河北省衡水中学高三等差数列复习专题doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸
D .二丈二尺五寸
2.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200
B .100
C .90
D .80
3.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7
B .12
C .14
D .21
4.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-
B .8
C .12
D .14
5.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72
B .90
C .36
D .45
6.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
825
两 B .
845两 C .
865两 D .
88
5两 7.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -
B .
3
22
n - C .
3122
n - D .
3122
n + 8.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个
9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161
B .155
C .141
D .139
10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121
B .161
C .141
D .151
11.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3
余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项
B .133项
C .134项
D .135项
12.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .
1
2
尺布 B .
5
18
尺布 C .
16
31
尺布 D .
16
29
尺布 13.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21
B .15
C .10
D .6
14.已知数列{}n a 满足25111,,25
a a a ==且
*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19
B .20
C .21
D .22
15.设等差数列{}n a 的前n 和为n S ,若(
)*
111,m m a a a m m N +-<<->∈,则必有( )
A .0m S <且10m S +>
B .0m S >且10m S +>
C .0m S <且10m S +<
D .0m S >且10m S +< 16.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
17.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .
3
2
B .
92
C .2
D .9
18.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019
B .4040
C .2020
D .4038
19.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( ) A .10
B
C .64
D .4
20.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11
B .12
C .23
D .24
二、多选题
21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}
F n ,则(){}
F n 的通项公式为( )
A.
(1)1 ()
2
n n F n
-+
=
B.()()()
11,2
F n F n F n n
+=+-≥且()()
11,21
F F
==
C.()
1515
5
n n
F n
⎡⎤
⎛⎫⎛⎫
+-
⎢⎥
=-
⎪ ⎪
⎪ ⎪
⎢⎥
⎝⎭⎝⎭
⎣⎦
D.()
1515
22
5
n n
F n
⎡⎤
⎛⎫⎛⎫
+-
⎢⎥
=+
⎪ ⎪
⎪ ⎪
⎢⎥
⎝⎭⎝⎭
⎣⎦
22.已知数列{}n a满足:12
a=,当2
n≥时,()2
1
212
n n
a a
-
=++-,则关于数列
{}
n
a的说法正确的是()
A.27
a=B.数列{}n a为递增数列
C.221
n
a n n
=+-D.数列{}n a为周期数列
23.设数列{}n a满足1
1
2
a
<<,()
1
ln2
n n n
a a a
+
=+-对任意的*
n N
∈恒成立,则下列说法正确的是()
A.
2
1
1
2
a
<<B.{}n a是递增数列
C.
2020
3
1
2
a
<<D.
2020
3
1
4
a
<<
24.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n∈N*),数列{a n}满足a1=a2=1,a n=a n-1+a n-2 (n≥3).再将扇形面积设为b n (n∈N*),则()
A.4(b2020-b2019)=πa2018·a2021B.a1+a2+a3+…+a2019=a2021-1
C.a12+a22+a32…+(a2020)2=2a2019·a2021D.a2019·a2021-(a2020)2+a2018·a2020-(a2019)2=0
25.(多选题)已知数列{}n a 中,前n 项和为n S ,且2
3n n n S a +=,则1
n n a a -的值不可能为
( ) A .2
B .5
C .3
D .4
26.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54
C .S 2020=a 2022-1
D .a 1+a 3+a 5+…+
a 2021=a 2022
27.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤
D .当且仅当0n
S <时,26n ≥
28.数列{}n a 满足11,121
n
n n a a a a +=
=+,则下列说法正确的是( ) A .数列1n a ⎧⎫
⎨
⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨
⎬⎩⎭
的前n 项和2
n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列
29.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a > B .数列1n a ⎧⎫
⎨⎬⎩⎭
是递增数列
C .0n
S <时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨
⎬⎩⎭
中最小项为第7项 30.无穷数列{}n a 的前n 项和2
n S an bn c =++,其中a ,b ,c 为实数,则( )
A .{}n a 可能为等差数列
B .{}n a 可能为等比数列
C .{}n a 中一定存在连续三项构成等差数列
D .{}n a 中一定存在连续三项构成等比数列
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题
1.D 【分析】
由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为
985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差
数列性质求得后5项和. 【详解】
由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和, 则()
19959985.52
a a S a +=
==(尺),所以59.5a =(尺),由题知
1474331.5a a a a ++==(尺),
所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D . 2.C 【分析】
先求得1a ,然后求得10S . 【详解】
依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 3.C 【分析】
判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】
∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()
1422
a a a a S ++===. 故选:C 4.D 【分析】
利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】
147446=32a a a a a ++=∴=,则()
177477142
a a S a +=
== 故选:D 5.B
【分析】
由题意结合248,,a a a 成等比数列,有2
444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】
由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,
∴2
444(4)(8)a a a =-+,解之得48a =,
∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,
∴99(229)
902
S ⨯+⨯=
=,
故选:B 【点睛】
思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2
k m n a a a =; 2、等差数列前n 项和公式1()
2
n n n a a S +=的应用. 6.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
8106
100
a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式.
7.C 【分析】
根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】
因为数列{}n a 为等差数列,11a =,34a =, 则公差为313
22
a a d -=
=, 因此通项公式为()331
11222
n a n n =+-=-. 故选:C. 8.B 【分析】
设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得
728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断
D . 【详解】
设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;
所以7710217022128S d =⨯+≤-⨯=,B 错误;
1(1)10(1)0n a a n d n d =+-=+-≥,解得10
1n d
≤-
+,11100n a a nd nd +=+=+≤,解得10n d
≥-, 所以1010
1n d d
-
≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,
当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】
关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由10
n n a a +≥⎧⎨≤⎩求得.
9.B 【分析】
画出图形分析即可列出式子求解. 【详解】
所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:
由图可得:3612107y x y -=⎧⎨-=⎩ ,解得155
48x y =⎧⎨=⎩
.
故选:B. 10.B 【分析】
由条件可得127a =,然后231223S a =,算出即可. 【详解】
因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即
127a =
所以231223161S a == 故选:B 11.D 【分析】
由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】
被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则
()8151157n a n n =+-=-,令1572020n a n =-≤,解得:2
135
15
n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】
关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.D 【分析】
设该女子第()
N n n *∈尺布,前()
N n n *
∈天工织布n S 尺,则数列{}n a 为等差数列,设其公
差为d ,根据15a =,30390S =可求得d 的值. 【详解】
设该女子第()
N n n *∈尺布,前()
N n n *
∈天工织布n S 尺,则数列{}n a 为等差数列,设其公
差为d ,
由题意可得30130293015015293902
S a d d ⨯=+=+⨯=,解得16
29d =.
故选:D. 13.C 【分析】
根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为134222a a a a +=⎧⎨
-=⎩,所以1222
22a d d +=⎧⎨=⎩
,所以101a d =⎧⎨=⎩,
所以5154
550101102
S a d ⨯=+=⨯+⨯=, 故选:C. 14.B 【分析】
由等差数列的性质可得数列1n a ⎧⎫
⎨⎬
⎩⎭
为等差数列,再由等差数列的通项公式可得1n n a ,进
而可得1
n a n
=,再结合基本不等式即可得解. 【详解】
因为*
121210,n n n n a a a ++-+=∈N ,所以12
211n n n a a a ++=+, 所以数列1n a ⎧⎫
⎨⎬⎩⎭
为等差数列,设其公差为d ,
由25111,25
a a a ==可得25112,115a a a ==⋅, 所以11
11
2
1145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111
a d ⎧=⎪⎨⎪=⎩,
所以
()1111n n d n a a =+-=,所以1n a n
=,
所以不等式100n n a a +≥即100
n a n
+≥对任意的*n N ∈恒成立,
又10020n n +
≥=,当且仅当10n =时,等号成立,
所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】
关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 15.D 【分析】
由等差数列前n 项和公式即可得解. 【详解】
由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()
02
m m m a a S ++++=<. 故选:D. 16.C 【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列,
则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C 17.A 【分析】
由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】
设公差为d ,则42363
4222a a d --=
==--, 所以5433322
a a d =+=-=. 故选:A 18.B 【分析】
由等差数列的性质可得52012016024a a a a +==+,则
()15202020
202016202010102
a a a a S +=
⨯=⨯+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+
()12020
202052016202010104101040402
a a a a S +=
==⨯=+⨯⨯ 故选:B 19.D 【分析】
利用等差中项法可知,数列{}
3n a 为等差数列,根据11a =,22a =可求得数列{}
3
n a 的公
差,可求得3
10a 的值,进而可求得10a 的值. 【详解】
对*n N ∀∈都有3
3
3
122n n n a a a ++=+,由等差中项法可知,数列{}
3
n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33
217d a a =-=,
所以,33
101919764a a d =+=+⨯=,因此,104a .
故选:D. 20.C 【分析】
由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】
32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,
故选:C.
二、多选题
21.BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……,
显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,
,
()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且
()()11,21F F ==,即B 满足条件;
由()()()11,2F n F n F n n +=+-≥,
所以()()()()11F n n F n n ⎤+-
=--⎥⎣⎦
所以数列(
)()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭
是以
12+
为首项,12+为公比的等比数列, 所以(
)(
)1n
F n n +-=⎝⎭
11515()n F F n n -
+=++, 令
1
n
n n F b
-=
⎝⎭
,则11n n b +=
+,
所以1
n n b b +=-
, 所以n b
⎧⎪
⎨⎪⎪⎩⎭
的等比数列,
所以
1
n n b -
+,
所以()11
15n n n n
F n --⎤
⎤
⎛⎫
+⎥⎥=+=
- ⎪
⎪⎥⎥⎝⎭⎝⎭⎝⎭
⎝
⎭⎝⎭⎣⎦
⎣⎦
; 即C 满足条件; 故选:BC 【点睛】
考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题. 22.ABC 【分析】
由)
2
12n a =
-
1=,再利用等差数列的定义求
得n a ,然后逐项判断. 【详解】 当2n
≥时,由)
2
12n a
=-,
得)
2
21n a +=
,
1=,又12a =, 所以
是以2为首项,以1为公差的等差数列,
2(1)11n n =+-⨯=+,
即2
21n a n n =+-,故C 正确;
所以27a =,故A 正确;
()2
12n a n =+-,所以{}n a 为递增数列,故正确;
数列{}n a 不具有周期性,故D 错误; 故选:ABC 23.ABD 【分析】
构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】
由()1ln 2n n n a a a +=+-,1102
a << 设()()ln 2f x x x =+-, 则()11122x
f x x x
-'=-
=--, 所以当01x <<时,0f x
,
即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭
为单调递增函数, 即()()102f f x f ⎛⎫<<
⎪⎝⎭
,
即()131
ln 2ln ln 1222
f x <<<+<+=, 所以()1
12
f x << , 即
1
1(2)2
n a n <<≥, 所以
2112a <<,20201
12
a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,
1
12
n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 231
32131113ln(2)ln ln 222234
a a a e =+->+>+=+> 因此20202020333
144
a a a ∴<><>,故D 正确 故选:ABD 【点睛】
本题考查了数列性质的综合应用,属于难题. 24.ABD 【分析】
对于A ,由题意得b n =
4
πa n 2
,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】
由题意得b n =
4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4π
a 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·
a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;
数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n
-1
2
=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+
(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;
由题意a n -1=a n -a n -2,则a 2019·
a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】
此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 25.BD 【分析】 利用递推关系可得12
11
n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵2
3
n n n S a +=
, ∴2n ≥时,1121
33
n n n n n n n a S S a a --++=-=-, 化为:
112
111
n n a n a n n -+==+--, 由于数列21n ⎧⎫
⎨
⎬-⎩⎭
单调递减, 可得:2n =时,
2
1
n -取得最大值2.
∴
1
n
n a a -的最大值为3. 故选:BD . 【点睛】
本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 26.BCD 【分析】
由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】
对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++
++++++n n n a a a a a a a a a a a a a a +-=----
即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,
()()()135202124264202220202022+++
+++++a a a a a a a a a a a a =---=,故D 正确.
故选:BCD. 【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解. 27.AB 【分析】
根据等差数列的性质及717S S =可分析出结果. 【详解】
因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,
又10a >,
所以12130,0a a ><,
所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()
2502
a a S a +==<,故D 错误, 故选:AB 【点睛】
关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到
12130,0a a ><,考查学生逻辑推理能力.
28.ABD 【分析】 首项根据11,121n n n a a a a +=
=+得到
1112n n a a +-=,从而得到1n a ⎧⎫
⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,再依次判断选项即可.
【详解】
对选项A ,因为121
n
n n a a a +=+,11a =, 所以
121112n n n n a a a a ++==+,即1112n n
a a +-= 所以1n a ⎧⎫
⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,故A 正确.
对选项B ,由A 知:
1121
21n
n n a
数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项和()21212n n n S n +-==,故B 正确.
对选项C ,因为1
21n n a =-,所以121
n a n =-,故C 错误. 对选项D ,因为1
21
n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】
本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题. 29.ACD 【分析】 由已知得()
()612112712+12+2
2
0a a a a S ==
>,又70a <,所以6>0a ,可判断A ;由已知
得出24
37
d -
<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n a 在1,6n n N
上单调递增,1
n
a 在
7n
n N ,
上单调递增,可判断B ;由()
313117
713+12
2
03213a a a S a ⨯=
=<=
,可判断C ;判断 n a ,n S 的符号, n a 的单调性
可判断D ; 【详解】
由已知得311+212,122d a a a d ===-,()
()612112712+12+2
2
0a a a a S =
=
>,又
70a <,所以6>0a ,故A 正确;
由716167
1+612+40+512+3>0+2+1124+7>0
a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得24
37d -<<-,又()()3+312+3n a n d n d a =-=-,
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又
()11
12+3n a n d
=-,所以[]1,6n ∈时,1>0n
a ,7n ≥时,1
0n a <,
所以
1
n
a 在1,6n n N
上单调递增,
1
n
a 在7n n N ,上单调递增,所
以数列1n a ⎧⎫
⎨
⎬⎩⎭
不是递增数列,故B 不正确; 由于()
313117
713+12
2
03213a a a S a ⨯=
=<=
,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,
0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,
0n
n
S a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项,故D 正确; 【点睛】
本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 30.ABC 【分析】
由2
n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.
【详解】
当1n =时,11a S a b c ==++.
当2n ≥时,()()2
21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .
所以若{}n a 是等差数列,则0.a b a b c c +=++∴=
所以当0c 时,{}n a 是等差数列, 0
a c
b ==⎧⎨≠⎩时是等比数列;当0
c ≠时,{}n a 从第二
项开始是等差数列. 故选:A B C 【点睛】
本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.。