人教版八年级初二数学下学期勾股定理单元测试基础卷试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图,在23⨯的正方形网格中,AMB ∠的度数是( )
A .22.5°
B .30°
C .45°
D .60°
2.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于
,,D E 连接BD ,则CD 的长为( )
A .1
B .
54
C .
74
D .
254
3.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =5,AC =53,CB 的反向延长线上有一动点D ,以AD 为边在右侧作等边三角形,连CE ,CE 最短长为( )
A .5
B .53
C 53
D 53
4.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A 22d S d + B 2d S d - C .22d S d +
D .(
)
22
d S d +
5.已知一个直角三角形的两边长分别为1和2,则第三边长是( ) A .3
B 3
C 5
D 356.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()
A .22
B .32
C .62
D .82
7.已知,,a b c 是ABC ∆的三边,且满足2
2
2
()()0a b a b c ---=,则ABC ∆是( ) A .直角三角形 B .等边三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
8.如图,已知AB AC =,则数轴上C 点所表示的数为( )
A .3-
B .5-
C .13-
D .15-
9.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定
ABC 的形状是( )
A .直角三角形
B .等边三角形
C .等腰三角形
D .以上都不对
10.如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是( )
A .杨辉
B .刘徽
C .祖冲之
D .赵爽 二、填空题
11.如图,在△中,
,∠
90°,是
边的中点,是
边上一动
点,则
的最小值是__________.
12.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.
13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 14.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.
15.在ABC ∆中,10AB cm =,17AC cm =,BC 边上的高为8cm ,则ABC ∆的面积为______2cm .
16.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________. 17.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.
18.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.
19.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.
20.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =,点P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.
三、解答题
21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE
长;(2)∠BDC 的度数:(3)AC 的长.
22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
23.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .
(1)若∠AED =20°,则∠DEC = 度;
(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.
24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°
(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;
②当BE =3,CE =7时,求DE 的长;
(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长. 25.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .
(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;
②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;
(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.
26.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .
(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;
②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.
27.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .
(1)若OA =52,求点B 的坐标;
(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .
(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 1(2,2),P 2(2,22),P 3
(2+2,2﹣2),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)
28.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线
AB 于点H .
(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.
29.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.
(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.
(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段
AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.
30.阅读下列材料,并解答其后的问题:
我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S =
()()()()
a b c a b c a c b b c a +++-+-+-.
(1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;
(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(26+42)m ,BC =5m ,CD =7m ,AD =46m ,∠A =60°,求该块草地的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【分析】
连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解. 【详解】 连接AB
∵22125AM =+=22125AB =+=221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形 ∴45AMB ∠=︒ 故选C . 【点睛】
本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.
2.C
解析:C 【分析】
先根据勾股定理的逆定理证明△ABC 是直角三角形,根据垂直平分线的性质证得AD=BD ,由此根据勾股定理求出CD. 【详解】
∵AB=10,AC=8,BC=6,
∴2222228610AC BC AB +=+==, ∴△ABC 是直角三角形,且∠C=90°, ∵DE 垂直平分AB , ∴AD=BD ,
在Rt △BCD 中,222BD BC CD =+ ,
∴222
(8)6CD CD -=+,
解得CD=7
4
,
故选:C.
【点睛】
此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.
3.C
解析:C
【分析】
在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,易证△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此点E的轨迹是一条直线,过点C作CH⊥BE,则点H即为使得BE最小时的E点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.
【详解】
解:在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,
∵∠ACB=90°,∠ABC=60°,
∴△AB’B是等边三角形,
∴∠B’=∠B’AB=60°,AB’=AB,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠B’AD+∠DAB=∠DAB+∠BAE,
∴∠B’AD=∠BAE,
∴△AB’D≌△ABE(SAS),
∴∠ABE=∠B’=60°,
∴点E在直线BE上运动,
过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,
∠CBH=180°-∠ABC-∠ABE=60°,
∴∠BCH=30°,
∴BH=1
2
BC=
5
2
,
∴CH.
即BE.
故选C.
【点睛】
本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB 构造成等边三角形,通过全等证出∠ABC 是定值,即点E 的运动轨迹是直线是解决此题的关键.
4.D
解析:D 【解析】 【分析】
根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
【详解】
解:设直角三角形的两条直角边分别为x 、y , ∵斜边上的中线为d ,
∴斜边长为2d ,由勾股定理得,x 2+y 2=4d 2, ∵直角三角形的面积为S , ∴1
2
S xy =
,则2xy=4S ,即(x+y )2=4d 2+4S , ∴22x y d S +=+ ∴这个三角形周长为:(
)
22d S d ++ ,故选:D.
【点睛】
本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.
5.D
解析:D 【解析】
当一直角边、斜边为1和2时,第三边==;
当两直角边长为1和2时,第三边==
;
故选:D .
6.B
解析:B 【解析】
由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .
7.D
解析:D
【分析】
由(a-b )(a 2-b 2-c 2)=0,可得:a-b=0,或a 2-b 2-c 2=0,进而可得a=b 或a 2=b 2+c 2,进而判断△ABC 的形状为等腰三角形或直角三角形.
【详解】
解:∵(a-b )(a 2-b 2-c 2)=0,
∴a-b=0,或a 2-b 2-c 2=0,
即a=b 或a 2=b 2+c 2,
∴△ABC 的形状为等腰三角形或直角三角形.
故选:D .
【点睛】
本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形是等腰三角形,满足a 2+b 2=c 2的三角形是直角三角形.
8.D
解析:D
【分析】
根据勾股定理求出AB 的长,即为AC 的长,再根据数轴上的点的表示解答.
【详解】
由勾股定理得,AB ==
∴AC AB ==∵点A 表示的数是1
∴点C 表示的数是1-故选D.
【点睛】
本题考查了勾股定理、实数与数轴,熟记定理并求出AB 的长是解题的关键.
9.C
解析:C
【分析】
利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.
【详解】
解:由已知可得CD=BD=5,
22251213+=
即222BD AD AB +=,
ABD ∴是直角三角形,90ADB ∠=︒,
90
ADC
∴∠=︒
222
AD CD AC
∴+=
22
51213
AC
∴=+=
13
AB AC
∴==
故ABC是等腰三角形.
故选C
【点睛】
本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.
10.D
解析:D
【分析】
3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.
【详解】
由题意,可知这位伟大的数学家是赵爽.
故选D.
【点睛】
考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.
二、填空题
11.
【解析】如图,过点作⊥于点,延长到点,使,连接,交于点,连接,此时的值最小.连接,由对称性可知∠45°,,∴∠90°.根据勾股定理可得
.
12.(21009,0).
【分析】
根据等腰直角三角形的性质得到OA1=1,OA2=
1
2,OA3=2
2,
OA 4=()32,…OA 2019=()2018
2,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的
正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.
【详解】
∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 2=2,OA 3=(2)2,…,OA 2019=(2)2018,
∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,
∴2019÷8=252…3,
∴点A 2019在x 轴正半轴上.
∵OA 2019=(2)2018,
∴点A 2019的坐标为(()20182,0)即(21009,0).
故答案为:(21009,0).
【点睛】
本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征. 13.310或10
【详解】
分两种情况:
(1)顶角是钝角时,如图1所示:
在Rt △ACO 中,由勾股定理,得AO 2=AC 2-OC 2=52-32=16,
∴AO=4,
OB=AB+AO=5+4=9,
在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,
∴BC=310;
(2)顶角是锐角时,如图2所示:
在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,
∴AD=4,
DB=AB-AD=5-4=1.
在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,
∴BC=10;
综上可知,这个等腰三角形的底的长度为310或10.
【点睛】
本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.
14.75或6或9 4
【分析】
当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.
【详解】
在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,
∴BC=6(cm);
①当AB=BP=7.5cm时,如图1,t=7.5
2
=3.75(秒);
②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);
③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,
所以4t2=4.52+(4.5﹣2t)2,
解得:t=9
4
,
综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=9
4
.
故答案为:3.75或6或9
4
.
【点睛】
此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.
15.36或84
【分析】
过点A作AD⊥BC于点D,利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况分别求出BC的长度,然后根据三角形的面积公式列式计算即可得解.【详解】
解:过点A 作AD ⊥BC 于点D ,
∵BC 边上的高为8cm ,
∴AD=8cm ,
∵AC=17cm ,
由勾股定理得: 22221086BD AB AD =-=-=cm ,
222217815CD AC AD =-=-=cm ,
如图1,点D 在边BC 上时,
BC=BD+CD =6+15=21cm ,
∴△ABC 的面积=12BC AD =12
×21×8=84cm 2, 如图2,点D 在CB 的延长线上时,
BC= CD −BD =15−6=9cm ,
∴△ABC 的面积=
12BC AD =12
×9×8=36 cm 2, 综上所述,△ABC 的面积为36 cm 2或84 cm 2,
故答案为:36或84.
【点睛】
本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点是在于要分情况讨论.
16.1425+或825+【分析】
分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长.
【详解】
解:分两种情况考虑:
如图1所示,此时△ABC 为锐角三角形,
在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=
2222543AC AD -=-=,
∴BC=253+, ∴△ABC 的周长为:652531425+++=+;
如图2所示,此时△ABC 为钝角三角形,
在Rt △ABD 中,根据勾股定理得:22226425AB AD -=-= 在Rt △ACD 中,根据勾股定理得:2222543AC AD --=,
∴BC=253-, ∴△ABC 的周长为:65253825++=+
综合上述,△ABC 的周长为:145+85+
故答案为:145+825+
【点睛】
此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键.
17.
103
. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,
CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()2
3S NG NF =-,12310S S S ++=,即可得出答案.
【详解】
∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形
∴CG=NG ,CF=DG=NF
∴()2
222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =
()2
2232S NG NF NG NF NG NF =-=+-
∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =
故2103
S = 故答案为
103
. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.
18.
258
【分析】 先根据勾股定理求出AC 的长,再根据DE 垂直平分AC 得出FA 的长,根据相似三角形的判定定理得出△AFD ∽△CBA ,由相似三角形的对应边成比例即可得出结论.
【详解】
∵Rt △ABC 中,∠ABC=90°,AB=3,BC=4,∴=5;
∵DE 垂直平分AC ,垂足为F ,
∴FA=12AC=52
,∠AFD=∠B=90°, ∵AD ∥BC ,∴∠A=∠C ,
∴△AFD ∽△CBA , ∴AD AC =FA BC ,即AD 5=2.54,解得AD=258;故答案为258
. 【点睛】
本题考查的是勾股定理及相似三角形的判定与性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.
19.49
【分析】
先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.
【详解】
∵∠ACB=90︒,25AB = ,24AC =,
∴22222252449BC AB AC =-=-=,
∴阴影部分的面积=249BC =,
故答案为:49.
【点睛】
此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.
20.23或2或4
【分析】
根据题意画出图形,分4种情况进行讨论,利用含30°角直角三角形与勾股定理解答.
【详解】
解:如图1:
当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;
如图2:
当∠C=60°时,∠ABC=30°,
∵∠ABP=30°,
∴∠CBP=60°,
∴△PBC 是等边三角形,
∴23CP BC ==;
如图3:
当∠ABC=60°时,∠C=30°,
∵∠ABP=30°,
∴∠PBC=60°-30°=30°,
∴PC=PB , ∵23BC =, ∴222213,(23)(3)32
AB BC AC BC AB =
==-=-=, 在Rt △APB 中,根据勾股定理222AP AB BP +=, 即222()AC PC AB PC -+=, 即222(3)(3)PC PC -+=,解得2PC =,
如图4:
当∠ABC=60°时,∠C=30°,
∵∠ABP=30°, ∴∠PBC=60°+30°=90°,
∴12
BP PC = 在Rt △BCP 中,根据勾股定理222BP BC PC +=,
即222
1()(23)2PC PC +=,解得PC=4(已舍去负值).
综上所述,CP 的长为232或4.
故答案为:32或4.
【点睛】
本题考查含30°角直角三角形,等边三角形的性质和判定,勾股定理.理解直角三角形30°角所对边是斜边的一半,并能通过勾股定理去求另外一个直角边是解决此题的关键. 三、解答题
21.(132)150°;(313
【分析】
(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;
(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;
(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.
【详解】
解:(1)∵△ABC 和△EDC 都是等边三角形,
∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,
∴∠BCD =∠ACE ,
在△BCD 与△ACE 中,
∵BC =AC ,∠BCD =∠ACE ,CD =CE ,
∴△BCD ≌△ACE ,
∴AE =BD =3; (2)在△ADE 中,∵7,3,2AD AE DE =
==, ∴DE 2+AE 2=()()222237+==AD 2
, ∴∠AED =90°,
∵∠DEC =60°,
∴∠AEC =150°,
∵△BCD ≌△ACE ,
∴∠BDC =∠AEC =150°;
(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,
∵△CDE 是等边三角形,
∴PE =12DE =1,CP 22213-=,
∴AE =CP ,
在△AEG 与△CPG 中,
∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,
∴△AEG ≌△CPG ,
∴AG =CG ,PG =EG =12,
∴AG =()2
22211332AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG =13.
【点睛】
本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.
22.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米
【解析】
试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;
(2)构建直角三角形,然后根据购股定理列方程求解即可.
试题解析:(1)如图,∵AB=25米,BE=7米,
梯子距离地面的高度AE=22257-=24米.
答:此时梯子顶端离地面24米;
(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,
∴22CD CE -222520-,
∴DE=15﹣7=8(米),即下端滑行了8米.
答:梯子底端将向左滑动了8米.
23.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析
【分析】
(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;
(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;
(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.
【详解】
解:(1)∵AB =AC ,AE =AB ,
∴AB =AC =AE ,
∴∠ABE =∠AEB ,∠ACE =∠AEC ,
∵∠AED =20°,
∴∠ABE =∠AED =20°,
∴∠BAE=140°,且∠BAC=90°
∴∠CAE=50°,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,
∴∠DEC=∠AEC﹣∠AED=45°,
故答案为:45;
(2)猜想:∠AEC﹣∠AED=45°,
理由如下:∵∠AED=∠ABE=α,
∴∠BAE=180°﹣2α,
∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,
∴∠AEC﹣∠AED=45°;
(3)如图,过点C作CG⊥AH于G,
∵∠AEC﹣∠AED=45°,
∴∠FEH=45°,
∵AH⊥BE,
∴∠FHE=∠FEH=45°,
∴EF=FH,且∠EFH=90°,
∴EH2EF,
∵∠FHE=45°,CG⊥FH,
∴∠GCH=∠FHE=45°,
∴GC=GH,
∴CH2CG,
∵∠BAC=∠CGA=90°,
∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,
∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)
∴AF=CG,
∴CH2AF,
∵在Rt△AEF中,AE2=AF2+EF2,
2AF)2+2EF)2=2AE2,
∴EH2+CH2=2AE2.
【点睛】
本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.
24.(1)①见解析;②DE =
297;(2)DE 的值为 【分析】
(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;
(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.
【详解】
(1)①如图1中,
∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,
∴△BAE ≌△CAF ,
∴AE =AF ,∠BAE =∠CAF ,
∵∠BAC =90°,∠EAD =45°,
∴∠CAD +∠BAE =∠CAD +∠CAF =45°,
∴∠DAE =∠DAF ,
∵DA =DA ,AE =AF ,
∴△AED ≌△AFD (SAS );
②如图1中,设DE =x ,则CD =7﹣x .
∵AB =AC ,∠BAC =90°,
∴∠B =∠ACB =45°,
∵∠ABE =∠ACF =45°,
∴∠DCF =90°,
∵△AED ≌△AFD (SAS ),
∴DE =DF =x ,
∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,
∴x 2=(7﹣x )2+32,
∴x =297
, ∴DE =
297; (2)∵BD =3,BC =9,
∴分两种情况如下:
①当点E 在线段BC 上时,如图2中,连接BE .
∵∠BAC=∠EAD=90°,
∴∠EAB=∠DAC,
∵AE=AD,AB=AC,
∴△EAB≌△DAC(SAS),
∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,
∴∠EBD=90°,
∴DE2=BE2+BD2=62+32=45,
∴DE=35;
②当点D在CB的延长线上时,如图3中,连接BE.
同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,
∴DE2=EB2+BD2=144+9=153,
∴DE=317,
综上所述,DE的值为35或317.
【点睛】
本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.
25.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析
【分析】
(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明
△ACD≌△BCF;
②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;
(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.
【详解】
解:(1)①证明:由旋转可得CF=CD,∠DCF=90°
∵∠ACD=90°
∴∠ACD=∠BCF
又∵AC=BC
∴△ACD≌△BCF
②证明:连接EF,
由①知△ACD≌△BCF
∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD
∴∠EBF=90°
∴EF2=BE2+BF2,
∴EF2=BE2+AD2
又∵∠ACB=∠DCF=90°,∠CDE=45°
∴∠FCE=∠DCE=45°
又∵CD=CF,CE=CE
∴△DCE≌△FCE
∴EF=DE
∴DE2= AD2+BE2
⑵DE2=EB2+AD2+EB·AD
理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,
∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD
∵AC=BC,∠ACB=60°
∴∠CAB=∠CBA =60°
∴∠ABE=120°,∠EBF=60°,∠BFG=30°
∴BG=1
2
BF,
3
∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,
∴∠ECF=∠FCB+∠BCE=30°
∵CD=CF,CE=CE
∴△ECF≌△ECD
∴EF=ED
在Rt△EFG中,EF2=FG2+EG2
又∵EG=EB+BG
∴EG=EB+1
2 BF,
∴EF2=(EB+1
2
BF)2+(
3
2
BF)2
∴DE2=(EB+1
2
AD)2+(
3
2
AD)2
∴DE2=EB2+AD2+EB·AD
【点睛】
本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.
26.(1)见解析;(2)①见解析;②2.
【分析】
(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;
(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有
∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;
②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积
=1
2
BC CG
⋅,而BC和CG可得,问题即得解决.
【详解】
解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,
当D、E两点重合时,则AD=CD,∴
1
30
2
DBC ABC
∠=∠=︒,
∵CF CD
=,∴∠F=∠CDF,
∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,
∴∠CBD=∠F,∴BD DF
=;
(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,
过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,
∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,
∵AE CD =,CD=CF ,∴EH=CF ,
又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),
∴∠EBH =∠FEC ,EB=EF ,
∵BA=BC ,∠A =∠ACB =60°,AE=CD ,
∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,
∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;
②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,
∵EB=EF ,∴∠F =∠EBF =45°,
∵∠EBG =30°,BG =4,∴EG =2,BE 3
∴BF 226BE =232GF =,
过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形, ∴6BM ME MF ===
∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =266262CF ==
∴262312CN FN ===, ∴)
2323131GN GF FN CN =-=-==, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB , ∴62CG CF ==
∴△BCG 的面积=
116262222BC CG ⋅==. 故答案为:2.
【点睛】
本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.
27.(1)(5,0);(2)见解析;(3)①P(4,2),②满足△ACP与△BDC全等的点是P1、P2,P3.
理由见解析
【分析】
(1)由题意可以假设A(a,a)(a>0),根据AB2+OB2=OA2,构建方程即可解决问题;(2)由角平分线的性质定理证明CH=CF,CG=CF即可解决问题;
(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.只要证明
△ACP≌△CDB(SAS),△ABP是等腰直角三角形即可解决问题;
②根据SAS即可判断满足△ACP与△BDC全等的点是P1、P2,P3;
【详解】
解:(1)∵点A在射线y=x(x≥0)上,故可以假设A(a,a)(a>0),
∵AB⊥x轴,
∴AB=OB=a,即△ABO是等腰直角三角形,
∴AB2+OB2=OA2,
∴a2+a2=(52)2,
解得a=5,
∴点B坐标为(5,0).
(2)如图2中,作CF⊥x轴于F.
∵OC平分∠AOB,CH⊥OE,
∴CH=CF,
∵△AOB是等腰直角三角形,
∴∠AOB=45°,
∵BC∥OE,
∴∠CBG=∠AOB=45°,得到BC平分∠ABF,
∵CG⊥BA,CF⊥BF,
∴CG=CF,
∴CG=CH.
(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.
由(2)可知AC平分∠DAE,
∴∠DAC=1
2
∠DAE=
1
2
(180°﹣45°)=67.5°,
由OC平分∠AOB得到∠DOB=1
2
∠AOB=22.5°,
∴∠ADC=∠ODB=90°﹣22.5°=67.5°,
∴∠ADC=∠DAC=67.5°,
∴AC=DC,
∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,
∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,
∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,
在△ACP和△CDB中,
AC AD
ACP DB CP DB
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ACP≌△CDB(SAS),
∴∠CAP=∠DCB=22.5°,
∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,
∴AP=AB=OB=2,
∴P (4,2).
②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.
理由:如图4中,
由题意:AP 1=BD ,AC =CD ,∠CAP 1=∠CDB ,根据SAS 可得△CAP 1≌△CDB ; AP 2=BD ,AC =CD ,∠CAP 2=∠CDB ,根据SAS 可得△CAP 2≌△CDB ;
AC =CD ,∠ACP 3=∠BDC ,BD =CP 3根据SAS 可得△CAP 3≌△DCB ;
故答案为P 1、P 2,P 3.
【点睛】
本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
28.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为333.理由见解析.
【分析】
(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.
(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.
【详解】
(1)CF FH =
证明:延长DF 交AB 于点G
∵在ABC △中,90ACB ∠=︒,6AC BC ==,
∴45A B ∠=∠=︒
∵DF DE ⊥于点D ,且DE DF =,
∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.
∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,
∴135CEF FGH ∠=∠=︒,
∵点D 是AC 的中点,∴1
32
CD AD AC ==
=,∴CD DG = ∴CE FG = ∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒
∴DCF GFH ∠=∠
∴CEF FGH ≌
∴CF FH =;
(2)依然成立
理由:设AH ,DF 交于点G ,
由题意可得出:DF=DE ,
∴∠DFE=∠DEF=45°,
∵AC=BC ,
∴∠A=∠CBA=45°,
∵DF ∥BC ,
∴∠CBA=∠FGB=45°,
∴∠FGH=∠CEF=45°,
∵点D 为AC 的中点,DF ∥BC ,
∴DG=
12BC,DC=12
AC , ∴DG=DC ,
∴EC=GF ,
∵∠DFC=∠FCB ,
∴∠GFH=∠FCE ,
在△FCE 和△HFG 中 CEF FGH EC GF
ECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△FCE ≌△HFG(ASA),
∴HF=FC.
由(1)可知ABC △和CFH △均为等腰直角三角形
当他们面积相等时,6CF AC ==. ∴2233
DE DF CF CD ==-=
∴333CE DE DC =-=-
∴点E 与点C 之间的距离为333-.
【点睛】
本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.
29.(1),CM ME CM EM =⊥;(2)见解析;(3)25CM =
【解析】
【分析】
(1)证明ΔFME ≌ΔAMH ,得到HM=EM ,根据等腰直角三角形的性质可得结论. (2)根据正方形的性质得到点A 、E 、C 在同一条直线上,利用直角三角形斜边上的中线等于斜边的一半可知. (3)如图3中,连接EC ,EM ,由(1)(2)可知,△CME 是等腰直角三角形,利用等腰直角三角形的性质解决问题即可.
【详解】
解:(1)结论:CM =ME ,CM ⊥EM .
理由:∵AD ∥EF ,AD ∥BC ,
∴BC ∥EF ,
∴∠EFM =∠HBM ,
在△FME 和△BMH 中,
EFM MBH FM BM
FME BMH ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△FME ≌△BMH (ASA ),
∴HM =EM ,EF =BH ,
∵CD =BC ,
∴CE =CH ,∵∠HCE =90°,HM =EM ,
∴CM =ME ,CM ⊥EM .
(2)如图2,连接BD ,。