山东省菏泽市曹县中考数学模拟试卷含答案解析
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【考点】反比例函数与一次函数的交点问题.
【分析】联立两函数解析式消去y可得x2﹣bx+1=0,由直线y=﹣x+b与反比例函数y= 的图象有2个公共点,得到方程x2﹣bx+1=0有两个不相等的实数根,根据根的判别式可得结果.
【解答】解:解方程组 得:x2﹣bx+1=0,
∵直线y=﹣x+b与反比例函数y= 的图象有2个公共点,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故选C.
6.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于( )
A.50° B.80° C.100° D.130°
【考点】圆周角定理.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
山东省菏泽市曹县中考数学模拟试卷
【分析】首先在 上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.
【解答】解:如图,在优弧 上取点D,连接AD,CD,
∵∠AOC=100°,
∴∠ADC= ∠AOC=50°,
∴∠ABC=180°﹣∠ADC=130°.
故选D.
7.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是( )
A.向左平移1个单位,再向上平移2个单位
B.向左平移1个单位,再向下平移2个单位
C.向右平移1个单位,再向上平移2个单位
D.向右平移1个单位,再向下平移2个单位
【考点】二次函数图象与几何变换.
【分析】原抛物线顶点坐标为(﹣1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.
【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),
A.50° B.80° C.100° D.130°
7.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是( )
A.向左平移1个单位,再向上平移2个单位
B.向左平移1个单位,再向下平移2个单位
C.向右平移1个单位,再向上平移2个单位
D.向右平移1个单位,再向下平移2个单位
8.在平面直角坐标系中,直线y=﹣x+2与反比例函数y= 的图象有唯一公共点,若直线y=﹣x+b与反比例函数y= 的图象有2个公共点,则b的取值范围是( )
【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;
B、a3与a2不是同类项,不能合并,故本选项错误;
C、应为a3•a2=a5,故本选项错误;
D、a3÷a2=a,正确.
故选D.
2.一元二次方程4x2+1=4x的根的情况是( )
A.没有实数根 B.只有一个实数根
C.有两个相等的实数根 D.有两个不相等的实数根
【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,
则AE=BE= AB=2,DF=CF= CD=2,
在Rt△OBE中,∵OB= ,BE=2,
∴OE= =1,
同理可得OF=1,
∵AB⊥CD,
∴四边形OEPF为矩形,
而OE=OF=1,
∴四边形OEPF为正方形,
∴OP= OE= .
故选B.
C.△ABC是等腰直角三角形 D.当x>0时,y随x增大而增大
二、填空题(本大题共5小题,每小题3分,共15分)
11.如图,菱形ABCD的边长为15,sin∠BAC= ,则对角线AC的长为.
12.已知A(﹣1,m)与B(2,m﹣3)是反比例函数 图象上的两个点.则m的值.
13.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为.
∴AC⊥BD,
在Rt△AOB中,
∵AB=15,sin∠BAC= ,
∴sin∠BAC= = ,
∴BO=9,
∴AB2=OB2+AO2,
∴AO= = =12,
∴AC=2AO=24,
故答案为24.
12.已知A(﹣1,m)与B(2,m﹣3)是反比例函数 图象上的两个点.则m的值2.
【考点】反比例函数图象上点的坐标特征.
A.35° B.40° C.50° D.65°
【考点】旋转的性质.
【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.
【解答】解:∵CC′∥AB,
∴∠ACC′=∠CAB=65°,
14.如图,在直角坐标系中,直线y=6﹣x与y= (x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为、.
15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是.
A.平行四边形 B.矩形 C.菱形 D.正方形
5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
A.35° B.40° C.50° D.65°
6.如图A,B,C是⊙O上的三个点,若∠AOCห้องสมุดไป่ตู้100°,则∠ABC等于( )
参考答案与试题解析
一、选择题(本题共10个小题,每小题3分,共30分)
1.下列计算正确的是( )
A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a
【考点】同底数幂的除法;合并同类项;同底数幂的乘法.
【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.
∴OC= AB= A′B′=OC′,
∴当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,
∴滑动杆的中点C所经过的路径是一段圆弧.
故选B.
4.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
【考点】旋转对称图形.
10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( )
A.点C的坐标是(0,1) B.线段AB的长为2
C.△ABC是等腰直角三角形 D.当x>0时,y随x增大而增大
【考点】抛物线与x轴的交点;二次函数的性质.
【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.
三、解答题(本大题共6小题,共55分)
16.计算:( )﹣2﹣(π﹣ )0+| ﹣2|+4sin60°.
17.先化简,再求值: ,其中 .
18.小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?
19.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.
∴方程x2﹣bx+1=0有两个不相等的实数根,
∴△=b2﹣4>0,
∴b>2,或b<﹣2,
故选C.
9.如图,在半径为 的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为( )
A.1 B. C.2 D.2
【考点】垂径定理;勾股定理.
【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE= AB=2,DF=CF= CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP= OE= .
A.直线的一部分 B.圆的一部分
C.双曲线的一部分 D.抛物线的一部分
【考点】轨迹;直角三角形斜边上的中线.
【分析】根据直角三角形斜边上的中线等于斜边的一半得到OC= AB= A′B′=OC′,从而得出滑动杆的中点C所经过的路径是一段圆弧.
【解答】解:连接OC、OC′,如图,
∵∠AOB=90°,C为AB中点,
A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2
9.如图,在半径为 的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为( )
A.1 B. C.2 D.2
10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( )
A.点C的坐标是(0,1) B.线段AB的长为2
【分析】根据反比例函数中k=xy的特点进行解答即可.
【解答】解:∵A(﹣1,m)与B(2,m﹣3)是反比例函数 图象上的两个点,
∴(﹣1)×m=2×(m﹣3),解得m=2.
故答案为:2.
13.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为(﹣5,4).
【考点】坐标与图形变化﹣旋转.
求证:AB=AF.
20.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,
(1)求证:四边形AEBD是菱形;
(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.
21.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.
【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;
B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;
C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;
D,当x>0时,y随x增大而减小,错误.
故选D.
二、填空题(本大题共5小题,每小题3分,共15分)
3.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是( )
A.直线的一部分 B.圆的一部分
C.双曲线的一部分 D.抛物线的一部分
4.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )
山东省菏泽市曹县中考数学模拟试卷
一、选择题(本题共10个小题,每小题3分,共30分)
1.下列计算正确的是( )
A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a
2.一元二次方程4x2+1=4x的根的情况是( )
A.没有实数根 B.只有一个实数根
C.有两个相等的实数根 D.有两个不相等的实数根
则平移的方法可以是:将抛物线y=x2+2x+3向右移1个单位,再向下平移2个单位.
故选:D.
8.在平面直角坐标系中,直线y=﹣x+2与反比例函数y= 的图象有唯一公共点,若直线y=﹣x+b与反比例函数y= 的图象有2个公共点,则b的取值范围是( )
A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2
11.如图,菱形ABCD的边长为15,sin∠BAC= ,则对角线AC的长为24.
【考点】菱形的性质;解直角三角形.
【分析】连接BD,交AC与点O,首先根据菱形的性质可知AC⊥BD,解三角形求出BO的长,利用勾股定理求出AO的长,即可求出AC的长.
【解答】解:连接BD,交AC与点O,
∵四边形ABCD是菱形,
【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.
【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.
故选D.
5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
【考点】根的判别式.
【分析】先求出△的值,再判断出其符号即可.
【解答】解:原方程可化为:4x2﹣4x+1=0,
∵△=42﹣4×4×1=0,
∴方程有两个相等的实数根.
故选C.
3.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是( )
【分析】联立两函数解析式消去y可得x2﹣bx+1=0,由直线y=﹣x+b与反比例函数y= 的图象有2个公共点,得到方程x2﹣bx+1=0有两个不相等的实数根,根据根的判别式可得结果.
【解答】解:解方程组 得:x2﹣bx+1=0,
∵直线y=﹣x+b与反比例函数y= 的图象有2个公共点,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故选C.
6.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于( )
A.50° B.80° C.100° D.130°
【考点】圆周角定理.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
山东省菏泽市曹县中考数学模拟试卷
【分析】首先在 上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.
【解答】解:如图,在优弧 上取点D,连接AD,CD,
∵∠AOC=100°,
∴∠ADC= ∠AOC=50°,
∴∠ABC=180°﹣∠ADC=130°.
故选D.
7.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是( )
A.向左平移1个单位,再向上平移2个单位
B.向左平移1个单位,再向下平移2个单位
C.向右平移1个单位,再向上平移2个单位
D.向右平移1个单位,再向下平移2个单位
【考点】二次函数图象与几何变换.
【分析】原抛物线顶点坐标为(﹣1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.
【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),
A.50° B.80° C.100° D.130°
7.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是( )
A.向左平移1个单位,再向上平移2个单位
B.向左平移1个单位,再向下平移2个单位
C.向右平移1个单位,再向上平移2个单位
D.向右平移1个单位,再向下平移2个单位
8.在平面直角坐标系中,直线y=﹣x+2与反比例函数y= 的图象有唯一公共点,若直线y=﹣x+b与反比例函数y= 的图象有2个公共点,则b的取值范围是( )
【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;
B、a3与a2不是同类项,不能合并,故本选项错误;
C、应为a3•a2=a5,故本选项错误;
D、a3÷a2=a,正确.
故选D.
2.一元二次方程4x2+1=4x的根的情况是( )
A.没有实数根 B.只有一个实数根
C.有两个相等的实数根 D.有两个不相等的实数根
【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,
则AE=BE= AB=2,DF=CF= CD=2,
在Rt△OBE中,∵OB= ,BE=2,
∴OE= =1,
同理可得OF=1,
∵AB⊥CD,
∴四边形OEPF为矩形,
而OE=OF=1,
∴四边形OEPF为正方形,
∴OP= OE= .
故选B.
C.△ABC是等腰直角三角形 D.当x>0时,y随x增大而增大
二、填空题(本大题共5小题,每小题3分,共15分)
11.如图,菱形ABCD的边长为15,sin∠BAC= ,则对角线AC的长为.
12.已知A(﹣1,m)与B(2,m﹣3)是反比例函数 图象上的两个点.则m的值.
13.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为.
∴AC⊥BD,
在Rt△AOB中,
∵AB=15,sin∠BAC= ,
∴sin∠BAC= = ,
∴BO=9,
∴AB2=OB2+AO2,
∴AO= = =12,
∴AC=2AO=24,
故答案为24.
12.已知A(﹣1,m)与B(2,m﹣3)是反比例函数 图象上的两个点.则m的值2.
【考点】反比例函数图象上点的坐标特征.
A.35° B.40° C.50° D.65°
【考点】旋转的性质.
【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.
【解答】解:∵CC′∥AB,
∴∠ACC′=∠CAB=65°,
14.如图,在直角坐标系中,直线y=6﹣x与y= (x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为、.
15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是.
A.平行四边形 B.矩形 C.菱形 D.正方形
5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
A.35° B.40° C.50° D.65°
6.如图A,B,C是⊙O上的三个点,若∠AOCห้องสมุดไป่ตู้100°,则∠ABC等于( )
参考答案与试题解析
一、选择题(本题共10个小题,每小题3分,共30分)
1.下列计算正确的是( )
A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a
【考点】同底数幂的除法;合并同类项;同底数幂的乘法.
【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.
∴OC= AB= A′B′=OC′,
∴当端点A沿直线AO向下滑动时,AB的中点C到O的距离始终为定长,
∴滑动杆的中点C所经过的路径是一段圆弧.
故选B.
4.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
【考点】旋转对称图形.
10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( )
A.点C的坐标是(0,1) B.线段AB的长为2
C.△ABC是等腰直角三角形 D.当x>0时,y随x增大而增大
【考点】抛物线与x轴的交点;二次函数的性质.
【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.
三、解答题(本大题共6小题,共55分)
16.计算:( )﹣2﹣(π﹣ )0+| ﹣2|+4sin60°.
17.先化简,再求值: ,其中 .
18.小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?
19.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.
∴方程x2﹣bx+1=0有两个不相等的实数根,
∴△=b2﹣4>0,
∴b>2,或b<﹣2,
故选C.
9.如图,在半径为 的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为( )
A.1 B. C.2 D.2
【考点】垂径定理;勾股定理.
【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE= AB=2,DF=CF= CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP= OE= .
A.直线的一部分 B.圆的一部分
C.双曲线的一部分 D.抛物线的一部分
【考点】轨迹;直角三角形斜边上的中线.
【分析】根据直角三角形斜边上的中线等于斜边的一半得到OC= AB= A′B′=OC′,从而得出滑动杆的中点C所经过的路径是一段圆弧.
【解答】解:连接OC、OC′,如图,
∵∠AOB=90°,C为AB中点,
A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2
9.如图,在半径为 的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为( )
A.1 B. C.2 D.2
10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( )
A.点C的坐标是(0,1) B.线段AB的长为2
【分析】根据反比例函数中k=xy的特点进行解答即可.
【解答】解:∵A(﹣1,m)与B(2,m﹣3)是反比例函数 图象上的两个点,
∴(﹣1)×m=2×(m﹣3),解得m=2.
故答案为:2.
13.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为(﹣5,4).
【考点】坐标与图形变化﹣旋转.
求证:AB=AF.
20.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,
(1)求证:四边形AEBD是菱形;
(2)如果OA=3,OC=2,求出经过点E的反比例函数解析式.
21.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.
【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;
B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;
C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;
D,当x>0时,y随x增大而减小,错误.
故选D.
二、填空题(本大题共5小题,每小题3分,共15分)
3.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是( )
A.直线的一部分 B.圆的一部分
C.双曲线的一部分 D.抛物线的一部分
4.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )
山东省菏泽市曹县中考数学模拟试卷
一、选择题(本题共10个小题,每小题3分,共30分)
1.下列计算正确的是( )
A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a
2.一元二次方程4x2+1=4x的根的情况是( )
A.没有实数根 B.只有一个实数根
C.有两个相等的实数根 D.有两个不相等的实数根
则平移的方法可以是:将抛物线y=x2+2x+3向右移1个单位,再向下平移2个单位.
故选:D.
8.在平面直角坐标系中,直线y=﹣x+2与反比例函数y= 的图象有唯一公共点,若直线y=﹣x+b与反比例函数y= 的图象有2个公共点,则b的取值范围是( )
A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2
11.如图,菱形ABCD的边长为15,sin∠BAC= ,则对角线AC的长为24.
【考点】菱形的性质;解直角三角形.
【分析】连接BD,交AC与点O,首先根据菱形的性质可知AC⊥BD,解三角形求出BO的长,利用勾股定理求出AO的长,即可求出AC的长.
【解答】解:连接BD,交AC与点O,
∵四边形ABCD是菱形,
【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.
【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.
故选D.
5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )
【考点】根的判别式.
【分析】先求出△的值,再判断出其符号即可.
【解答】解:原方程可化为:4x2﹣4x+1=0,
∵△=42﹣4×4×1=0,
∴方程有两个相等的实数根.
故选C.
3.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C所经过的路径是( )