2019年人教版小升初数学模拟试卷一(后附答案与解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年人教版小升初数学模拟试卷一
一、填空.(每空1分,共22分)
1.(2分)一个数由9个亿、5个千万、3个十万和7个千组成的.这个数写作,四舍五入到亿位是.
2.(4分)=12÷=:20=%=(小数)3.(2分)4×表示.积的倒数是.
4.(1分)小李买了1000元的国库券,定期三年,如果按年利率2.55%计算,到期时他取回本金和利息一共元.
5.(2分)一个圆柱的底面积是62.8平方分米,高是15分米,它的体积是,与它等底等高的圆锥的体积是.
6.(2分)王芳骑自行车,3小时行了75千米,王芳骑自行车的速度是千米/时,她行1千米需小时.
7.(1分)一个n边形,它的内角和是度.
8.(1分)六年(1)班有28名男生和22名女生,参加数学期中测试时有2人请病假.那一天的出勤率为.
9.(1分)分数的分子扩大到原来的8倍,分母缩小到原来的,这个分数.10.(2分)在1﹣20的数字卡片中,任意摸取一张,摸到质数的可能性是,摸出的可能性是.
11.(2分)把一个半径a厘米的圆无限均分,在拼成一个长方形.拼成的长方形的长是厘米,面积是平方厘米.
12.(2分)一个三角形三条边的长度都是整厘米数,其中两条边分别是5厘米和7厘米,那么第三条边最长是厘米,最短是厘米.
13.(1分)图中长方形面积平行四边形面积.
二、判断.(每小题2分,共12分)
14.(2分)一个数不是正数就是负数..(判断对错)
15.(2分)角的大小同边的长短没有关系..(判断对错)
16.(2分)长方形的面积一定,长和宽成反比例.(判断对错)17.(2分)甲数比乙数多,乙数就比甲数少..(判断对错)18.(2分)两个偶数一定不是互质数,两个奇数一定是互质数..(判断对错)
19.(2分)两个数相乘的积,一定大于这两个数相减的差..(判断对错)
三、选择.(每题1分,共6分)
20.(1分)下面的叙述中,()适合用折线统计图表示.
A.本年级各班人数B.一年内气温的变化情况
C.商店几种商品的销售量
21.(1分)两个完全一样的梯形一定可以拼成一个()
A.长方形B.正方形C.平行四边形D.梯形
22.(1分)10克盐完全溶解在100克水中,盐与盐水的比是()A.1:10 B.1:9 C.1:11
23.(1分)下面中两种量成正比例关系,中两种量成反比例关系.
A.甲、乙两地相距120千米,汽车每小时所行路程和时间
B.圆的周长和圆的直径
C.总钱数一定,花了的和剩余的钱
D.正方体一个面的面积和它的表面积.
24.(1分)只能画一条对称轴的是()
A.长方形B.正方形C.圆D.扇形25.(1分)下列数()能化成有限小数.
A.B.C.
四、计算.(第1题6分,第2题12分,第3题12分,共30分)26.(6分)直接写得数:
7.5+0.3=÷7= 2.63﹣1.7=
350×=81÷=0.77+0.33=27.(12分)求未知数x.
(1)x﹣x=16
(2)x:0.28=:70%
(3):=
(4)8×﹣2.5x=.
28.(12分)用简便方法计算.
36×(+﹣)
3.28×37+6.4×32.8﹣3.28
48×
1.8×÷×1.8
五、解答题(共1小题,满分5分)
29.(5分)求如图阴影部分的面积.(单位:m)
六、应用题.(每小题6分,共24分)
30.(6分)一个化肥厂计划生产化肥1080吨,实际生产化肥1260吨,实际生产化肥的吨数比计划多百分之几?(百分号前保留一位小数)
31.(6分)王老师要买60个足球,三个店的足球单价都是25元,你认为王老师到哪个店买合算?
32.(6分)一个长方体的木块,它的棱长总和是180厘米,它的长、宽、高之比是4:4:1.现将这个长方体木块切削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?
33.(6分)果园里的桃树比苹果树少50棵,苹果树的和桃树的40%相等,梨树的棵树与苹果树的棵树之比是2:3,这个果园里这三种树各有多少棵?
2019年人教版小升初数学模拟试卷一
参考答案与试题解析
一、填空.(每空1分,共22分)
1.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.
【解答】解:一个数由9个亿、5个千万、3个十万和7个千组成的.这个数写作:950307000;
950307000≈10亿
故答案为:950307000,10亿.
2.【分析】根据分数与除法的关系=3÷4,再根据商不变的性质被除数、除数都乘4就是12÷16;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘5就是15:20;3÷4=0.75,把0.75的小数点向右移动两位添上百分号就是75%.
【解答】解:=12÷16=15:20=75%=0.75.
故答案为:16,15,75,0.75.
3.【分析】根据求一个数的几分之几是多少,用乘法计算,求出积,积如果是分数,颠倒分数分母和分子的位置即可得出倒数.
【解答】解:4×表示4的是多少.
4×=
的倒数是.
故答案为:4的是多少;.
4.【分析】在此题中,本金是1000元,时间是3年,利率是2.55%,求本息,运用关系式:本息=本金+本金×年利率×时间,解决问题.
【解答】解:1000+1000×2.55%×3
=1000+76.5
=1076.5(元)
答:到期他一共可获得本金和利息共1076.5元.
故答案为:1076.5.
5.【分析】(1)把底面积62.8平方分米和高15分米代入圆柱的体积公式V=Sh解答即可;
(2)根据“圆锥的体积等于和它等底等高的圆柱的体积的”这个结论即可求出圆锥的体积.
【解答】解:(1)62.8×15=942(立方分米);
(2)942×=314(立方分米).
答:它的体积是942立方分米,与它等底等高的圆锥的体积是314立方分米.故答案为:942立方分米,314立方分米.
6.【分析】首先根据路程÷时间=速度,用王芳骑自行车行的路程除以用的时间,求出王芳骑自行车的速度是多少千米/时;然后用时间除以路程,也就是用王芳骑75千米用的时间除以75,求出她行1千米需多少小时即可.
【解答】解:75÷3=25(千米/时)
3÷75=0.04(小时)
答:王芳骑自行车的速度是25千米/时,她行1千米需0.04小时.
故答案为:25、0.04.
7.【分析】根据过同一顶点作出的对角线把多边形分成(n﹣2)个三角形的规律,再利用三角形的内角和等于180°即可推出多边形的内角和公式.
【解答】解:n边形的内角和是:(n﹣2)×180度;
故答案为:(n﹣2)×180.
8.【分析】出勤率是指出勤人数占总人数的百分比,先求出总人数,然后用出勤人数除以总人数乘上100%即可.
【解答】解:(28+22﹣2)÷(28+22)×100%
=48÷50×100%
=96%;
答:那一天的出勤率是96%.
故答案为:96%.
9.【分析】这个分数的分子扩大到原来的8倍,如果分母不变,这个分数就扩大到原来的8倍;如果分子不变,分母缩小到原来的,这个分数就扩大到原来的8倍.因此,分数的分子扩大到原来的8倍,分母缩小到原来的,这个分数扩到大原来的64倍.
【解答】解:8×8=64
即分数的分子扩大到原来的8倍,分母缩小到原来的,这个分数扩大到原来的64倍.
故答案为:扩大到原来的64倍.
10.【分析】首先判断出1﹣20的数字中质数的个数是多少,再根据求可能性的
方法:求一个数是另一个数的几分之几,用除法列式解答,用质数的个数除以20,求出摸到质数的可能性是多少;然后根据1﹣20中的奇数、偶数都是10个,可得摸出奇数、偶数的可能性是,据此解答即可.
【解答】解:因为1﹣20的数字中质数有8个:2、3、5、7、11、13、17、19,
所以摸到质数的可能性是:
8÷20=;
因为1﹣20中的奇数、偶数都是10个,
所以摸出奇数、偶数的可能性是.
答:摸到质数的可能性是,摸出奇数、偶数的可能性是.
故答案为:.
11.【分析】一个圆平均分成若干份后拼成的一个近似长方形,这个近似长方形的长,就是圆周长的一半,面积等于圆的面积,据此解答圆的周长公式:C =2πr和圆的面积公式:S=πr2解答即可.
【解答】解:2×3.14×a÷2=3.14a(厘米)
3.14×a2
=3.14a2(平方厘米)
答:拼成的长方形的长是3.14a厘米,面积是3.14a2平方厘米.
故答案为:3.14a,3.14a2.
12.【分析】根据三角形的特征:任意两边之和大于第三边,任意两边之差小于第三边;由此解答即可.
【解答】解:7﹣5<第三边<7+5,
所以:2<第三边<12,
即第三边的取值在2~12厘米(不包括2厘米和12厘米),
因为三条边的长度都是整厘米数,所以第三条边最长为:12﹣1=11(厘米),最短为:2+1=3(厘米);
故答案为:11,3.
13.【分析】由图意可知:长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,所以长方形的面积等于平行四边形的面积,据此即可判断.【解答】解:
因为长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,根据长方形的面积公式、平行四边形的面积公式可得出长方形的面积等于平行四边形的面积.
故答案为:等于.
二、判断.(每小题2分,共12分)
14.【分析】像1,0.5,3…大于0的数是正数,像﹣1,﹣0.5,﹣3…小于0的数是负数,0不大于0,也不小于0,可得说法错误.
【解答】解:因为0不大于0,也不小于0,
所以0既不是正数也不是负数,
故原说法错误,
故答案为:×.
15.【分析】根据角的含义“由一点引出的两条射线所围成的图形,叫做角”可知:角的大小跟边的长短无关,跟两边叉开的大小有关;由此判断即可.
【解答】解:根据角的含义可知:角两边的长短和角的大小没有关系,说法
正确;
故答案为:√.
16.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.
【解答】解:因为长方形的面积=长×宽,
如果长方形的面积一定,即长方形的长和宽的积一定,则长方形的长和宽成反比例.
故答案为:√.
17.【分析】根据“甲数比乙数多,”知道是把乙数看做单位“1”,即甲数(1+),然后用两数的差除以甲数,即可得出乙数比甲数少几分之几,然后比较即可判断.
【解答】解:÷(1+)
=÷

所以甲数比乙数多,乙数就比甲数少说法错误.
故答案为:×.
18.【分析】①公因数只有1两个数为互质数,能被2整数的数为偶数,所以两个偶数的公因数除了1之外肯定最少还有个2,两个大于0且不同的偶数一定不是互质数.
②此题可以举出反例来回答.
【解答】解:①根据公因数及偶数的定义,两个偶数的公因数除了1之外肯
定最少还有个2,所以两个大于0且不同的偶数一定不是互质数.
②而3和9虽都是奇数,但不是互质数,除公因数1外,还有公因数3,类似的还有5和25等.
所以两个偶数一定不是互质数,两个奇数一定是互质数说法错误.
故答案为:×.
19.【分析】此题可以利用赋值法,举例子解答.
【解答】解:如果这两个数中有一个数是1,因为1乘任何数都得原数,则两个数的积就是另一个数,
如1×0.5=0.5,1﹣0.5=0.5,
所以原题说法错误.
故答案为:×.
三、选择.(每题1分,共6分)
20.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.
【解答】解:根据统计图的特点可知:适合用折线统计图表示的是一年内气温的变化情况;
故选:B.
21.【分析】因为这里没有说明这两个梯形是不是直角梯形或等腰直角梯形,所以这两个完全一样的梯形,一定可以拼成一个平行四边形,据此可解.【解答】解:因两个完全一样的梯形,一定可以拼成一个平行四边形;但是不一定能拼成长方形、正方形或梯形.
故选:C.
22.【分析】把10克盐完全溶解在100克水中,就形成了10+100=110克的盐水,要求盐与盐水的重量比,也就是求10克与110克的比.
【解答】解:10:(10+100)
=10:110
=1:11.
故选:C.
23.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.
【解答】解:A.甲、乙两地相距120千米,汽车每小时所行路程×时间=甲、乙两地相距120千米(一定),所以成反比例;
B.圆的周长÷圆的直径=π(一定),所以成正比例;
C.花了的+剩余的=钱总钱数(一定),是和一定,所以不成比例;
D.正方体的表面积÷一个面的面积=6(一定),所以成正比例.
故答案为:BD,A.
24.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此可判断每个图形对称轴条数.
【解答】解:长方形有2条对称轴;
正方形有4条对称轴;
圆有无数条对称轴;
扇形只有一条对称轴;
故选:D.
25.【分析】把一个分数化成最简分数,再把这个分数的分母分解质因数,如果只有2、5,这个分数就能化成有限小数,如果除2、5外还有其他因数,这个数就不能化成有限小数.
【解答】解:9=3×3,不能化成有限小数;
=,分母中只质因数只有2,能化成有限小数;
15=3×5,不能化成有限小数.
故选:B.
四、计算.(第1题6分,第2题12分,第3题12分,共30分)
26.【分析】根据分数乘除法的计算法则以及小数的加减法的计算法则口算即可.【解答】解:
7.5+0.3=7.8 ÷7= 2.63﹣1.7=0.93
350×=175 81÷=45 0.77+0.33=1.1
27.【分析】(1)先化简方程,再根据等式的性质,方程两边同时除以求解;(2)根据比例的基本性质,原式化成70%x=0.28×,再根据等式的性质,方程两边同时除以70%求解;
(3)根据比例的基本性质,原式化成x=×10,再根据等式的性质,方程两边同时除以求解;
(4)根据等式的性质,方程两边同时加上2.5x,再两边同时减去,然后再两边同时除以2.5求解.
【解答】解:(1)x﹣x=16
x=16
x÷=16÷
x=192;
(2)x:0.28=:70%
70%x=0.28×
70%x÷70%=0.16÷70%
x=;
(3):=
x=×10
x=
x=15;
(4)8×﹣2.5x=
2﹣2.5x+2.5x=+2.5x
2=+2.5x
2﹣=+2.5x﹣
=2.5x
÷2.5=2.5x÷2.5
x=.
28.【分析】(1)运用乘法的分配律进行简算;(2)运用乘法的分配律进行简算;
(3)把48化成49﹣1,再运用乘法的分配律进行简算;(4)运用乘法的交换律、结合律进行简算;
【解答】解:(1)36×(+﹣)
=36×+36×﹣36×
=21+16﹣27
=37﹣27
=10;
(2)3.28×37+6.4×32.8﹣3.28
=3.28×37+64×3.28﹣3.28
=3.28×(37+64﹣1)
=3.28×100
=328;
(3)48×
=(49﹣1)×
=49×﹣1×
=8﹣
=7;
(4)1.8×÷×1.8
=1.8×1.8×÷
=(1.8×1.8 )×(÷)
=3.24×1
=3.24.
五、解答题(共1小题,满分5分)
29.【分析】此阴影部分的面积等于长为25米、宽为20米的长方形的面积减去半径为20米的半圆的面积.
【解答】解:20×25﹣3.14×(20÷2)2÷2
=500﹣3.14×100÷2
=500﹣314÷2
=500﹣157
=343(平方米)
答:阴影部分的面积是343平方米.
六、应用题.(每小题6分,共24分)
30.【分析】化肥厂计划生产化肥1080万吨,实际比计划增产1260﹣1080=180万吨,根据分数除法的意义,增产了180÷1080.
【解答】解:(1260﹣1080)÷1080
=180÷1080
≈16.7%,
答:实际生产化肥的吨数比计划多16.7%
31.【分析】首先根据在甲店买10个足球送2个足球,也就是用买10个足球的钱可以买到12(10+2=12)个足球,所以根据60÷12×10=50(个),用买50个足球的钱可以买到60个足球,据此求出在甲店买60个足球需要多少钱.然后根据总价=单价×数量,用每个足球的单价乘60,求出60个足球的价格
是1500元;再把60个足球的原价看作单位“1”,根据百分数乘法的意义,用60个足球的原价乘80%,求出在乙店买60个足球需要多少钱.
最后根据总价=单价×数量,用每个足球的单价乘60,求出60个足球的价格是1500元;再根据购物每满200元,1500÷200=7…100,求出返回现金是210(30×7=210)元,再用60个足球的价格减去返回的钱数,求出在丙店买60个足球需要多少钱,再比较大小,判断出王老师到哪个店买合算即可.【解答】解:在甲店买60个足球需要:
25×[60÷(10+2)×10]
=25×[60÷12×10]
=25×50
=1250(元)
在乙店买60个足球需要:
25×60×80%
=1500×80%
=1200(元)
在丙店买60个足球需要:
25×60÷200
=1500÷200
=7 (100)
25×60﹣30×7
=1500﹣210
=1290(元)
因为1200<1250<1290,
所以王老师到乙店买合算.
答:王老师到乙店买合算.
32.【分析】用棱长和除以4求出长、宽、高的和,再除以(4+4+1)求出一份是多少,再分别乘4、1求出长、宽、高各是多少,再确定把长、宽当作底面,高圆柱的高削的最大.
【解答】解:180÷4÷(4+4+1)
=45÷9
=5(厘米)
5×4=20(厘米)
长是20厘米、宽是20厘米、高是5厘米.
把20×20当作底面,5厘米是高,这样削成的圆柱最大.
20÷2=10(厘米)
3.14×10×10×5
=314×5
=1570(立方厘米)
答:这个圆柱的体积是1570立方厘米.
33.【分析】苹果树棵数的和桃树的40%相等,苹果树是桃树的40%÷=120%,即苹果树比桃树多120﹣1=20%,桃树比苹果树少50株,则桃树有50÷20%=250棵,则苹果树有250+50=300棵,梨树与苹果树的比是2:3.则梨树有300×=200棵.
【解答】解:桃树有:
50÷(40%÷﹣1)
=50÷(120%﹣1)
=50÷20%
=250(棵)
苹果树有:250+50=300(棵)
梨树有:300×=200(棵)
答:苹果树有300棵,桃树有250棵,梨树有200棵.。

相关文档
最新文档