西城区一中2018-2019学年上学期高三数学10月月考试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西城区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 下列说法正确的是( )
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
2. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π10 3. 执行如图的程序框图,则输出S 的值为( )
A .2016
B .2
C .
D .﹣1
4. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( ) A .23 B. 3
32
C. 33
D. 43
5. “
”是“
”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
6. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则
=( )
A .﹣1
B .2
C .﹣5
D .﹣3
7. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则
|2|a b +=( )
A
B . C
. D
.8. 已知
||=3,
||=1


的夹角为,那么
|﹣
4|等于( )
A .2 B

C

D .13
9. 设函数()(
)2
1,1
41
x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量的取值范围为( )
A .(][],20,10-∞-
B .(][],20,1-∞-
C .(][],21,10-∞-
D .[][]2,01,10-
10.已知函数()2sin()f x x ωϕ=+(0)2
π
ϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最
小距离为

,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2
π D .23π
11.函数f (x )=1﹣xlnx 的零点所在区间是( ) A .(0
,) B
.(,1) C .(1,2) D .(2,3)
12.在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
二、填空题
13.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想. 14.函数)(x f (R x ∈)满足2)1(=f 且)(x f 在R 上的导数)('x f 满足03)('>-x f ,则不等式
1log 3)(log 33-<x x f 的解集为 .
【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.
15.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g
(x )(a >0且a ≠1),+
=.若数列{}的前n 项和大于62,则n 的最小值
为 .
16.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.
①若AC=BD ,则四边形EFGH 是 ;
②若AC ⊥BD ,则四边形EFGH 是 .
17.在△ABC 中,若a=9,b=10,c=12,则△ABC 的形状是 .
三、解答题
18.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;
(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若2
2
2
11PQ F P F Q =+,求直线m 的方程.
19.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.
(1)求证:BD⊥平面AA1C1C;
(2)求二面角C1﹣AB﹣C的余弦值.
20.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积.
21.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;
(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.
22.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ;
(2)设(){}
1n
n n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .
【命题意图】本题考查等差数列与等比数列的通项与前n 项和、数列求和等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.
23.如图,正方形ABCD 中,以D 为圆心、DA 为半径的圆弧与以BC 为直径的半圆O 交于点F ,连接CF 并延长交AB 于点E . (Ⅰ)求证:AE=EB ;
(Ⅱ)若EF •FC=,求正方形ABCD 的面积.
24.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.
(1)求实数m的取值范围;
(2)设向量,求满足
不等式的α的取值范围.
西城区一中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1.【答案】C
【解析】
考点:几何体的结构特征.
2.【答案】B
【解析】
考点:球与几何体
3.【答案】B
【解析】解:模拟执行程序框图,可得
s=2,k=0
满足条件k<2016,s=﹣1,k=1
满足条件k<2016,s=,k=2
满足条件k<2016,s=2.k=3
满足条件k<2016,s=﹣1,k=4
满足条件k<2016,s=,k=5

观察规律可知,s的取值以3为周期,由2015=3*671+2,有
满足条件k<2016,s=2,k=2016
不满足条件k<2016,退出循环,输出s的值为2.
故选:B.
【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.
4.【答案】 C
【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.
圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆
的面积为
1
||2
AB d '⋅=,选C . 5. 【答案】B
【解析】解:,解得
或x <0,
∴“
”是“
”的必要不充分条件.
故选:B .
6. 【答案】C
【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,
即2,﹣1是f ′(x )=0的两个根,
∵f (x )=ax 3+bx 2
+cx+d , ∴f ′(x )=3ax 2
+2bx+c , 由f ′(x )=3ax 2
+2bx+c=0,
得2+(﹣1)==1,
﹣1×2=
=﹣2,
即c=﹣6a ,2b=﹣3a ,
即f ′(x )=3ax 2+2bx+c=3ax 2
﹣3ax ﹣6a=3a (x ﹣2)(x+1),
则=
==﹣5,
故选:C
【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.
7. 【答案】A 【解析】
考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.
8.【答案】C
【解析】解:||=3,||=1,与的夹角为,
可得=||||cos<,>=3×1×=,
即有|﹣4|=
==.
故选:C.
【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
9.【答案】A
【解析】
考点:分段函数的应用.
【方法点晴】本题主要考查了分段函数的应用,其中解答中涉及到不等式的求解,集合的交集和集合的并集运算,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,根据分段函数的分段条件,列出相应的不等式,通过求解每个不等式的解集,利用集合的运算是解答的关键. 10.【答案】A
【解析】
考点:三角函数的图象性质.
11.【答案】C
【解析】解:∵f(1)=1>0,f(2)=1﹣2ln2=ln<0,
∴函数f(x)=1﹣xlnx的零点所在区间是(1,2).
故选:C.
【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.
12.【答案】D
【解析】解:∵sinC+sin(B﹣A)=sin2A,
∴sin(A+B)+sin(B﹣A)=sin2A,
∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,
∴2cosAsinB=sin2A=2sinAcosA,
∴2cosA(sinA﹣sinB)=0,
∴cosA=0,或sinA=sinB,
∴A=,或a=b,
∴△ABC为等腰三角形或直角三角形
故选:D.
【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.
二、填空题
13.【答案】8
14.【答案】)3,0(
【解析】构造函数x x f x F 3)()(-=,则03)(')('>-=x f x F ,说明)(x F 在R 上是增函数,且
13)1()1(-=-=f F .又不等式1log 3)(log 33-<x x f 可化为1l o g 3)(l o g 33-<-x x f ,即
)1()(l o g 3F x F <,∴1log 3<x ,解得30<<x .∴不等式1log 3)(log 33-<x x f 的解集为)3,0(.
15.【答案】 1 .
【解析】解:∵x 为实数,[x]表示不超过x 的最大整数, ∴如图,当x ∈[0,1)时,画出函数f (x )=x ﹣[x]的图象,
再左右扩展知f (x )为周期函数. 结合图象得到函数f (x )=x ﹣[x]的最小正周期是1.
故答案为:1.
【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.
16.【答案】 菱形 ; 矩形 .
【解析】解:如图所示:①∵EF ∥AC ,GH ∥AC 且EF=AC ,GH=AC
∴四边形EFGH 是平行四边形
又∵AC=BD
∴EF=FG
∴四边形EFGH 是菱形.
②由①知四边形EFGH 是平行四边形 又∵AC ⊥BD , ∴EF ⊥FG
∴四边形EFGH 是矩形. 故答案为:菱形,矩形
【点评】本题主要考查棱锥的结构特征,主要涉及了线段的中点,中位线定理,构成平面图形,研究平面图形的形状,是常考类型,属基础题.
17.【答案】锐角三角形
【解析】解:∵c=12是最大边,∴角C是最大角
根据余弦定理,得cosC==>0
∵C∈(0,π),∴角C是锐角,
由此可得A、B也是锐角,所以△ABC是锐角三角形
故答案为:锐角三角形
【点评】本题给出三角形的三条边长,判断三角形的形状,着重考查了用余弦定理解三角形和知识,属于基础题.
三、解答题
18.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若m 为直线1=x ,代入
13
42
2=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q
直接计算知29PQ =,2
25||||2121=+Q F P F ,222
11PQ F P
F Q ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-
由⎪⎩
⎪⎨⎧-==+
)1(1342
2x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,2
2214312
4k k x x +-=⋅
由222
11PQ F P F Q =+得,11
0F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k
代入得0438)1()143124)(1(2
22222=+⋅-+++-+k k k k k k ,即0972
=-k 解得773±=k ,直线m 的方程为)1(7
7
3-±=x y
19.【答案】
【解析】解:(1)∵四边形AA 1C 1C 为平行四边形,∴AC=A 1C 1, ∵AC=AA 1,∴AA 1=A 1C 1,
∵∠AA 1C 1=60°,∴△AA 1C 1为等边三角形, 同理△ABC 1是等边三角形,
∵D为AC1的中点,∴BD⊥AC1,
∵平面ABC1⊥平面AA1C1C,
平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1,
∴BD⊥平面AA1C1C.
(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,
平面ABC1的一个法向量为,设平面ABC的法向量为,
由题意可得,,则,
所以平面ABC的一个法向量为=(,1,1),
∴cosθ=.
即二面角C1﹣AB﹣C的余弦值等于.
【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.
20.【答案】
【解析】解:四边形ABCD绕AD旋转一周所成的
几何体,如右图:
S表面=S圆台下底面+S圆台侧面+S圆锥侧面=
πr22+π(r1+r2)l2+πr1l1===
21.【答案】
【解析】(本小题满分12分)φ
解:(Ⅰ)f (x )
=
+

=
+
=

由f (x
)图象过点()知:
所以:φ
=
所以f (x )
= 令(k ∈Z )
即:
所以:函数f (x )在[0,π]
上的单调区间为:
(Ⅱ)因为x 0∈(π,2π
),
则:
2x 0∈(π,2π)
则:
=
sin
所以
=)
=
【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.
22.【答案】
【解析】(1)设等差数列{}n a 的首项为1a ,公差为d , 则由990S =,15240S =,得1193690
15105240
a d a d +=⎧⎨
+=⎩,解得12a d ==,……………3分
所以2(n 1)22n a n =+-⨯=,即2n a n =,
(1)
22(1)2
n n n S n n n -=+
⨯=+,即1n S n n =+().……………5分
23.【答案】
【解析】证明:(Ⅰ)∵以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,
∴EA为圆D的切线,且EB是圆O的切线,
由切割线定理得EA2=EF•EC,
故AE=EB.
(Ⅱ)设正方形的边长为a,连结BF,
∵BC为圆O的直径,∴BF⊥EC,
在Rt△BCE中,由射影定理得EF•FC=BF2=,
∴BF==,解得a=2,
∴正方形ABCD的面积为4.
【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
24.【答案】
【解析】解:(1)∵函数f(x)=x2﹣mx在[1,+∞)上是单调函数
∴x=≤1
∴m≤2
∴实数m的取值范围为(﹣∞,2];
(2)由(1)知,函数f(x)=x2﹣mx在[1,+∞)上是单调增函数
∵,

∴2﹣cos2α>cos2α+3
∴cos2α<

∴α的取值范围为.
【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.。

相关文档
最新文档