响水县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
响水县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .2
2. 在中,、、分别为角
、
、
所对的边,若
,则此三角形的形状一定是
( ) A .等腰直角 B .等腰或直角 C .等腰
D .直角
3. 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( ) A.110 B.15 C.310 D.25
4. 如图,在长方形ABCD 中,AB=
,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在
面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )
A .
B .
C .
D .
5. 下列函数中,在其定义域内既是奇函数又是减函数的是( )
A .y=|x|(x ∈R )
B .y=(x ≠0)
C .y=x (x ∈R )
D .y=﹣x 3(x ∈R )
6. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )
A .必要而不充分条件
B .充分而不必要条件
C .充分必要条件
D .既不充分也不必要条件
7. 已知定义在R 上的函数f (x )满足f (x )=
,且f (x )=f (x+2),g (x )=
,
则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )
A .12
B .11
C .10
D .9
8. 在ABC ∆中,b =3c =,30B =,则等于( )
A B . C D .2 9. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0
B .1
C .2
D .3
10.已知双曲线C :
﹣
=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C
的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( )
A .
B .
C .2
D .
11.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36
【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.
12.设集合( )
A .
B .
C .
D .
二、填空题
13.二项式
展开式中,仅有第五项的二项式系数最大,则其常数项为 .
14.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:
).
15.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .
16.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 . 17.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .
18.在极坐标系中,点(2,)到直线ρ(cos θ+
sin θ)=6的距离为 .
三、解答题
19.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;
Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且
2
2
OM
OA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。
20.已知函数f (x )=+lnx ﹣1(a 是常数,e ≈=2.71828).
(1)若x=2是函数f (x )的极值点,求曲线y=f (x )在点(1,f (1))处的切线方程;
(2)当a=1时,方程f (x )=m 在x ∈[,e 2
]上有两解,求实数m 的取值范围;
(3)求证:n ∈N*,ln (en )>1+.
21.已知函数f (x )=4
sinxcosx ﹣5sin 2x ﹣cos 2x+3.
(Ⅰ)当x ∈[0,]时,求函数f (x )的值域;
(Ⅱ)若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足=,
=2+2cos (A+C ),
求f (B )的值.
22.(本小题满分10分)选修4-1:几何证明选讲
选修41-:几何证明选讲 如图,,,A B C 为
O 上的三个点,AD 是BAC ∠的平分线,交O 于
点D ,过B 作O 的切线交AD 的延长线于点E . (Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.
23.已知函数f (x )=sin2x+(1﹣2sin 2
x ).
(Ⅰ)求f (x )的单调减区间;
(Ⅱ)当x ∈[﹣,
]时,求f (x )的值域.
24.已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2,
0),设点A(1,).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;
(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.
响水县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】A
【解析】
试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A.
考点:几何体的结构特征.
2.【答案】B
【解析】
因为,所以由余弦定理得,
即,所以或,
即此三角形为等腰三角形或直角三角形,故选B
答案:B
3.【答案】
【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,
4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P=3
10.
4.【答案】D
【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,
则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,
如图当E与C重合时,AK==,
取O为AD′的中点,得到△OAK是正三角形.
故∠K0A=,∴∠K0D'=,
其所对的弧长为=,
故选:D.
5.【答案】D
【解析】解:y=|x|(x∈R)是偶函数,不满足条件,
y=(x≠0)是奇函数,在定义域上不是单调函数,不满足条件,
y=x(x∈R)是奇函数,在定义域上是增函数,不满足条件,
y=﹣x3(x∈R)奇函数,在定义域上是减函数,满足条件,
故选:D
6.【答案】B
【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;
当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.
综上可得:两条直线相互垂直的充要条件是:m=1,2.
∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.
故选:B.
【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.
7.【答案】B
【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,
函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)
对称,
函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,
设A,B,C,D的横坐标分别为a,b,c,d,
则a+d=4,b+c=4,由图象知另一交点横坐标为3,
故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,
即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.
故选:B.
【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.
8.【答案】C
【解析】
考点:余弦定理.
9.【答案】C
【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;
否命题是“若x2≤0,则x≤0”,是真命题;
逆否命题是“若x≤0,则x2≤0”,是假命题;
综上,以上3个命题中真命题的个数是2.
故选:C
10.【答案】D
【解析】解:设F1(﹣c,0),F2(c,0),则l的方程为x=﹣c,
双曲线的渐近线方程为y=±x,所以A(﹣c,c)B(﹣c,﹣c)
∵AB为直径的圆恰过点F2
∴F1是这个圆的圆心
∴AF1=F1F2=2c
∴c=2c ,解得b=2a
∴离心率为==
故选D .
【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式.
11.【答案】A
【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有121
21223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.
12.【答案】B
【解析】解:集合A 中的不等式,当x >0时,解得:x >;当x <0时,解得:x <,
集合B 中的解集为x >,
则A ∩B=(,+∞). 故选B
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
二、填空题
13.【答案】 70 .
【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,
则n=8,
所以二项式
=
展开式的通项为
T r+1=(﹣1)r C 8r x 8﹣2r 令8﹣2r=0得r=4 则其常数项为C 84
=70
故答案为70.
【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.
14.【答案】 【解析】【知识点】空间几何体的三视图与直观图 【试题解析】该几何体是半个圆柱。
所以
故答案为:
15.【答案】12
【解析】
考点:球的体积与表面积.
【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键.
16.【答案】.
【解析】解:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),
∴设直线l方程为y=k(x﹣1),
由,消去x得.
设A(x1,y1),B(x2,y2),
可得y1+y2=,y1y2=﹣4①.
∵|AF|=3|BF|,
∴y1+3y2=0,可得y1=﹣3y2,代入①得﹣2y2=,且﹣3y22=﹣4,
消去y
得k2=3,解之得k=±.
2
故答案为:.
【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.
17.【答案】(﹣4,0].
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;
当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,
则满足,
即,
∴
解得﹣4<a <0,
综上:a 的取值范围是(﹣4,0]. 故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
18.【答案】 1 .
【解析】解:点P (2
,)化为
P
. 直线ρ(cos θ
+
sin θ)=6
化为
.
∴点P 到直线的距离
d==1.
故答案为:1. 【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档
题.
三、解答题
19.【答案】 【解析】
Ⅰ由已知
224c a b a =+=,又222a b c =+,解得223,1a b ==, 所以椭圆C
的长轴长Ⅱ以O 为坐标原点长轴所在直线为x 轴建立如图平面直角坐标系xOy ,
不妨设椭圆C 的焦点在x 轴上,则由1可知椭圆C 的方程为2
213
x y +=;
设A 11(,)x y ,D 22(,)x y ,则A 11(,)x y --
∵2
2
OM OA OM =⋅ ∴M 1(2,0)x
根据题意,BM 满足题意的直线斜率存在,设1:(2)l y k x x =-, 联立22
1
13(2)x y y k x x ⎧+=⎪⎨⎪=-⎩,消去y 得22222
11(13)121230k x k x x k x +-+-=,
22222222111(12)4(13)(123)12(413)0k x k k x k x k ∆=--+-=-++>,
22211121222
12123
,,1313k x k x x x x x k k
--+=-⋅=++ 212111************
(2)(2)(5)4112313AD y y k x x k x x k x x kx k k k x x x x x x x k k --+---====-=----+
11111
(2)3AB y k x x k k x x ---===
1AD AB k k ∴⋅=- ∴AD ⊥AB
20.【答案】
【解析】解:(1
)
.
因为x=2是函数f (x )的极值点, 所以a=2,则f (x )
=
,
则f (1)=1,f'(1)=﹣1,所以切线方程为x+y ﹣2=0; (2)当a=1
时,
,其中x ∈
[,e 2
],
当x ∈
[,1)时,f'(x )<0;x ∈(1,e 2
]时,f'(x )>0,
∴x=1是f (x )在
[,e 2
]上唯一的极小值点,∴[f (x )]min =f (1)=0.
又
,,
综上,所求实数m 的取值范围为{m|0<m ≤e ﹣2}; (3
)
等价于
,
若a=1时,由(2)知f (x )
=在[1,+∞)上为增函数,
当n >1时,令
x=
,则x >1,故f (x )>f (1)=0,
即
,∴.
故
即
,
即
.
21.【答案】
【解析】解:(Ⅰ)f (x )=4
sinxcosx ﹣5sin 2
x ﹣cos 2x+3=2sin2x ﹣
+3=2
sin2x+2cos2x=4sin (2x+
).
∵x ∈[0,],
∴2x+
∈[,
],
∴f (x )∈[﹣2,4].
(Ⅱ)由条件得 sin (2A+C )=2sinA+2sinAcos (A+C ), ∴sinAcos (A+C )+cosAsin (A+C )=2sinA+2sinAcos (A+C ), 化简得 sinC=2sinA , 由正弦定理得:c=2a , 又b=
,
由余弦定理得:a2=b2+c2﹣2bccosA=3a2+4a2﹣4a2cosA ,解得:cosA=
,
故解得:A=,B=
,C=
,
∴f (B )=f (
)=4sin =2.
【点评】本题考查了平方关系、倍角公式、两角和差的正弦公式及其单调性、正弦定理、余弦定理,考查了推理能力和计算能力,属于中档题.
22.【答案】
【解析】【解析】(Ⅰ)因为BE 是⊙O 的切线,所以BAD EBD ∠=∠…………2分 又因为CAD BAD CAD CBD ∠=∠∠=∠,………………4分 所以CBD EBD ∠=∠,即BD 平分EBC ∠.………………5分 (Ⅱ)由⑴可知BAD EBD ∠=∠,且BED BED ∠=∠,
BDE ∆∽ABE ∆,所以
AB
BD
AE BE =
,……………………7分 又因为DBC DBE BAE BCD ∠=∠=∠=∠,
所以DBC BCD ∠=∠,CD BD =.……………………8分
所以
AB
CD
AB BD AE BE =
=,……………………9分 所以BE AB DC AE ⋅=⋅.……………………10分
23.【答案】
【解析】解:(Ⅰ)f(x)=sin2x+(1﹣2sin2
x)=sin2x+cos2x
=2(sin2x+cos2x)=2sin(2x+),
由2kπ+≤2x+≤2kπ+(k∈Z)得:kπ+≤x≤kπ+(k∈Z),
故f(x)的单调减区间为:[kπ+,kπ+](k∈Z);
(Ⅱ)当x∈[﹣,]时,(2x+)∈[0,],2sin(2x+)∈[0,2],
所以,f(x)的值域为[0,2].
24.【答案】
【解析】解;(1)由题意可设椭圆的标准方程为,c为半焦距.
∵右顶点为D(2,0),左焦点为,
∴a=2,,.
∴该椭圆的标准方程为.
(2)设点P(x0,y0),线段PA的中点M(x,y).
由中点坐标公式可得,解得.(*)
∵点P是椭圆上的动点,∴.
把(*)代入上式可得,可化为.
即线段PA的中点M的轨迹方程为一焦点在x轴上的椭圆.(3)①当直线BC的斜率不存在时,可得B(0,﹣1),C(0,1).
∴|BC|=2,点A到y轴的距离为1,∴=1;
②当直线BC的斜率存在时,设直线BC的方程为y=kx,B(x1,y1),C(﹣x1,﹣y1)(x1<0).
联立,化为(1+4k2)x2=4.解得,
∴.
∴|BC|==2=.
又点A到直线BC的距离d=.
∴==,
∴==,
令f(k)=,则.
令f′(k)=0,解得.列表如下:
又由表格可知:当k=时,函数f(x)取得极小值,即取得最大值2,即.
而当x→+∞时,f(x)→0,→1.
综上可得:当k=时,△ABC的面积取得最大值,即.
【点评】熟练掌握椭圆的标准方程及其性质、中点坐标公式及“代点法”、分类讨论的思想方法、直线与椭圆相交问题转化为直线的方程与椭圆的方程联立解方程组、两点间的距离公式、点到直线的距离公式、三角形的面积计算公式、利用导数研究函数的单调性及其极值.。