高一抛体运动单元测试卷 (word版,含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第五章抛体运动易错题培优(难)
1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。

则可以求出的物理量是()
A.α的值
B.小球的初速度v0
C.小球在空中运动时间
D.小球初动能
【答案】A
【解析】
【分析】
【详解】
设初速度v0与竖直方向夹角β,则β=90°−α(1);
由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。

A点抛出时:
sin
x
v vβ
=(2)
10
cos
y
v vβ
=(3)
2
1
12
y
v
y
g
=(4)
小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0
sin
x
v vβ
=不变,斜面倾角θ=45°,
20
tan45sin
y x x
v v v vβ
===(5)
2
2
22
y
y
y
g
=(6)
()
222
12
cos sin
2
v
y y y
g
ββ
-
∆=-=(7),
平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:
()111
111tan 90222tan y x v y x v ββ
==-=(8) 由(8)变形化解:
2
011cos sin 2tan v x y g
ββ
β==(9)
同理,Ⅱ中水平位移为:
22022sin 2tan 45v x y g
β
==(10)
()
2012sin sin cos v x x x g
βββ+=+=
总(11) =tan45y
x ∆总

=y x ∆总

2sin sin cos βββ-=-(12)
由此得
1
tan 3
β=
19090arctan 3
αβ=-=-
故可求得α的值,其他选项无法求出; 故选:A 。

2.如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度
A .大小和方向均不变
B .大小不变,方向改变
C .大小改变,方向不变
D .大小和方向均改变 【答案】A 【解析】 【分析】
【详解】
橡皮参与了水平向右和竖直向上的分运动,如图所示,两个方向的分运动都是匀速直线运动,v x和v y恒定,则v合恒定,则橡皮运动的速度大小和方向都不变,A项正确.
3.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()
A6m/s22m/s
v
<<B.22m/s 3.5m/s
v
<≤
C2m/s6m/s
v
<<D6m/s23m/s
v
<<
【答案】A
【解析】
【分析】
【详解】
若小球打在第四级台阶的边缘上高度4
h d
=,根据2
1
1
2
h gt
=,得
1
880.4
s0.32s
10
d
t
g

===
水平位移14
x d
=则平抛的最大速度
1
1
1
2m/s
0.32
x
v
t
===
若小球打在第三级台阶的边缘上,高度3
h d
=,根据2
2
1
2
h gt
=,得
2
6
0.24s
d
t
g
==
水平位移23
x d
=,则平抛运动的最小速度
2
2
2
m/s6m/s
0.24
x
v
t
===
所以速度范围
6m/s22m/s
v
<<
故A正确。

故选A。

【点睛】
对于平抛运动的临界问题,可以通过画它们的运动草图确定其临界状态及对应的临界条件。

4.如图所示,在坡度一定的斜面顶点以大小相同的初速v同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为30°和60°,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为()
A.1:1 B.1:2 C.1:3 D.1:4
【答案】C
【解析】
【分析】
【详解】
A球在空中做平抛运动,落在斜面上时,有
2
1
2
tan30
2
A A
A A
gt
y gt
x vt v
︒===
解得
2tan30
A
v
t
g

=
同理对B有
2tan60
B
v
t
g

=
由此解得
:tan30:tan601:3
A B
t t=︒︒=
故选C。

5.一个半径为R的空心球固定在水平地面上,球上有两个与球心O在同一水平面上的小
孔A 、B ,且60AOB ∠=︒,球装满水后,有水以
2
gR
的速度从两孔沿径向水平流出,设水流出后做平抛运动,重力加速度g ,则两孔流出的水的落地点间距离为( ) A .R B .3R C .2R D .23R
【答案】C 【解析】 【分析】 【详解】
水做平抛运动,竖直方向上有
212
R gt =
解得运动时间
2R
t g
=
水平方向上有
022
gR R
x v t R g
==
= 则两落地点距圆心在地面投影点的距离为2R ,与圆心在地面投影点的连线夹角为60︒,两落地点和圆心在地面投影点组成等边三角形,根据几何知识可知,两落地点间距为
2R ,选项C 正确,ABD 错误。

故选C 。

6.一小船在静水中的速度为4m/s ,它在一条河宽160m ,水流速度为3m/s 的河流中渡河,则下列说法错误的是( )
A .小船以最短位移渡河时,位移大小为160m
B .小船渡河的时间不可能少于40s
C .小船以最短时间渡河时,它沿水流方向的位移大小为120m
D .小船不可能到达正对岸 【答案】D 【解析】 【分析】 【详解】
AD .船在静水中的速度大于河水的流速,由平行四边形法则求合速度可以垂直河岸,所以小船能垂直河岸正达对岸。

合速度与分速度如图
当合速度与河岸垂直,渡河位移最短,位移大小为河宽160m 。

选项A正确,D错误;
BC.当静水中的速度与河岸垂直时,渡河时间最短,为
160
s40s
4
min
c
d
t
v
===
它沿水流方向的位移大小为
340m120m
min
x v t
==⨯=

选项BC正确。

本题选错误的,故选D。

7.如图所示,从倾角θ=37°的斜面上方P点,以初速度v0水平抛出一个小球,小球以10m/s的速度垂直撞击到斜面上,过P点作一条竖直线,交斜面于Q点,则P、Q间的距离为(sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2)()
A.5.4m B.6.8m C.6m D.7.2m
【答案】B
【解析】
【分析】
【详解】
设小球垂直撞击到斜面上的速度为v,竖直速度为v y,由几何关系得
sin37
cos37y
v
v
v
v
︒=
︒=
解得
sin376m/s
cos378m/s
y
v v
v v
=︒=
=︒=
设小球下落的时间为t,竖直位移为y,水平位移为x,由运动学规律得,竖直分速度
y
gt
=
v
解得
t=0.8s
竖直方向
2
1
2
y gt
=
水平方向
0x v t =
设P 、Q 间的距离为h ,由几何关系得
tan37h y x =+︒
解得
h =6.8m
选项B 正确,ACD 错误。

故选B 。

8.如图所示,套在竖直细杆上的轻环A 由跨过定滑轮的不可伸长的轻绳与重物B 相连,施加外力让A 沿杆以速度v 匀速上升,从图中M 位置上升至与定滑轮的连线处于水平N 位置,已知AO 与竖直杆成θ角,则( )
A .刚开始时
B 的速度为
cos v
θ
B .A 匀速上升时,重物B 也匀速下降
C .重物B 下降过程,绳对B 的拉力大于B 的重力
D .A 运动到位置N 时,B 的速度最大 【答案】C 【解析】 【详解】
A.对于A ,它的速度如图中标出的v ,这个速度看成是A 的合速度,其分速度分别是
a b v v 、,其中a v 就是B 的速率(同一根绳子,大小相同),故刚开始上升时B 的速度cos B v v θ=,故A 不符合题意;
B.由于A 匀速上升,θ在增大,所以B v 在减小,故B 不符合题意;
C .B 做减速运动,处于超重状态,绳对B 的拉力大于B 的重力,故C 符合题意; D.当运动至定滑轮的连线处于水平位置时90θ=︒,所以0B v =, 故
D 不符合题意。

9.如图所示,固定斜面AO、BO与水平面夹角均为45°。

现从A点以某一初速度水平抛出一个小球(可视为质点),小球恰能垂直于BO落在C点,若OA=6m,则O、C的距离为()
A.22m B2m
C.2m D.3m
【答案】C
【解析】
【详解】
ABCD.以A点为坐标原点,AO为y轴,垂直于AO为x轴建立坐标系,x轴正方向斜向
上,y轴正方向斜向下,分解速度和加速度,则小球在x
2
,加速度为
2
2
g的匀减速直线运动,末速度刚好为零,运动时间0
v
t
g
=;在y轴上做初速度为0
2
2
,加速度为
2
2
g的匀加速直线运动,末速度
00
22
2
Cy
v gt v
=+=
利用平均速度公式得位移关系
000
22
(2)
22
::3:1
22
v v t v t
OA OC==

1
2m
3
OC OA
==
综上所述,ABD错误C正确。

故选C。

10.如图,A、B、C三个物体用轻绳经过滑轮连接,物体A、B的速度向下,大小均为v,则物体C的速度大小为()
A .2vcosθ
B .vcosθ
C .2v/cosθ
D .v/cosθ
【答案】D 【解析】 【分析】 【详解】
将C 速度分解为沿绳子方向和垂直与绳子方向,根据平行四边形定则,则有cos C v v θ=,
则cos C v
v θ=
,故选D . 【点睛】
解决本题的关键知道沿绳子方向上的速度是如何分解,将C 的速度分解,沿绳子方向的分速度大小等于小物体的速度大小,掌握运动的合成与分解的方法.
11.如图所示,斜面ABC 放置在水平地面上,AB =2BC ,O 为AC 的中点,现将小球从A 点正上方、A 与F 连线上某一位置以某一速度水平抛出,落在斜面上.己知D 、E 为AF 连线上的点,且AD=DE=EF ,D 点与C 点等高.下列说法正确的是
A .若小球落在斜面上的速度与斜面垂直,则小球的飞行时间由初速度大小决定
B .若小球从D 点抛出,有可能垂直击中O 点
C .若小球从E 点抛出,有可能垂直击中O 点
D .若小球从F 点抛出,有可能垂直击中C 点 【答案】AD 【解析】 【详解】
A .假设∠A 的为θ,若小球落在斜面上的速度与斜面垂直,将落点的速度分解在水平方向和竖直方向,则:
0tan y θ=
v v
y gt =v
所以,解得:
tan v t g θ=
角度是确定的
1
tan 2
BC AB θ=
= 可以解得:
2v t g
=
所以小球的飞行时间由初速度大小决定.故A 正确.
BCD .若小球落在斜面上的速度与斜面垂直,则小球的飞行时间由初速度大小决定. 水平方向的位移:
2
000022v v x v t v g g
==⋅=
竖直方向的位移:
2
22002211()22v v y gt g x AD g g
=====
则抛出点距离A 点的距离为:
33
'tan 22
y y x y AD θ=+=
= 所以若小球落在斜面上的速度与斜面垂直,则小球的水平位移和竖直位移相等. 垂直击中O 点,有:
12
o x AB BC AD =
==,则3
'2o y AD =
即在DE 的中点抛出才有可能垂直击中O 点,故小球从D 点、E 点抛出均不能垂直击中O 点,故BC 错误. 垂直击中O 点,有:
2C x AB AD ==,则3'32
C C y x A
D ==
即小球从F 点抛出,有可能垂直击中C 点.故D 正确.
12.如图所示,物体A 和B 质量均为m ,且分别与轻绳连接跨过光滑轻质定滑轮,B 放在水平面上,A 与悬绳竖直。

在力F 作用下A 向上匀速运动,设某时刻两者速度分别为A v 、B v ,则( )
A .
B 匀速运动 B .cos A B v v θ=
C .B 减速运动
D .cos B A v v θ=
【答案】BC 【解析】 【分析】 【详解】
物体A 向上以速度A v 匀速运动,则绳子的速度也为A v ,将绳子速度分解如图:
根据几何关系可得
cos A B v v θ=
由于夹角θ越来越小,因此B v 越来越小,即物体B 做减速运动。

选项BC 正确,AD 错误。

故选BC 。

13.如图,小球从倾角为θ 的斜面顶端A 点以速率v 0做平抛运动,则( )
A .若小球落到斜面上,则v 0越大,小球飞行时间越大
B .若小球落到斜面上,则v 0越大,小球末速度与竖直方向的夹角越大
C .若小球落到水平面上,则v 0越大,小球飞行时间越大
D .若小球落到水平面上,则v 0越大,小球末速度与竖直方向的夹角越大 【答案】AD 【解析】 【分析】
若小球落到斜面上,竖直位移与水平位移之比等于tanθ,列式分析时间与初速度的关系.将速度进行分解,求出末速度与竖直方向夹角的正切.
若小球落到水平面上,飞行时间一定.由速度分解求解末速度与竖直方向的夹角的正切,再进行分析. 【详解】
A .若小球落到斜面上,则有
200
12
tan 2gt y gt x v t v θ===

02tan v t g
θ
=
可知t ∝v 0,故A 正确. B .末速度与竖直方向夹角的正切
01tan 2tan y v v αα
=
= tanα保持不变,故B 错误.
C .若小球落到水平面上,飞行的高度h 一定,由2
12
h gt =
得 2h t g
=
可知t 不变.故C 错误.
D .末速度与竖直方向的夹角的正切
00
tan y v v v gt
β=
= t 不变,则v 0越大,小球末速度与竖直方向的夹角越大,故D 正确. 故选AD . 【点睛】
本题关键抓住水平位移和竖直位移的关系,挖掘隐含的几何关系,运用运动的分解法进行研究.
14.如图所示,一光滑宽阔的斜面,倾角为θ,高为h ,重力加速度为g 。

现有一小球在A 处贴着斜面以水平速度v 0射出,最后从B 处离开斜面,下列说法中正确的是( )
A .小球的运动轨迹为抛物线
B .小球的加速度为g tan θ
C .小球到达B 12sin h g
θD .小球到达B 02sin v h g
θ【答案】AC 【解析】 【分析】 【详解】
A .小球受重力和支持力两个力作用,合力沿斜面向下,与初速度垂直,做类平抛运动,轨迹为抛物线,A 正确;
B .小球所受合力为重力沿斜面向下的分力,根据牛顿第二定律
sin mg ma θ=
因此加速度
sin a g θ=
B 错误;
小球沿斜面方向做匀加速运动
21
sin sin 2
h g t θθ=⋅ 可得运动时间
12sin h t g
θ=
C 正确;
D .水平位移应是AB 线段在水平面上的投影,到达B 点的沿水平x 方向的位移
002sin g
x h t v v θ==
沿水平y 方向的位移
cot y h θ=
因此水平位移
0222sin v s x y h g
θ=+>
D 错误。

故选AC 。

15.如图,地面上固定有一半径为R 的半圆形凹槽,O 为圆心,AB 为水平直径。

现将小球(可视为质点)从A 处以初速度v 1水平抛出后恰好落到D 点;若将该小球从A 处以初速度v 2水平抛出后恰好落到C 点,C 、D 两点等高,OC 与水平方向的夹角θ=60°,不计空气阻力,则下列说法正确的是( )
A .小球从开始运动到落到凹槽上,前后两次的时间之比为1∶2
B .v 1:v 2=1∶3
C .小球从开始运动到落到凹槽上,速度的变化量两次相同
D .小球从开始运动到落到凹槽上,前后两次的平均速度之比为1∶2
【答案】BC 【解析】 【分析】 【详解】
A .平抛运动竖直方向上是自由落体运动,两次都落到同一高度,因此运动时间相同,A 错误;
B .第一次水平位移
o 11(1cos60)2x R R =-=
第二次水平位移
o 13(1+cos60)2
x R R ==
由于运动时间相同,因此
112213
v x v x == B 正确;
C .由于两次的加速度相同,运动时间相同,因此速度变化量相同,C 正确;
D .第一次位移
1s R =
第二次位移
2s =
平均速度等于位移与时间的比,由于运动时间相同,因此平均速度之比为1
,D 错误。

故选BC 。

相关文档
最新文档