高中数学 第二讲 参数方程 四 渐开线与摆线课前导引素材 新人教A版选修4-4
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四 渐开线与摆线
课前导引
问题导入
给出某渐开线的参数方程⎩
⎨⎧-=+=ϕϕϕϕϕϕcos 3sin 3,sin 3cos 3y x (φ为参数),根据参数方程可以看出该渐开线的基圆半径是_________,且当参数φ取2π时
,对应的曲线上的点的坐标是_______.
解析:与渐开线的参数方程对照,可知r=3,即基圆半径是3,然后把φ=2
π代入y,可得⎪⎩⎪⎨⎧==.
3,23y x π
故基圆半径是3,坐标为(2
3π,3). 上述问题即是生产实践和生活中一类常见曲线的方程.本节讨论圆的渐开线与摆线的参数方程.
知识预览
1.圆的摆线的参数方程是⎩
⎨⎧-=-=)cos 1(),sin (t a y t t a x (φ是参数). 2.圆的渐开线的参数方程是
⎩⎨⎧-=+=)
cos (sin ),sin (cos t t t a y t t t a x (t 是参数). 3.圆的摆线就是一个圆沿着一条定直线无滑动地滚动时圆周上一个定点的轨迹.
4.我们可以把一条没有弹性的绳子绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,那么铅笔画出的曲线就是圆的渐开线,相应的定圆叫做基圆(如图).。