估计盒子中小球重量的平均值约为24.6克.
(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;
则X~B(3,),
X=0,1,2,3;
P(X=0)=×()3=;
P(X=1)=×()2×=;
P(X=2)=×()×()2=;
P(X=3)=×()3=,
∴X的分布列为:
0 1 2 3
即E(X)=0×=.
【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力
22.【答案】
【解析】解:(Ⅰ)f(x)=sin2x+(1﹣2sin2
x)=sin2x+cos2x
=2(sin2x+cos2x)=2sin(2x+),
由2kπ+≤2x+≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z),
故f (x )的单调减区间为:[k π+,k π+](k ∈Z );
(Ⅱ)当x ∈[﹣
,
]时,(2x+)∈[0,
],2sin (2x+
)∈[0,2],
所以,f (x )的值域为[0,2].
23.【答案】(1)图象见答案,增区间:(],2-∞-,减区间:[)2,-+∞,值域:(],2-∞;(2)[]3,1--。
【解析】
试题分析:(1)画函数()f x 的图象,分区间画图,当0x ≤时,()2
122
f x x x =--,此时为二次函数,开口向下,配方得()()()2
1142222
f x x x x =-
+=-++,可以画出该二次函数在0x ≤的图象,当0x >时,()1()12x f x =-,可以先画出函数1
()2
x y =的图象,然后再向下平移1个单位就得到0x >时相应的函数图
象;(2)作出函数()f x 的图象后,在作直线3
2
y =,求出与函数()f x 图象交点的横坐标,就可以求出x 的
取值范围。
本题主要考查分段函数图象的画图,考查学生数形结合思想的应用。
试题解析:(1)函数()f x 的图象如下图所示:
由图象可知:增区间:(],2-∞-,减区间:[)2,-+∞,值域为:(],2-∞。
(2)观察下图,()3
2
f x ≥
的解集为:[]3,1--。
考点:1.分段函数;2.函数图象。
24.【答案】
【解析】解:(1)∵f(x)=x3+3ax2+bx,
∴f'(x)=3x2+6ax+b,
又∵f(x)在x=﹣1时有极值0,
∴f'(﹣1)=0且f(﹣1)=0,
即3﹣6a+b=0且﹣1+3a﹣b=0,
解得:a=,b=1 经检验,合题意.
(2)由(1)得f'(x)=3x2+4x+1,
令f'(x)=0得x=﹣或x=﹣1,
又∵f(﹣2)=﹣2,f(﹣)=﹣,f(﹣1)=0,f(﹣)=﹣,∴f(x)max=0,f(x)min=﹣2.。