绥芬河市高中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绥芬河市高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. sin (﹣510°)=( )
A .
B .
C .﹣
D .﹣
2. 函数y=log 3|x ﹣1|的图象是( )
A .
B .
C .
D .
3. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )
A .0<
B .0
C .0
D .0
4. 函数y=x+xlnx 的单调递增区间是( ) A .(0,e ﹣2)
B .(e ﹣2,+∞)
C .(﹣∞,e ﹣2)
D .(e ﹣2,+∞)
5. 已知正方体的不在同一表面的两个顶点A (﹣1,2,﹣1),B (3,﹣2,3),则正方体的棱长等于( )
A .4
B .2
C .
D .2
6. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)
+(cos 2θ)
(θ∈R ),则(
+
)
•
的最小值是( )
A .1
B .﹣1
C .﹣2
D .0
7. 复数2
(2)i z i
-=(i 为虚数单位),则z 的共轭复数为( )
A .43i -+
B .43i +
C .34i +
D .34i -
【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.
8. 已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <1
2x ,x ≥1
若f (-6)+f (log 26)=9,则a 的值为( )
A .4
B .3
C .2
D .1
9. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0) D .(0,1)
10.下列命题中错误的是( )
A .圆柱的轴截面是过母线的截面中面积最大的一个
B .圆锥的轴截面是所在过顶点的截面中面积最大的一个
C .圆台的所有平行于底面的截面都是圆面
D .圆锥所有的轴截面是全等的等腰三角形
11.sin45°sin105°+sin45°sin15°=( )
A .0
B .
C .
D .1
12.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )
A.83 B .4 C.163
D .203
二、填空题
13.已知面积为
的△ABC 中,∠A=
若点D 为BC 边上的一点,且满
足
=
,则
当AD 取最小时,BD 的长为 .
14.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.
15.已知tan()3αβ+=,tan()24
π
α+
=,那么tan β= .
16.设是空间中给定的个不同的点,则使成立的点的个数有_________个.
17.设()x
x
f x e =
,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.
18.已知圆C 1:(x ﹣2)2+(y ﹣3)2=1,圆C 2:(x ﹣3)2+(y ﹣4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM|+|PN|的最小值 .
三、解答题
19.已知双曲线过点P (﹣
3,4),它的渐近线方程为y=
±x .
(1)求双曲线的标准方程;
(2)设F 1和F 2为该双曲线的左、右焦点,点P 在此双曲线上,且|PF 1||PF 2|=41,求∠F 1PF 2的余弦值.
20.已知函数f (x )的定义域为{x|x ≠k π,k ∈Z},且对定义域内的任意x ,y 都有f (x ﹣y )
=成立,且f (1)=1,当0<x <2时,f (x )>0. (1)证明:函数f (x )是奇函数;
(2)试求f (2),f (3)的值,并求出函数f (x )在[2,3]上的最值.
21.(本小题满分12分)若二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=, 且()01f =.
(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.
22.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位
(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率.
参考公式:2
2
()K ()()()()
n ad bc a b c d a c b d -=++++,()n a b c d =+++
【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力
23.(本小题满分12分) 已知函数2()x f x e ax bx =--.
(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2
x ∈时,()1f x <.
24.已知函数f (x )=|x ﹣5|+|x ﹣3|. (Ⅰ)求函数f (x )的最小值m ;
(Ⅱ)若正实数a ,b 足+=,求证:
+
≥m .
绥芬河市高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1.【答案】C
【解析】解:sin(﹣510°)=sin(﹣150°)=﹣sin150°=﹣sin30°=﹣,
故选:C.
2.【答案】B
【解析】解:当x﹣1≥0时,即x≥1时,函数y=log3(x﹣1),此时为增函数,
当x﹣1<0时,即x>1时,函数y=log3(1﹣x),此时为减函数,
故选:B
【点评】本题考查了复合函数的单调性和函数图象的识别,属于基础题.
3.【答案】D
【解析】解:∵A1B∥D1C,
∴CP与A1B成角可化为CP与D1C成角.
∵△AD1C是正三角形可知当P与A重合时成角为,
∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,
∴0<θ≤.
故选:D.
4.【答案】B
【解析】解:函数的定义域为(0,+∞)
求导函数可得f′(x)=lnx+2,令f′(x)>0,可得x>e﹣2,
∴函数f(x)的单调增区间是(e﹣2,+∞)
故选B.
5.【答案】A
【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),
∴AB 是正方体的体对角线,AB=,
设正方体的棱长为x ,
则,解得x=4.
∴正方体的棱长为4,
故选:A .
【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.
6. 【答案】 C
【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),
且sin 2θ+cos 2
θ=1,
∴=(1﹣cos 2θ)+(cos 2θ)=
+cos 2θ•(
﹣
),
即﹣
=cos 2θ•(
﹣
),
可得
=cos 2θ•
,
又∵cos 2
θ∈[0,1],∴P 在线段OC 上,
由于AB 边上的中线CO=2,
因此(+)•=2•,设|
|=t ,t ∈[0,2],
可得(+
)•
=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,
∴当t=1时,(
+
)•
的最小值等于﹣2.
故选C .
【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.
7. 【答案】A
【解析】根据复数的运算可知43)2()2(22
--=--=-=i i i i
i z ,可知z 的共轭复数为43z i =-+,故选A.
8. 【答案】
【解析】选C.由题意得log 2(a +6)+2log 26=9. 即log 2(a +6)=3,
∴a +6=23=8,∴a =2,故选C. 9. 【答案】C
【解析】解:由函数f (x )=3x +x 可知函数f (x )在R 上单调递增,
又f (﹣1)=﹣1<0,f (0)=30
+0=1>0,
∴f (﹣1)f (0)<0,
可知:函数f (x )的零点所在的区间是(﹣1,0).
故选:C.
【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.
10.【答案】B
【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.
∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.
对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为
,
∴截面三角形SAB的高为,∴截面面积
S==≤=.
故截面的最大面积为.故B错误.
对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.
对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.
故选:B.
【点评】本题考查了旋转体的结构特征,属于中档题.
11.【答案】C
【解析】解:sin45°sin105°+sin45°sin15°
=cos45°cos15°+sin45°sin15°
=cos(45°﹣15°)
=cos30°
=.
故选:C.
【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.
12.【答案】
【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面
为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=20
3
,故选D.
二、填空题
13.【答案】 .
【解析】解:AD 取最小时即AD ⊥BC 时,根据题意建立如图的平面直角坐标系, 根据题意,设A (0,y ),C (﹣2x ,0),B (x ,0)(其中x >0), 则
=(﹣2x ,﹣y ),
=(x ,﹣y ),
∵△ABC 的面积为,
∴⇒
=18,
∵
=
cos
=9,
∴﹣2x 2+y 2
=9,
∵AD ⊥BC ,
∴S=••
=⇒xy=3
,
由得:x=
,
故答案为:
.
【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.
14.【答案】
【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能
取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1, ∴m =
4.
答案:4 15.【答案】43
【解析】
试题分析:由1tan tan()24
1tan π
ααα++
=
=-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβα
αβα
+-=++
1
34313133-
=
=+⨯
. 考点:两角和与差的正切公式. 16.【答案】1
【解析】【知识点】平面向量坐标运算
【试题解析】设
设
,则
因为
,
所以,所以
因此,存在唯一的点M ,使成立。
故答案为: 17.【答案】
35
【解析】解析:本题考查几何概率的计算与切线斜率的计算.
001()x x k f x e
-'==
,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为2
3.
18.【答案】 5﹣4 .
【解析】解:如图,圆C 1关于x 轴的对称圆的圆心坐标A (2,﹣3),半径为1,圆C 2的圆心坐标(3,4),半径为3,
|PM|+|PN|的最小值为圆A 与圆C 2的圆心距减去两个圆的半径和,
即:﹣4=5
﹣4.
故答案为:5
﹣4.
【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.
三、解答题
19.【答案】
【解析】解:(1)设双曲线的方程为y2﹣x2=λ(λ≠0),
代入点P(﹣3,4),可得λ=﹣16,
∴所求求双曲线的标准方程为
(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,
又由双曲线的几何性质知|d1﹣d2|=2a=6,
∴d12+d22﹣2d1d2=36即有d12+d22=36+2d1d2=118,
又|F1F2|=2c=10,
∴|F1F2|2=100=d12+d22﹣2d1d2cos∠F1PF2
∴cos∠F1PF2=
【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求∠F1PF2的余弦值.着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题.
20.【答案】
【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.
又f(x﹣y)=,
所以f(﹣x)=f[(1﹣x)﹣1]===
===,
故函数f(x)奇函数.
(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]==,
令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,
∵f(x﹣2)==,
∴f(x﹣4)=,
则函数的周期是4.
先证明f (x )在[2,3]上单调递减,先证明当2<x <3时,f (x )<0, 设2<x <3,则0<x ﹣2<1,
则f (x ﹣2)=,即f (x )=﹣<0,
设2≤x 1≤x 2≤3,
则f (x 1)<0,f (x 2)<0,f (x 2﹣x 1)>0,
则f (x 1)﹣f (x 2)=,
∴f (x 1)>f (x 2),
即函数f (x )在[2,3]上为减函数,
则函数f (x )在[2,3]上的最大值为f (2)=0,最小值为f (3)=﹣1.
【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.
21.【答案】(1)()2
=+1f x x x -;(2)1m <-. 【解析】
试题分析:(1)根据二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,利用多项式相等,即可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为2
31m x x <-+,设
()2g 31x x x =-+,只需()min m g x <,即可而求解实数m 的取值范围.
试题解析:(1) ()()20f x ax bx c a =++≠ 满足()01,1f c ==
()()()()2
212,112f x f x x a x b x ax bx x +-=+++--=,解得1,1a b ==-,
故()2
=+1f x x x -.
考点:函数的解析式;函数的恒成立问题.
【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键. 22.【答案】
【解析】(Ⅰ)根据题中的数据计算:()2
2
4005017030150 6.2580320200200
⨯⨯-⨯K =
=⨯⨯⨯ 因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关 (Ⅱ)由已知得抽样比为
81
=8010
,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3a b c d e ,选取2人共有{},a b ,{},a c ,{},a d ,{},a e ,{},1a ,{},2a ,{},3a ,{},b c ,{},b d ,{},b e ,{},1b ,{},2b ,
{},3b ,{},c d ,{},c e ,{},1c ,{},2c ,{},3c ,{},d e ,{},1d ,{},2d ,{},3d ,{},1e ,{},2e ,{},3e ,{}1,2,{}1,3,{}2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所
求概率为189=2814
P =
. 23.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2
(,)4
e a ∈+∞时,有个公共
点;(2)证明见解析. 【解析】
试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x e a x
=,构造函数2()x
e h x x =,利用()'h x 求出
单调性可知()h x 在(0,)+∞的最小值2
(2)4
e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数
2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1
试题解析:
当2
(0,
)4
e
a ∈时,有0个公共点; 当2
4e a =,有1个公共点;
当2
(,)4
e a ∈+∞有2个公共点.
(2)证明:设2()1x h x e x x =---,则'()21x
h x e x =--,
令'
()()21x
m x h x e x ==--,则'
()2x
m x e =-,
因为1(,1]2x ∈,所以,当1[,ln 2)2
x ∈时,'
()0m x <;()m x 在1[,ln 2)2
上是减函数,
当(ln 2,1)x ∈时,'
()0m x >,()m x 在(ln 2,1)上是增函数,
考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.
【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 24.【答案】
【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)
当且仅当x∈[3,5]时取最小值2,…(3分)
∴m=2.…(4分)
(Ⅱ)证明:∵(+)[]≥()2=3,
∴(+)×≥()2,
∴+≥2.…(7分)
【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.。