2020-2021中考数学《锐角三角函数的综合》专项训练含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学《锐角三角函数的综合》专项训练含答案解析
一、锐角三角函数
1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为»AC 上的动点,且
10
cos B =. (1)求AB 的长度;
(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD•AE 的值是否变化?若不变,请求出AD•AE 的值;若变化,请说明理由.
(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.
【答案】(1) 10AB (2) 10AD AE ⋅=;(3)证明见解析. 【解析】
【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;
(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD•AE=AF•AG ,连接BG ,求得AF=3,FG=
1
3
,继而即可求得AD•AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,
∵AB=AC ,AF ⊥BC ,∴BF=CF=1
2BC=1, 在RtΔAFB 中,BF=1,∴AB=10
cos 10
BF B == (2)连接DG ,
∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD•AE=AF•AG ,
连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF•FG , ∵22AB BF -=3,
∴FG=
13
,
∴AD•AE=AF•AG=AF•(AF+FG)=3×10
=10;
3
(3)连接CD,延长BD至点N,使DN=CD,连接AN,
∵∠ADB=∠ACB=∠ABC,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°,
∴∠ADC=∠ADN,
∵AD=AD,CD=ND,
∴△ADC≌△ADN,
∴AC=AN,
∵AB=AC,∴AB=AN,
∵AH⊥BN,
∴BH=HN=HD+CD.
【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.
2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).
【答案】32.4米.
【解析】
试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.
试题解析:如图,过点B作BE⊥CD于点E,
根据题意,∠DBE=45°,∠CBE=30°.
∵AB⊥AC,CD⊥AC,
∴四边形ABEC为矩形,
∴CE=AB=12m,
在Rt △CBE 中,cot ∠CBE=
BE
CE
, ∴BE=CE•cot30°=12×3=123, 在Rt △BDE 中,由∠DBE=45°, 得DE=BE=123.
∴CD=CE+DE=12(3+1)≈32.4. 答:楼房CD 的高度约为32.4m .
考点:解直角三角形的应用——仰角俯角问题.
3.如图,反比例函数() 0k y k x
=
≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=︒. (1)求k 的值及点B 的坐标; (2)求tanC 的值.
【答案】(1)2k =,()1,2B --;(2)2. 【解析】
【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数
()0k
y k x
=
≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;
(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=︒ , 90BHC ∠=︒ ,可得
C ABH ∠∠=,再由已知可得AO
D ABH ∠∠=,从而得C AOD ∠∠=,求出C
tan 即可.
【详解】(1)∵点A (1,a )在2y x =上, ∴a =2,∴
A (1,2),
把A (1,2)代入 k
y x
= 得2k =, ∵反比例函数()0k
y k x
=
≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,
∴()1
2B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,
∵
90ABC ∠=︒ , 90BHC ∠=︒ ,∴C ABH ∠∠=,
∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=,
∴AD 2
2OD 1
tanC tan AOD =∠=
==.
【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD 是关键.
4.问题背景:
如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B′,连接A B′与直线l 交于点C ,则点C 即为所求.
(1)实践运用:
如图(b),已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为 .
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
【答案】解:(1)22.
(2)如图,在斜边AC上截取AB′=AB,连接BB′.
∵AD平分∠BAC,∴点B与点B′关于直线AD对称.
过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.
则线段B′F的长即为所求 (点到直线的距离最短) .
在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,
∴.
∴BE+EF的最小值为
【解析】
试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:
如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,
根据垂径定理得弧BD=弧DE.
∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.
∴∠C′AE=45°.
又AC为圆的直径,∴∠AEC′=90°.
∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=2.
∴AP+BP的最小值是22
(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于
E,连接BE,则线段B′F的长即为所求.
5.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.
(1)求的面积;
(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)
(参考数据:,,,,,,
)
【答案】(1)560000(2)565.6
【解析】
试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;
(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.
试题解析:(1)过点作交的延长线于点,
在中,,
所以米.
所以(平方米).
(2)连接,过点作,垂足为点,则.
因为是中点,
所以米,且为中点,
米,
所以米.
所以米,由勾股定理得,
米.
答:、间的距离为米.
考点:解直角三角形
6.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.
(1)求tan∠DBC的值;
(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.
【答案】(1)tan∠DBC=;
(2)P(﹣,).
【解析】
试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形
的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;
(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中
的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).
试题解析:
(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,
解得 x1=﹣1,x2=4.
∴A(﹣1,0),B(4,0).
当x=3时,y=﹣32+3×3+4=4,
∴D(3,4).
如图,连接CD,过点D作DE⊥BC于点E.
∵C(0,4),
∴CD//AB,
∴∠BCD=∠ABC=45°.
在直角△OBC中,∵OC=OB=4,
∴BC=4.
在直角△CDE中,CD=3.
∴CE=ED=,
∴BE=BC﹣DE=.
∴tan∠DBC=;
(2)过点P作PF⊥x轴于点F.
∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC,
∴tan∠PBF=.
设P(x,﹣x2+3x+4),则=,
解得 x1=﹣,x2=4(舍去),
∴P(﹣,).
考点:1、二次函数;2、勾股定理;3、三角函数
7.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.
(1)如图1,若m=.
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).
【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).
【解析】
试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;
②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;
(2)解题要点有3个:
i)判定△ABD为等边三角形;
ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;
iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.
试题解析:(1)当m=时,抛物线C1:y=(x+)2.
∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,
∴D(a,(a+)2).
∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).
①∵OC=2,∴C(0,2).
∵点C在抛物线C2上,
∴﹣(0﹣a)2+(a+)2=2,
解得:a=,代入(I)式,
得抛物线C2的解析式为:y=﹣x2+x+2.
②在(I)式中,
令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);
令x=0,得:y=a+,∴C(0,a+).
设直线BC的解析式为y=kx+b,则有:
,解得,
∴直线BC的解析式为:y=﹣x+(a+).
假设存在满足条件的a值.
∵AP=BP,
∴点P在AB的垂直平分线上,即点P在C2的对称轴上;
∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,
∴OP⊥BC.
如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,
则OP⊥BC,OE=a.
∵点P在直线BC上,
∴P(a,a+),PE=a+.
∵tan∠EOP=tan∠BCO=,
∴,
解得:a=.
∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"
(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,
∴D(a,(a+m)2).
∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.
令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,
∴2a+m=2﹣m,
∴a=﹣m.
∴D(﹣m,3).
AB=OB+OA=2﹣m+m=2.
如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.
∵tan∠ABD=,
∴∠ABD=60°.
又∵AD=BD,∴△ABD为等边三角形.
作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,
∴P1(﹣m,1);
在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.
在Rt△BEP2中,P2E=BE•tan60°=•=3,
∴P2(﹣m,﹣3);
易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.
∴P3(﹣﹣m,3)、P4(3﹣m,3).
综上所述,到△ABD 的三边所在直线的距离相等的所有点有4个, 其坐标为:P 1(﹣m ,1),P 2(
﹣m ,﹣3),P 3(﹣
﹣m ,3),P 4(3
﹣m ,
3).
【考点】二次函数综合题.
8.如图,矩形OABC 中,A(6,0)、C(0,2
3)、D(0,33),射线l 过点D 且与x 轴平行,点P 、Q 分别是l 和x 轴的正半轴上的动点,满足∠PQO =60º.
(1)点B 的坐标是 ,∠CAO = º,当点Q 与点A 重合时,点P 的坐标 为 ;
(2)设点P 的横坐标为x ,△OPQ 与矩形OABC 重叠部分的面积为S ,试求S 与x 的函数关系式和相应的自变量x 的取值范围.
【答案】(1)(6,3). 30.(3,3)(2)
))))243
x 430x 33
313333x 5S {23x 1235x 93543
x 9+≤≤+<≤=-+<≤>
【解析】
解:(1)(6,3 30.(3,3 (2)当0≤x≤3时, 如图1,
OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,
可得
EF PE DC31
==
OQ PO DO3
33
==,∴EF=
1
3
(3+x),
此时重叠部分是梯形,其面积为:
EFQO
14343
S S EF OQ OC3x x43 233
==+⋅=+=+梯形
()()
当3<x≤5时,如图2,
()
HAQ
EFQO EFQO
22
1
S S S S AH AQ
2
43331333
x43x3=x x
32232
∆
=-=-⋅⋅
=+---+-
梯形梯形。
当5<x≤9时,如图3,
12
S BE OA OC3x
23
23
=x123
=+⋅=-
-+
()()。
当x>9时,如图4,
11183543
S OA AH 6=
22x x
=
⋅=⋅⋅
. 综上所述,S 与x 的函数关系式为:
()()()()243
x 430x 33
31333x x 3x 5S {23x 1235x 93543
x 9+≤≤-+-<≤=-+<≤>.
(1)①由四边形OABC 是矩形,根据矩形的性质,即可求得点B 的坐标: ∵四边形OABC 是矩形,∴AB=OC ,OA=BC ,
∵A (6,0)、C (0,23),∴点B 的坐标为:(6,23). ②由正切函数,即可求得∠CAO 的度数: ∵OC 233
tan CAO ==
OA ∠=
,∴∠CAO=30°. ③由三角函数的性质,即可求得点P 的坐标;如图:当点Q 与点A 重合时,过点P 作PE ⊥OA 于E ,
∵∠PQO=60°,D (0,3∴3 ∴0
PE AE 3tan 60
=
=.
∴OE=OA ﹣AE=6﹣3=3,∴点P 的坐标为(3,3).
(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x >9时去分析求解即可求得答案.
9.如图,已知点从出发,以1个单位长度/秒的速度沿轴向正方向运动,以
为顶点作菱形,使点在第一象限内,且;以为圆心,为半径作圆.设点运动了秒,求:
(1)点的坐标(用含的代数式表示);
(2)当点在运动过程中,所有使与菱形的边所在直线相切的的
值.
【答案】解:(1)过作轴于,
,,
,,
点的坐标为.
(2)①当与相切时(如图1),切点为,此时,
,,
.
②当与,即与轴相切时(如图2),则切点为,,
过作于,则,
,.
③当与所在直线相切时(如图3),设切点为,交于,
则,,
.
过作轴于,则,
,
化简,得,
解得,
,
.
所求的值是,和.
【解析】
(1)过作轴于,利用三角函数求得OD、DC的长,从而求得点的坐标
⊙P与菱形OABC的边所在直线相切,则可与OC相切;或与OA相切;或与AB相切,应分三种情况探讨:①当圆P与OC相切时,如图1所示,由切线的性质得到PC垂直于OC,再由OA=+t,根据菱形的边长相等得到OC=1+t,由∠AOC的度数求出∠POC为30°,在直角三角形POC中,利用锐角三角函数定义表示出cos30°=oc/op,表示出OC,
等于1+t列出关于t的方程,求出方程的解即可得到t的值;②当圆P与OA,即与x轴相切时,过P作PE垂直于OC,又PC=PO,利用三线合一得到E为OC的中点,OE为OC的一半,而OE=OPcos30°,列出关于t的方程,求出方程的解即可得到t的值;③当圆P与AB所在的直线相切时,设切点为F,PF与OC交于点G,由切线的性质得到PF垂直于AB,则PF垂直于OC,由CD=FG,在直角三角形OCD中,利用锐角三角函数定义由OC表示出CD,即为FG,在直角三角形OPG中,利用OP表示出PG,用PG+GF表示出PF,根据PF=PC,表示出PC,过C作CH垂直于y轴,在直角三角形PHC中,利用勾股定理列出
关于t的方程,求出方程的解即可得到t的值,综上,得到所有满足题意的t的值.
10.如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).
(1)若△BDE是以BE为底的等腰三角形,求t的值;
(2)若△BDE为直角三角形,求t的值;
(3)当S△BCE≤9
2
时,所有满足条件的t的取值范围(所有数据请保留准确值,参考
数据:tan15°=23
【答案】(133
;(23秒或3秒;(3)6﹣3
【解析】
【分析】
(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由3,可得t 的值;
(2)分两种情况:
①当∠DEB=90°时,如图2,连接AE,根据3t的值;
②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;
(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,
①当△BCE在BC的下方时,
②当△BCE在BC的上方时,
分别计算当高为3时对应的t的值即可得结论.
【详解】
解:(1)如图1,连接AE,
由题意得:AD=t,
∵∠CAB=90°,∠CBA=30°,
∴BC=2AC=6,
∴22
63
3
∵点A、E关于直线CD的对称,
∴CD垂直平分AE,
∴AD=DE,
∵△BDE是以BE为底的等腰三角形,
∴DE=BD,
∴AD=BD,
∴t=AD=
2
;
(2)△BDE为直角三角形时,分两种情况:
①当∠DEB=90°时,如图2,连接AE,
∵CD垂直平分AE,
∴AD=DE=t,
∵∠B=30°,
∴BD=2DE=2t,
∴
∴
②当∠EDB=90°时,如图3,
连接CE,
∵CD垂直平分AE,
∴CE=CA=3,
∵∠CAD=∠EDB=90°,
∴AC∥ED,
∴∠CAG=∠GED,
∵AG=EG,∠CGA=∠EGD,
∴△AGC≌△EGD,
∴AC=DE,
∵AC∥ED,
∴四边形CAED是平行四边形,
∴AD=CE=3,即t=3;
综上所述,△BDE为直角三角形时,t3秒;
(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,
①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,
此时S△BCE=1
2
AE•BH=
1
2
×3×3=
9
2
,
易得△ACG≌△HBG,∴CG=BG,
∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,
∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,
∴∠ACD=∠DCE=15°,
tan∠ACD=tan15°=t
3
=2﹣3,
∴t=6﹣33,
由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,
此时S△BCE=1
2
CE•DE=
1
2
×3×3=
9
2
,此时t=3,
综上所述,当S△BCE≤9
2
时,t的取值范围是6﹣33≤t≤3.
【点睛】
本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.
11.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且
CF AE
=,连接DE,DF,EF. FH平分EFB
∠交BD于点H.
(1)求证:DE DF
⊥;
(2)求证:DH DF
=:
(3)过点H作HM EF
⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.
【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】
(1)根据正方形性质, CF AE =得到DE DF ⊥.
(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于
45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.
(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得
222BD AB AD AB =
+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得
HM HN =.因为4590HBN HNB ∠=︒∠=︒,
,所以22sin 45HN
BH HN HM ===︒
.
由22cos 45DF
EF DF DH =
==︒
,得22EF AB HM =-.
【详解】
(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒. ∴90EAD FCD ∠=∠=︒. ∵CF AE =。
∴AED CFD △△≌. ∴ADE CDF ∠=∠.
∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=︒. ∴DE DF ⊥.
(2)证明:∵AED CFD △△≌,
∴DE DF =.
∵90EDF ∠=︒,
∴45DEF DFE ∠=∠=︒.
∵90ABC ∠=︒,BD 平分ABC ∠,
∴45DBF ∠=︒.
∵FH 平分EFB ∠,
∴EFH BFH ∠=∠.
∵45DHF DBF BFH BFH ∠=∠+∠=︒+∠,
45DFH DFE EFH EFH ∠=∠+∠=︒+∠,
∴DHF DFH ∠=∠.
∴DH DF =.
(3)22EF AB HM =-.
证明:过点H 作HN BC ⊥于点N ,如图,
∵正方形ABCD 中,AB AD =,90BAD ∠=︒, ∴222BD AB AD AB =+=.
∵FH 平分,
EFB HM EF HN BC ∠⊥⊥,,
∴HM HN =. ∵4590HBN HNB ∠=︒∠=︒,
, ∴22sin 45HN BH HN HM ===︒
. ∴22DH BD BH AB HM =-=
. ∵22cos 45DF EF DF DH ===︒
, ∴22EF AB HM =-.
【点睛】
本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.
12.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知
识检测车速,如图,观测点设在到万丰路(直线AO )的距离为120米的点P 处.这时,一辆小轿车由西向东匀速行驶,测得此车从A 处行驶到B 处所用的时间为5秒且∠APO =60°,∠BPO =45°.
(1)求A 、B 之间的路程;
(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).
【答案】
【小题1】73.2
【小题2】超过限制速度.
【解析】
解:(1)100(31)
AB =-73.2 (米).…6分 (2) 此车制速度v==18.3米/秒
13.如图,AB 为O e 的直径,C 、D 为O e 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .
(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.
(2)若2ABD BDC ∠=∠.
①求证:CF 是O e 的切线.
②当6BD =,3tan 4
F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =
. 【解析】
【分析】
(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;
(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可
证明CF 为⊙O 的切线;
②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=
OC CF =34
,即可求出CF . 【详解】
解:(1)AB 是O e 的直径,且D 为O e 上一点, 90ADB ∴∠=︒,
CE DB ⊥Q ,
90DEC ∴∠=︒,
//CF AD ∴,
180DAC ACF ∴∠+∠=︒.
(2)①如图,连接OC .
OA OC =Q ,12∴∠=∠.
312∠=∠+∠Q ,
321∴∠=∠.
42BDC Q ∠=∠,1BDC ∠=∠,
421∴∠=∠,
43∴∠=∠,
//OC DB ∴.
CE DB ⊥Q ,
OC CF ∴⊥.
又OC Q 为O e 的半径,
CF ∴为O e 的切线.
②由(1)知//CF AD ,
BAD F ∴∠=∠,
3tan tan 4
BAD F ∴∠==
, 34BD AD ∴=. 6BD =Q
483AD BD ∴==, 226810AB ∴=+=,5OB OC ==.
OC CF Q ⊥,
90OCF ∴∠=︒,
3tan 4
OC F CF ∴==, 解得203
CF =. 【点睛】
本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.
14.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12
x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E . (1)求该抛物线的表达式及点D 的坐标;
(2)求∠DCB 的正切值;
(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.
【答案】(1)21y 234x x =-
+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18).
【解析】
【分析】
(1)y =12
x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣
14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC 5CE =2,则CH 5
解;
(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可.
【详解】
(1)y=1
2
x﹣3,令y=0,则x=6,令x=0,则y=﹣3,
则点B、C的坐标分别为(6,0)、(0,﹣3),则c=﹣3,
将点B坐标代入抛物线y=﹣1
4
x2+bx﹣3得:0=﹣
1
4
×36+6b﹣3,解得:b=2,
故抛物线的表达式为:y=﹣1
4
x2+2x﹣3,令y=0,则x=6或2,
即点A(2,0),则点D(4,1);
(2)过点E作EH⊥BC交于点H,
C、D的坐标分别为:(0,﹣3)、(4,1),
直线CD的表达式为:y=x﹣3,则点E(3,0),
tan∠OBC=
31
62
OC
OB
==,则sin∠OBC
5
,
则EH=EB•sin∠OBC
5
CE=2CH
5
则tan∠DCB=
1
3 EH
CH
=;
(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),
则BC=5
∵OE=OC,∴∠AEC=45°,
tan∠DBE=
1
64
-
=
1
2
,
故:∠DBE=∠OBC,
则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,
过点F作FG⊥BG交BC的延长线与点G,
则∠GFC=∠OBC=α,
设:GF=2m,则CG=GFtanα=m,
∵∠CBF=45°,∴BG=GF,
即:35+m=2m,解得:m=35,
CF=22
GF CG
=5m=15,
故点F(0,﹣18);
②当点F在y轴正半轴时,
同理可得:点F(0,1);
故:点F坐标为(0,1)或(0,﹣18).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.
15.已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE= 2,
cos∠ACD= 4
5
,求tan∠AEC的值及CD的长.
【答案】tan∠12
12 5
【解析】
解:在RT△ACD与RT△ABC中
∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos ∠ABC=cos ∠ACD=45 在RT △ABC 中,45
BC AB = 令BC=4k,AB=5k 则AC=3k 由35
BE AB = ,BE=3k 则CE=k,且2 则2,2 ∴RT △ACE 中,tan ∠AEC=
AC EC =3 ∵RT △ACD 中cos ∠ACD=45CD AC = ,,12125。