泰来县第一中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泰来县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,
||||10MF NF +=,则直线MN 的方程为( )
A .240x y +-=
B .240x y --=
C .20x y +-=
D .20x y --=
2. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )
A .a >b
B .a <b
C .a=b
D .a ,b 的大小与m ,n 的值有关 3. 如图,正六边形ABCDEF 中,AB=2
,则(
﹣)•

+)=( )
A .﹣6
B .﹣
2 C .
2
D .6
4. 已知集合{
}
{
2
|5,x |y ,A y y x B A B ==-+===( )
A .[)1,+∞
B .[]1,3
C .(]3,5
D .[]3,5
【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.
5. 若⎩⎨⎧≥<+=-)2(,2)
2(),2()(x x x f x f x 则)1(f 的值为( )
A .8
B .8
1 C .
2 D .21
6. 已知抛物线2
4y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
B.2
C. D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.
7. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 8. 已知全集为R ,且集合}2)1(log |{2<+=x x A ,}01
2
|{≥--=x x x B ,则)(B C A R 等于( ) A .)1,1(- B .]1,1(- C .)2,1[ D .]2,1[
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
【命题意图】本题考查集合的交集、补集运算,同时也考查了简单对数不等式、分式不等式的解法及数形结合的思想方法,属于容易题.
9. 设关于x 的不等式:x 2﹣ax ﹣2>0解集为M ,若2∈M , ∉M ,则实数a 的取值范围是( )
A .(﹣∞,
)∪(1,+∞)
B .(﹣∞,

C .[
,1)
D .(
,1)
10.某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )
A .π1492+
B .π1482+
C .π2492+
D .π2482+
【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.
11.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( ) A .{5,8} B .{7,9}
C .{0,1,3}
D .{2,4,6}
12.(2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )
A .7
B .9
C .11
D .13
二、填空题
13.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .
14.已知数列}{n a 的前n 项和为n S ,且满足11a =-,12n n a S +=(其中*
)n ∈N ,则n S = . 15
在这段时间内,该车每100千米平均耗油量为 升. 16.已知||2=a ,||1=b ,2-a 与1
3b 的夹角为
3
π
,则|2|+=a b .
17.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .
18.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.
三、解答题
19.已知函数()2
ln f x x bx a x =+-.
(1)当函数()f x 在点()()
1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*
0,1,x n n n N ∈+∈,求的值;
(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且12
02
x x x +=,求证:()00f x '>.
20.已知函数x
x x f --
-=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+
(1)求A B ,B A C R ⋂)(;
(2)若B C B =,求实数a 的取值范围.
21.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;
(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.
22.已知f (x )=lg (x+1)
(1)若0<f (1﹣2x )﹣f (x )<1,求x 的取值范围;
(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,g (x )=f (x ),求函数y=g (x )(x ∈[1,2])的反函数.
23.已知椭圆
+
=1(a >b >0)的离心率为
,且过点(

).
(1)求椭圆方程;
(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
24.已知函数f (x )=log a (1+x )﹣log a (1﹣x )(a >0,a ≠1).
(Ⅰ)判断f (x )奇偶性,并证明;
(Ⅱ)当0<a <1时,解不等式f (x )>0.
泰来县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】D
【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.
设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).
由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,
而1222y y +=,∴12
12
1y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 2. 【答案】C
【解析】解:根据茎叶图中的数据,得; 甲得分的众数为a=85, 乙得分的中位数是b=85; 所以a=b . 故选:C .
3. 【答案】D
【解析】解:根据正六边形的边的关系及内角的大小便得:
=
==2+4﹣
2+2=6. 故选:D .
【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.
4. 【答案】D 【解析】{
}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.
5. 【答案】B
【解析】
试题分析:()()3
1
1328
f f -===
,故选B 。

考点:分段函数。

6. 【答案】B
【解析】设2
(,)4
y P y
,则
2
1||||y PF PA +=.又设
2
14
y t +=,则244y t =-,1t …
,所以||||2PF PA ==,当且仅当2t =,即2y =±时,等号成立,此时点(1,2)P ±,
PAF ∆的面积为11
||||22222
AF y ⋅=⨯⨯=,故选B.
7. 【答案】B

点:函数的奇偶性与单调性.
【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 8. 【答案】C
9. 【答案】C
【解析】解:由题意得:,
解得:
≤a <1,
则实数a 的取值范围为[,1).
故选C
【点评】此题考查了一元二次不等式的解法,以及不等式组的解法,根据题意列出关于a 的不等式组是解本题
的关键.
10.【答案】A
11.【答案】B
【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},
所以(C U A )∩(C U B )={7,9} 故选B
12.【答案】A
【解析】解:∵x+x ﹣1
=3,
则x 2+x ﹣2=(x+x ﹣1)2﹣2=32
﹣2=7.
故选:A .
【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.
二、填空题
13.【答案】﹣2
≤a ≤2
【解析】解:原命题的否定为“∀x ∈R ,2x 2
﹣3ax+9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立,
只需△=9a 2
﹣4×2×9≤0,解得:﹣2
≤a ≤2.
故答案为:﹣2≤a ≤2
【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.
14.【答案】1
3n --
【解析】∵12n n a S +=,∴12n n n S S S +-=, ∴∴13n n S S +=,11133n n n S S --=⋅=.
15.【答案】 8 升.
【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8. 故答案是:8.
16.【答案】2
【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23
π
,1⋅=-a b ,
∴|2|+=
a b 2==.
17.【答案】

【解析】解:在△ABC 中,∵6a=4b=3c
∴b=
,c=2a ,
由余弦定理可得cosB==
=

故答案为:

【点评】本题考查余弦定理在解三角形中的应用,用a 表示b ,c 是解决问题的关键,属于基础题.
18.【答案】2a ≥ 【解析】
试题分析:因为()ln f x a x x =-在区间(1,2)上单调递增,所以(1,2)x ∈时,()'10a
f x x
=
-≥恒成立,即a x ≥恒成立,可得2a ≥,故答案为2a ≥.1
考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.
三、解答题
19.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】

题解析: (1)()2a
f'x x b x =+-,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨
=+==⎩⎩
, ∴函数()f x 的解析式为2
()6ln (0)f x x x x x =-->;
(2)22
626
()6ln '()21x x f x x x x f x x x x
--=--⇒=--=,
因为函数()f x 的定义域为0x >,
令(23)(2)3
'()02
x x f x x x +-=
=⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,
当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,
(3)当1a =时,函数2
()ln f x x bx x =+-,
21111()ln 0f x x bx x =+-=,2
2222()ln 0f x x bx x =+-=,
两式相减可得22
121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=
-+-. 1'()2f x x b x =+-,0001
'()2f x x b x =+-,因为1202x x x +=,
所以12120121212
ln ln 2
'()2()2x x x x f x x x x x x x +-=⋅+-+-
-+ 212121221221122112211
1
21ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤
⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦
设21
1x
t x =>,2(1)()ln 1t h t t t -=-+,
∴22
222
14(1)4(1)'()0(1)(1)(1)
t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,
∴()0h t >,又
21
1
0x x >-,所以0'()0f x >. 考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.
【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、
极值,然后通过数形结合的思想找到解题的思路.
20.【答案】(1){}210A B x =<<U ,(){}
2310R C A B x x x =<<≤<I 或7;(2)1a ≤-或9
22
a ≤≤。

【解析】
试题分析:(1)由题可知:30
70
x x -≥⎧⎨
->⎩,所以37x ≤<,因此集合{}37A x x =≤<,画数轴表示出集合A ,
集合B ,观察图形可求,{}210A B x =<<U ,观察数轴,可以求出{}
37R C A x x x =<≥或,则
(){}2310R C A B x x x =<<≤<I
或7;(2)由B C B =U 可得:C B ⊆,分类讨论,当B φ=时,
21a a ≥+,解得:1a ≤-,当B φ≠时,若C B ⊆,则应满足21
22110a a a a <+⎧⎪
≥⎨⎪+≤⎩,即1292
a a a ⎧
⎪>-⎪≥⎨⎪⎪≤
⎩,所以922a ≤≤,因此满足
B C B =U 的实数a 的取值范围是:1a ≤-或9
22
a ≤≤。

试题解析:(1):由3070
x x -≥⎧⎨->⎩得:
37x ≤<
A={x|3x<7}≤
A B {x |2x 10}=<<, B A C R
⋂)(={x|2<x<3x<10}
≤或7
(2)当B=φ时,21,a -1a a ≥+≤
当B φ≠时,21
22110
a a a a <+⎧⎪
≥⎨⎪+≤⎩

922a ≤≤ 即-1a ≤或922
a ≤≤。

考点:1.函数的定义域;2.集合的运算;3.集合间的关系。

21.【答案】
【解析】(Ⅰ)证明:∵ABCD ﹣A 1B 1C 1D 1为正方体, ∴B 1C 1⊥平面ABB 1A 1; ∵A 1B ⊂平面ABB 1A 1, ∴B 1C 1⊥A 1B .
又∵A 1B ⊥AB 1,B 1C 1∩AB 1=B 1, ∴A 1B ⊥平面ADC 1B 1, ∵A 1B ⊂平面A 1BE ,
∴平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:连接EF ,EF
∥,且
EF=

设AB 1∩A 1B=O ,
则B1O∥C1D,且,
∴EF∥B1O,且EF=B1O,
∴四边形B1OEF为平行四边形.
∴B1F∥OE.
又∵B1F⊄平面A1BE,OE⊂平面A1BE,
∴B1F∥平面A1BE,
(Ⅲ)解:====.
22.【答案】
【解析】解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则
由解得:﹣1<x<1.
由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,
∵x+1>0,
∴x+1<2﹣2x<10x+10,
∴.
由,得:.
(2)当x∈[1,2]时,2﹣x∈[0,1],
∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),
由单调性可知y∈[0,lg2],
又∵x=3﹣10y,
∴所求反函数是y=3﹣10x,x∈[0,lg2].
23.【答案】
【解析】解:(1)依题意可得,解得a=2,b=1
所以椭圆C的方程是…
(2)当k变化时,m2为定值,证明如下:
由得,(1+4k2)x2+8kmx+4(m2﹣1)=0.…
设P(x1,y1),Q(x2,y2).则x1+x2=,x1x2=…(•)…
∵直线OP、OQ的斜率依次为k1,k2,且4k=k1+k2,
∴4k==,得2kx1x2=m(x1+x2),…
将(•)代入得:m2=,…
经检验满足△>0.…
【点评】本题考查椭圆的方程的求法,直线与椭圆方程的综合应用,考查分析问题解决问题的能力以及转化思想的应用.
24.【答案】
【解析】解:(Ⅰ)由,得,
即﹣1<x<1,即定义域为(﹣1,1),
则f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x),
则f(x)为奇函数.
(Ⅱ)当0<a<1时,由f(x)>0,
即log a(1+x)﹣log a(1﹣x)>0,
即log a(1+x)>log a(1﹣x),
则1+x<1﹣x,
解得﹣1<x<0,
则不等式解集为:(﹣1,0).
【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.。

相关文档
最新文档