淄博市七年级上册数学期末试卷及答案-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淄博市七年级上册数学期末试卷及答案-百度文库
一、选择题
1.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒
C .60︒
D .75︒
2.下列选项中,运算正确的是( )
A .532x x -=
B .2ab ab ab -=
C .23a a a -+=-
D .235a b ab +=
3.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3
棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-= D .32(72)30x x +-=
4.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为
( ) A .﹣9℃
B .7℃
C .﹣7℃
D .9℃
5.在实数:3.14159,35-,π,25,﹣1
7
,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个
B .2个
C .3个
D .4个
6.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )
A .171
B .190
C .210
D .380 7.若多项式229x mx ++是完全平方式,则常数m 的值为()
A .3
B .-3
C .±3
D .+6
8.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( ) 4
a
b
c
﹣2
3 …
A .4
B .3
C .0
D .﹣2
9.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y
D .若x 2=y 2,则x =y
10.如图是由下列哪个立体图形展开得到的?( )
A .圆柱
B .三棱锥
C .三棱柱
D .四棱柱
11.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数
法表示为 ( )吨. A .415010⨯ B .51510⨯
C .70.1510⨯
D .61.510⨯
12.如果单项式1
3a x y +与2b x y 是同类项,那么a b 、的值分别为( )
A .2,3a b ==
B .1,2a b ==
C .1,3a b ==
D .2,2a b ==
13.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯
B .5510⨯
C .6510⨯
D .510⨯
14.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )
A .a+b<0
B .a+c<0
C .a -b>0
D .b -c<0
15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD
∠的度数为( )
A .100
B .120
C .135
D .150
二、填空题
16.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.
17.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,
结果为
2k n (其中k 是使2k
n
为奇数的正整数)并且运算重复进行,例如,n =66时,其“C
运算”如下:
若n =26,则第2019次“C 运算”的结果是_____. 18.|-3|=_________; 19.若5
23m x
y +与2n x y 的和仍为单项式,则n m =__________.
20.化简:2xy xy +=__________. 21.写出一个比4大的无理数:____________.
22.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.
23.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.
24.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 25.如果一个数的平方根等于这个数本身,那么这个数是_____. 26.若a 、b 是互为倒数,则2ab ﹣5=_____.
27.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 28.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)
29.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______. 30.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.
三、压轴题
31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;
②此时OQ 是否平分∠AOC ?请说明理由;
(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).
32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.
(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求
α.
33.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:
(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=1
2
AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.
34.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?
35.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,
并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.
(1)求出数轴上B点对应的数及AC的距离.
(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.
①当P点在AB之间运动时,则BP=.(用含t的代数式表示)
②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.
③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数
36.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);
(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)
(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)
(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.
37.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.
请你用以上知识解决问题:
如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.
(1)请你在图②的数轴上表示出A,B,C三点的位置.
(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.
①当t=2时,求AB和AC的长度;
②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若AC=4cm,求DE的长;
(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.
【详解】
解:根据题意列方程的:2(90°-α)=α,
解得:α=60°.
故选:C.
【点睛】
本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).
2.B
解析:B
【解析】
【分析】
根据整式的加减法法则即可得答案.
【详解】
A.5x-3x=2x,故该选项计算错误,不符合题意,
-=,计算正确,符合题意,
B.2ab ab ab
C.-2a+3a=a,故该选项计算错误,不符合题意,
D.2a与3b不是同类项,不能合并,故该选项计算错误,不符合题意,
故选:B.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则是解题关键.
3.A
解析:A
【解析】
【分析】
设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.
【详解】
设女生x人,
∵共有学生30名,
∴男生有(30-x)名,
∵女生每人种2棵,男生每人种3棵,
∴女生种树2x棵,男生植树3(30-x)棵,
∵共种树72棵,
∴2x+3(30-x)=72,
故选:A.
【点睛】
本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.
4.D
解析:D
【解析】
【分析】
这天的温差就是最高气温与最低气温的差,列式计算.
【详解】
解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),
故选:D.
【点睛】
本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.
5.C
解析:C
【解析】
【分析】
无理数就是无限不循环小数,依据定义即可判断.
【详解】
解:在3.14159π1
7
,0.1313313331…(每2个1之间依次多一个3)
π、0.1313313331…(每2个1之间依次多一个3)这3个, 故选:C . 【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
6.B
解析:B 【解析】
分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点, 第三个图4条直线相交,最多有6个, 而3=1+2,6=1+2+3,
∴第四个图5条直线相交,最多有1+2+3+4=10个,
∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190. 故选B .
点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.
7.C
解析:C 【解析】 【分析】
利用完全平方式的结构特征即可求出m 的值. 【详解】
解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】
此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.
8.D
解析:D 【解析】 【分析】
根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.
【详解】
解:∵任意三个相邻格子中所填整数之和都相等,
∴4+a+b=a+b+c,
解得c=4,
a+b+c=b+c+(-2),
解得a=-2,
所以,数据从左到右依次为4、-2、b、4、-2、b,
第9个数与第三个数相同,即b=3,
所以,每3个数“4、-2、3”为一个循环组依次循环,
∵2018÷3=672…2,
∴第2018个格子中的整数与第2个格子中的数相同,为-2.
故选D.
【点睛】
此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.
9.D
解析:D
【解析】
【分析】
根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.
【详解】
解:A、两边都加上3,等式仍成立,故本选项不符合题意.
B、两边都减去3,等式仍成立,故本选项不符合题意.
C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.
D、两边开方,则x=y或x=﹣y,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.
10.C
解析:C
【解析】
【分析】
三棱柱的侧面展开图是长方形,底面是三角形.
【详解】
解:由图可得,该展开图是由三棱柱得到的, 故选:C . 【点睛】
此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
11.D
解析:D 【解析】 【分析】
将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1. 【详解】
150万=1500000=61.510⨯, 故选:D. 【点睛】
本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.
12.C
解析:C 【解析】 【分析】
由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得. 【详解】
解:根据题意得:a+1=2,b=3, 则a=1. 故选:C . 【点睛】
本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.
13.B
解析:B 【解析】 【分析】
科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】
将50万用科学记数法表示为5510⨯,故B 选项是正确答案.
【点睛】
此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.
14.C
解析:C
【解析】
【分析】
根据数轴上的数,右边的数总是大于左边的数,即可判断a 、b 、c 的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.
【详解】
根据数轴可知:a <b <0<c ,且|a |>|c |>|b |
则A. a +b <0正确,不符合题意;
B. a +c <0正确,不符合题意;
C .a -b>0错误,符合题意;
D. b -c<0正确,不符合题意;
故选C.
【点睛】
本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.
15.C
解析:C
【解析】
【分析】
首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.
【详解】
解:∵OB 平分∠COD ,
∴∠COB=∠BOD=45°,
∵∠AOB=90°,
∴∠AOC=45°,
∴∠AOD=135°.
故选:C .
【点睛】
本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.
二、填空题
16.14
【解析】
因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,
因为mn=17cm,所以x+4x+=1
解析:14
【解析】
因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,
因为M,N分别是AC,DB的中点,所以CM=1
2
AC x
=,DN=
17
22
BD x
=,
因为mn=17cm,所以x+4x+7
2
x=17,解得x=2,所以BD=14,故答案为:14.
17.【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.
【详解】
解:由题意可得,
当n=26时,
第一次输出的结果为:13
解析:【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.
【详解】
解:由题意可得,
当n=26时,
第一次输出的结果为:13,
第二次输出的结果为:40,
第三次输出的结果为:5,
第四次输出的结果为:16,
第五次输出的结果为:1,
第六次输出的结果为:4,
第七次输出的结果为:1
第八次输出的结果为:4
…,
∵(2019﹣4)÷2=2015÷2=1007…1,
∴第2019次“C 运算”的结果是1,
故答案为:1.
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 18.3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-3|=3.
故答案为3.
解析:3
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-3|=3.
故答案为3.
19.9
【解析】
根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.
解析:9
【解析】
根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得
m 3,n 2=-=,所以()239n m =-=,故答案为:9.
20..
【解析】
【分析】
由题意根据合并同类项法则对题干整式进行化简即可.
【详解】
解:
故填.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .
【解析】
【分析】
由题意根据合并同类项法则对题干整式进行化简即可.
【详解】
解:23.xy xy xy +=
故填3xy.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.
21.答案不唯一,如:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】
一个比4大的无理数如.
故答案为.
【点睛】
本题考查了估算无理数的大小,实数的
解析:
【解析】
【分析】
无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.
【详解】
一个比4
.
【点睛】
本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.
22.5
【解析】
【分析】
首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.
【详解】
解:∵AB=5,BC=3,
∴AC=5+3
解析:5
【解析】
【分析】
首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.
【详解】
解:∵AB=5,BC=3,
∴AC=5+3=8;
∵点D是AC的中点,
∴AD=8÷2=4;
∵点E是AB的中点,
∴AE=5÷2=2.5,
∴ED=AD﹣AE=4﹣2.5=1.5.
故答案为:1.5.
【点睛】
此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.
23.2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.【详解】
解析:2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x的值,使得输入的数和第2次输出的数相等即可.
【详解】
解:∵第1次输出的结果为7+3=10,
第2次输出的结果为1
2
×10=5,
第3次输出结果为5+3=8,
第4次输出结果为1
2
×8=4,
第5次输出结果为1
2
×4=2,
第6次输出结果为1
2
×2=1,
第7次输出结果为1+3=4,
第8次输出结果为1
2
×4=2,
……
∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,
∴第2018次输出的数是2,
如图,
若x=1
4
x,则x=0;
若x=1
2
x+3,则x=6;
若x=1
2
(x+3),则x=3;
故答案为:2、0或3或6.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.
24.-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
解:,
,
,,
则原式,
故答案为
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
解析:-5
【解析】
【分析】
根据题意确定出a的最大值,b的最小值,即可求出所求.
【详解】
<<,
解:459
23
∴<<,
=,
a2
∴=,b3
=-=-,
则原式495
-
故答案为5
【点睛】
本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.
25.0
【解析】
【分析】
由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.
【详解】
∵±=±0=0,
∴0的平方根等于这个数本身.
故答案为0.
【点睛】
解析:0
【解析】
【分析】
由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.
【详解】
∵=±0=0,
∴0的平方根等于这个数本身.
故答案为0.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
26.-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒
解析:-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a 、b 是互为倒数,
∴ab =1,
∴2ab ﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.
27.【解析】
【分析】
根据合并同类项,系数相加,字母及指数不变,可得答案.
【详解】
解:,
故答案为:.
【点睛】
本题考查合并同类项,熟记合并同类项的法则是解题的关键.
解析:5()-a b
【解析】
【分析】
根据合并同类项,系数相加,字母及指数不变,可得答案.
【详解】
解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,
故答案为:5()-a b .
【点睛】
本题考查合并同类项,熟记合并同类项的法则是解题的关键.
28.①④
【解析】
【分析】
根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.
①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;
②令a=1,b=-1,此
解析:①④
【解析】
【分析】
根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.
【详解】
①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;
②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;
③两直线平行,内错角相等,故③是假命题,不符合题意;
④对顶角相等,真命题,符合题意,
故答案为:①④.
【点睛】
本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.
29.5
【解析】
【分析】
把方程的解代入方程即可得出的值.
【详解】
把代入方程,得
∴
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
解析:5
【解析】
【分析】
把方程的解代入方程即可得出m的值.
【详解】
x=代入方程,得
把1
m⨯-=
141
m=
∴5
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
【解析】
【分析】
根据∠2=180°-∠COE-∠1,可得出答案.
【详解】
解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.
故答案为:46°.
【点睛】
解析:46°
【解析】
【分析】
根据∠2=180°-∠COE-∠1,可得出答案.
【详解】
解:由题意得∠2=180°-∠COE-∠1=180°-90°-44°=46°.
故答案为:46°.
【点睛】
本题考查平角、直角的定义和几何图形中角的计算.能识别∠AOB是平角且它等于∠1、∠2和∠COE三个角之和是解题关键.
三、压轴题
31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;
(3)t=70
3
秒.
【解析】
【分析】
(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;
(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.
【详解】
(1)①∵∠AOC=30°,
∴∠BOC=180°﹣30°=150°,
∵OP平分∠BOC,
∴∠COP=1
2
∠BOC=75°,
∴∠COQ=90°﹣75°=15°,
∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;
②是,理由如下:
∵∠COQ=15°,∠AOQ=15°,
∴OQ平分∠AOC;
(2)∵OC平分∠POQ,
∴∠COQ=1
2
∠POQ=45°.
设∠AOQ=3t,∠AOC=30°+6t,
由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,
当30+6t﹣3t=225,也符合条件,
解得:t=65,
∴5秒或65秒时,OC平分∠POQ;
(3)设经过t秒后OC平分∠POB,
∵OC平分∠POB,
∴∠BOC=1
2
∠BOP,
∵∠AOQ+∠BOP=90°,
∴∠BOP=90°﹣3t,
又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,
∴180﹣30﹣6t=1
2
(90﹣3t),
解得t=70 3
.
【点睛】
本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 32.(1)80°;(2)140°
【解析】
【分析】
(1)根据角平分线的定义得∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,再根据角的和差得
∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定
义∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,
∠MON=∠MOC+∠BON-∠BOC结合三式求解.
【详解】
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴∠BOM=1
2
∠AOB,∠BON=
1
2
∠BOD,
∴∠MON=∠BOM+∠BON=1
2
∠AOB+
1
2
∠BOD=
1
2
(∠AOB+∠BOD).
∵∠AOD=∠AOB+∠BOD=α=160°,
∴∠MON=1
2
×160°=80°;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴∠MOC=1
2
∠AOC,∠BON=
1
2
∠BOD,
∵∠MON=∠MOC+∠BON-∠BOC,
∴∠MON=1
2
∠AOC+
1
2
∠BOD -∠BOC=
1
2
(∠AOC+∠BOD )-∠BOC.
∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,
∴∠MON=1
2
(∠AOB+∠BOC+∠BOD )-∠BOC=
1
2
(∠AOD+∠BOC )-∠BOC,
∵∠AOD=α,∠MON=60°,∠BOC=20°,
∴60°=1
2
(α+20°)-20°,
∴α=140°.
【点睛】
本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 33.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.
【解析】
【分析】
(1)根据“n节点”的概念解答;
(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;
(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在
AB延长线上时,根据BE=1
2
AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.
【详解】
(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,
∴n=AC+BC=2+6=8.
(2)如图所示:
∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,
∵AB=4,
∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,
x=-2.5或2.5,
∴点D表示的数为2.5或-2.5;
故答案为-2.5或2.5;
(3)分三种情况:
①当点E在BA延长线上时,
∵不能满足BE=1
2 AE,
∴该情况不符合题意,舍去;
②当点E在线段AB上时,可以满足BE=1
2
AE,如下图,
n=AE+BE=AB=4;
③当点E在AB延长线上时,
∵BE=1
2 AE,
∴BE=AB=4,
∴点E表示的数为6,
∴n=AE+BE=8+4=12,
综上所述:n=4或n=12.
【点睛】
本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.
34.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.
【解析】
【分析】
(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;
(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;。