浙江省宁波市慈溪市新城中学八年级(上)期中数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年浙江省宁波市慈溪市新城中学八年级
(上)期中数学试卷
一、选择题(每小题3分,共30分)
1.(3分)(2014•庆阳)下列学习用具中,不是轴对称图形的是()
A.B. C.
D.
【分析】根据轴对称图形的概念:把一个图形沿着某条直线折叠,两边能够重合的图形是轴对称图形,对各选项判断即可.
【解答】解:A、是轴对称图形,不合题意,故本选项错误;
B、是轴对称图形,不合题意,故本选项错误;
C、不是轴对称图形,符合题意,故本选项正确;
D、是轴对称图形,不合题意,故本选项错误;
故选:C.
【点评】本题考查了轴对称图形的知识,属于基础题,判断轴对称图形的关键是寻找对称轴.
2.(3分)(2013秋•慈溪市校级期中)下列命题是真命题的有()
①对顶角相等;
②两直线平行,内错角相等;
③两个锐角对应相等的两个直角三角形全等;
④三角形的一条中线能将三角形分成面积相等的两部分;
⑤若a2=b2,则a=b.
A.1个B.2个C.3个D.4个
【分析】根据对顶角的性质对①判断;根据平行线的性质对②进行判断;根据三角形全等的判定方法对③进行判断;根据三角形面积公式与中线的性质对④进行判断;根据平方根的定义对⑤进行判断.
【解答】解:对顶角相等,所以①正确;两直线平行,内错角相等,所以②正确;两个锐角对应相等且有一条边对应相等的两个直角三角形全等,所以③错误;三角形的一条中线能将三角形分成面积相等的两部分,所以④正确;若a2=b2,则a=b或a=﹣b,所以⑤错误.故选C.
【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.
3.(3分)(2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()
A.15°B.25°C.30°D.10°
【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,
∴∠BDF=∠C+∠E=90°+30°=120°,
∵△BDF中,∠B=45°,∠BDF=120°,
∴∠BFD=180°﹣45°﹣120°=15°.
故选A.
【点评】本题考查的是三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.
4.(3分)(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()
A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=
∠D
【分析】根据全等三角形的判定方法分别进行判定即可.
【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;
B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;
C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;
D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;
故选:C.
【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
5.(3分)(2013•广安)等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.19
【分析】因为已知长度为6和13两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.
【解答】解:①当6为底时,其它两边都为13,
6、13、13可以构成三角形,
周长为32;
②当6为腰时,
其它两边为6和13,
∵6+6<13,
∴不能构成三角形,故舍去,
∴答案只有32.
故选C.
【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
6.(3分)(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()
A.12m B.13m C.16m D.17m
【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.
【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,
在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,
解得:x=17,
即旗杆的高度为17米.
故选:D.
【点评】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.
7.(3分)(2011•梧州)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()
A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠BCA=∠ECD=60°,
∴∠BCA+∠ACD=∠ECD+∠ACD,
即∠BCD=∠ACE,
∴在△BCD和△ACE中,
∴△BCD≌△ACE(SAS),
故A成立,
∴∠DBC=∠CAE,
∵∠BCA=∠ECD=60°,
∴∠ACD=60°,
在△BGC和△AFC中,
∴△BGC≌△AFC,
故B成立,
∵△BCD≌△ACE,
∴∠CDB=∠CEA,
在△DCG和△ECF中,
∴△DCG≌△ECF,
故C成立,
故选:D.
【点评】此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.
8.(3分)(2013•仙桃)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN 的长为()
A.4cm B.3cm C.2cm D.1cm
【分析】连接AM、AN、过A作AD⊥BC于D,求出AB、AC值,求出BE、CF值,求出BM、CN值,代入MN=BC﹣BM﹣CN求出即可.
【解答】解:
连接AM、AN、过A作AD⊥BC于D,
∵在△ABC中,AB=AC,∠A=120°,BC=6cm,
∴∠B=∠C=30°,BD=CD=3cm,
∴AB==2cm=AC,
∵AB的垂直平分线EM,
∴BE=AB=cm
同理CF=cm,
∴BM==2cm,
同理CN=2cm,
∴MN=BC﹣BM﹣CN=2cm,
故选C.
【点评】本题考查了线段垂直平分线性质,等腰三角形的性质,含30度角的直角三角形性质,解直角三角形等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力.
9.(3分)(2013•河北)一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=()
A.90°B.100°C.130°D.180°
【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.
【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,
∠ABC=180°﹣60°﹣∠3=120°﹣∠3,
∠ACB=180°﹣60°﹣∠2=120°﹣∠2,
在△ABC中,∠BAC+∠ABC+∠ACB=180°,
∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,
∴∠1+∠2=150°﹣∠3,
∵∠3=50°,
∴∠1+∠2=150°﹣50°=100°.
故选:B.
【点评】本题考查了三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.
10.(3分)(2013秋•鄞州区校级期末)如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()
A.3 B. C. D.6
【分析】在AC上取一点E,使得AE=AB,过E作EN⊥AB于N,交AD于M,连接BM,BE,BE交AD于O,根据两点之间线段最短和垂线段最短得出此时BM+MN最小,求出E 和B关于AD对称,求出BM+MN′=EN′,求出EN′,即可求出答案.
【解答】解:在AC上取一点E,使得AE=AB,过E作EN⊥AB于N′,交AD于M,连接BM,BE,BE交AD于O,则BM+MN最小(根据两点之间线段最短;点到直线垂直距离最短),
∵AD平分∠CAB,AE=AB,
∴EO=OB,AD⊥BE,
∴AD是BE的垂直平分线(三线合一),
∴E和B关于直线AD对称,
∴EM=BM,
即BM+MN′=EM+MN′=EN′,
∵EN′⊥AB,
∴∠ENA=90°,
∵∠CAB=60°,
∴∠AEN′=30°,
∵AE=AB=6,
∴AN=AE=3,
在△AEN中,由勾股定理得:EN===3,即BM+MN的最小值
是3.
故选B.
【点评】本题考查的是轴对称﹣最短路线问题,涉及到垂线的性质,勾股定理,含30度角的直角三角形性质,轴对称的性质,等腰三角形的性质等知识点的综合运用.
二、填空题(每小题3分,共24分)
11.(3分)(2013•泉州)如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=35°.
【分析】根据到角的两边距离相等的点在角的平分线上判断OQ是∠AOB的平分线,然后根据角平分线的定义解答即可.
【解答】解:∵QC⊥OA于C,QD⊥OB于D,QC=QD,
∴OQ是∠AOB的平分线,
∵∠AOB=70°,
∴∠AOQ=∠A0B=×70°=35°.
故答案为:35.
【点评】本题考查了角平分线的判定以及角平分线的定义,根据到角的两边距离相等的点在角的平分线上判断OQ是∠AOB的平分线是解题的关键.
12.(3分)(2011•凉山州)把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果…,那么…”的形式:如果三角形三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.
【分析】命题都能写成“如果…,那么…”的形式,如果后面是题设,那么后面是结论,题设和结论互换后就是原命题的逆命题.
【解答】解:逆命题为:三角形三边长a,b,c,满足a2+b2=c2,这个三角形是直角三角形,
逆命题改写成“如果…,那么…”的形式:如果三角形三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形,
故答案为:如果三角形三边长a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形.【点评】本题考查把命题写成“如果…,那么…”的形式以及逆命题的概念,难度适中.
13.(3分)(2013•绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件AE=CB,使得△EAB≌△BCD.
【分析】可以根据全等三角形的不同的判定方法添加不同的条件.
【解答】解:∵∠A=∠C=90°,AB=CD,
∴若利用“SAS”,可添加AE=CB,
若利用“HL”,可添加EB=BD,
若利用“ASA”或“AAS”,可添加∠EBD=90°,
若添加∠E=∠DBC,可利用“AAS”证明.
综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).
故答案为:AE=CB.
【点评】本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.
14.(3分)(2013•义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC=70°.
【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠C,再根据线段垂直平分线上的点到线段两端点的距离相等可得OB=OC,根据等边对等角的性质求出∠OBC=∠C,然后根据角平分线的定义解答即可.
【解答】解:∵AD⊥BC,∠AOC=125°,
∴∠C=∠AOC﹣∠ADC=125°﹣90°=35°,
∵D为BC的中点,AD⊥BC,
∴OB=OC,
∴∠OBC=∠C=35°,
∵OB平分∠ABC,
∴∠ABC=2∠OBC=2×35°=70°.
故答案为:70°.
【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,角平分线的定义,是基础题,准确识图并熟记各性质是解题的关键.
15.(3分)(2012•巴中)已知a、b、c是△ABC的三边长,且满足关系式+|a
﹣b|=0,则△ABC的形状为等腰直角三角形.
【分析】已知等式左边为两个非负数之和,根据两非负数之和为0,两非负数同时为0,可得出c2=a2+b2,且a=b,利用勾股定理的逆定理可得出∠C为直角,进而确定出三角形ABC 为等腰直角三角形.
【解答】解:∵+|a﹣b|=0,
∴c2﹣a2﹣b2=0,且a﹣b=0,
∴c2=a2+b2,且a=b,
则△ABC为等腰直角三角形.
故答案为:等腰直角三角形
【点评】此题考查了勾股定理的逆定理,非负数的性质:绝对值及算术平方根,以及等腰直角三角形的判定,熟练掌握非负数的性质及勾股定理的逆定理是解本题的关键.
16.(3分)(2002•天津)如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC 平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=
∠DAC;④△ABC是正三角形.请写出正确结论的序号①③(把你认为正确结论的序号都填上)
【分析】由已知条件,首先得到等腰三角形,利用线段的垂直平分线的性质进一步得到其它结论.
【解答】解:∵AB=AC,AC=AD,
∴AB=AD
∵AC平分∠DAB
∴AC垂直平分BD,①正确;
∴DC=CB,
易知DC>DE,
∴BC>DE,②错;
D、C、B可看作是以点A为圆心的圆上,
根据圆周角定理,得∠DBC=∠DAC,③正确;
当△ABC是正三角形时,∠CAB=60°
那么∠DAB=120°,
如图所示,故④是不一定成立的,所以错误.
故①③对.
【点评】本题考查了等腰三角形的性质及垂直平分线的性质;利用等腰三角形的三线合一是常用的判断方法;注意把图形放入圆中解决可使问题简化.
17.(3分)(2013•烟台)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.
【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.【解答】解:如图,连接OB、OC,
∵∠BAC=54°,AO为∠BAC的平分线,
∴∠BAO=∠BAC=×54°=27°,
又∵AB=AC,
∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,
∵DO是AB的垂直平分线,
∴OA=OB,
∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,
∵AO为∠BAC的平分线,AB=AC,
∴△AOB≌△AOC(SAS),
∴OB=OC,
∴点O在BC的垂直平分线上,
又∵DO是AB的垂直平分线,
∴点O是△ABC的外心,
∴∠OCB=∠OBC=36°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.
故答案为:108.
【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.
18.(3分)(2012•佳木斯)等腰三角形一腰长为5,一边上的高为3,则底边长为8或
或3.
【分析】由已知的是一边上的高,分腰上的高于底边上的高两种情况,当高为腰上高时,再分锐角三角形与钝角三角形两种情况,当三角形为锐角三角形时,如图所示,在直角三角形ACD中,由AC及CD的长,利用勾股定理求出AD的长,由AB﹣AD求出BD的长,在直角三角形BDC中,由BD及CD的长,即可求出底边BC的长;当三角形为钝角三角形时,如图所示,同理求出AD的长,由AB+AD求出BD的长,同理求出BC的长;当高为底边上的高时,如图所示,由三线合一得到BD=CD,在直角三角形ABD中,由AB及AD 的长,利用勾股定理求出BD的长,由BC=2BD即可求出BC的长,综上,得到所有满足题意的底边长.
【解答】解:如图所示:
当等腰三角形为锐角三角形,且CD为腰上的高时,
在Rt△ACD中,AC=5,CD=3,
根据勾股定理得:AD==4,
∴BD=AB﹣AD=5﹣4=1,
在Rt△BDC中,CD=3,BD=1,
根据勾股定理得:BC==;
当等腰三角形为钝角三角形,且CD为腰上的高时,
在Rt△ACD中,AC=5,CD=3,
根据勾股定理得:AD==4,
∴BD=AB+AD=5+4=9,
在Rt△BDC中,CD=3,BD=9,
根据勾股定理得:BC==3;
当AD为底边上的高时,如图所示:
∵AB=AC,AD⊥BC,
∴BD=CD,
在Rt△ABD中,AD=3,AB=5,
根据勾股定理得:BD==4,
∴BC=2BD=8,
综上,等腰三角形的底边长为8或或3.
故答案为:8或或3
【点评】此题考查了勾股定理,以及等腰三角形的性质,利用了分类讨论的数学思想,要求学生考虑问题要全面,注意不要漏解.
三、解答题(共66分)
19.(8分)(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△ADB的面积.
【分析】(1)根据角平分线性质得出CD=DE,代入求出即可;
(2)利用勾股定理求出AB的长,然后计算△ADB的面积.
【解答】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=DE,
∵CD=3,
∴DE=3;
(2)在Rt△ABC中,由勾股定理得:AB===10,
∴△ADB的面积为S△ADB=AB•DE=×10×3=15.
【点评】本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.
20.(8分)(2011•扬州)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.
【分析】(1)由OB=OC,即可求得∠OBC=∠OCB,又由,锐角△ABC的两条高BD、CE 相交于点O,根据三角形的内角和等于180°,即可证得△ABC是等腰三角形;
(2)首先连接AO并延长交BC于F,通过证△AOB≌△AOC(SSS),得到∠BAF=∠CAF,即点O在∠BAC的角平分线上.
【解答】(1)证明:∵OB=OC,
∴∠OBC=∠OCB,
∵锐角△ABC的两条高BD、CE相交于点O,
∴∠BEC=∠CDB=90°,
∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,
∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形;
(2)解:点O在∠BAC的角平分线上.
理由:连接AO并延长交BC于F,
在△AOB和△AOC中,
∴△AOB≌△AOC(SSS).
∴∠BAF=∠CAF,
∴点O在∠BAC的角平分线上.
【点评】此题考查了等腰三角形的性质与判定,以及角平分线的判定等知识.此题难度不大,注意等角对等边与三线合一定理的应用.
21.(8分)(2013•吉林)如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)求证:△ACD≌△BCE;
(2)若AC=3cm,则BE=6cm.
【分析】(1)求出∠ACD=∠BCE,根据SAS推出两三角形全等即可;
(2)根据全等得出AD=BE,根据勾股定理求出AB,即可求出AD,代入求出即可.
【解答】(1)证明:∵△CDE是等腰直角三角形,∠DCE=90°,
∴CD=CE,
∵∠ACB=90°,
∴∠ACB=∠DCE,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中
,
∴△ACD≌△BCE(SAS);
(2)解:∵AC=BC=3,∠ACB=90°,由勾股定理得:AB=3,
又∵DB=AB,
∴AD=2AB=6,
∵△ACD≌△BCE;
∴BE=AD=6,
故答案为:6.
【点评】本题考查了等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.
22.(8分)(2013•乐山)如图,已知线段AB.
(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线l上任意取两点M,N(线段AB的上方).连结AM,AN,BM,BN.求证:∠MAN=∠MBN.
【分析】(1)根据线段垂直平分线的方法作图即可;
(2)根据线段垂直平分线的性质可得AM=BM,AN=BN,再根据等边对等角可得∠MAB=∠MBA,∠NAB=∠NBA,进而可得∠MAN=∠MBN.
【解答】解:(1)如图所示:
(2)∵l是AB的垂直平分线,
∴AM=BM,AN=BN,
∴∠MAB=∠MBA,∠NAB=∠NBA,
∴∠MAB﹣∠NAB=∠MBA﹣∠NBA,
即:∠MAN=∠MBN.
【点评】此题主要考查了线段垂直平分线的作法以及性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.
23.(10分)(2013•沈阳)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证;
(2)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.
【解答】(1)证明:∵AD⊥BC,∠BAD=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵BE⊥AC,AD⊥BC
∴∠CAD+∠ACD=90°,
∠CBE+∠ACD=90°,
∴∠CAD=∠CBE,
在△ADC和△BDF中,,
∴△ADC≌△BDF(ASA),
∴BF=AC,
∵AB=BC,BE⊥AC,
∴AC=2AE,
∴BF=2AE;
(2)解:∵△ADC≌△BDF,
∴DF=CD=,
在Rt△CDF中,CF===2,
∵BE⊥AC,AE=EC,
∴AF=CF=2,
∴AD=AF+DF=2+.
【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.
24.(10分)(2013秋•慈溪市校级期中)定义:三边长与面积都是整数的三角形称为“整数三角形”.数学学习小组的同学们从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾顺次连接组成三角形,进行探究活动.如图是小亮同学用12根火柴棒,摆成如图所示的“整数三角形”.
请你分别摆出三个不同的等腰“整数三角形”,画出示意图.
【分析】根据小亮同学用12根火柴棒,摆成的“整数三角形”的启示即可别摆出三个不同的等腰“整数三角形”.
【解答】解:如图所示:
【点评】此题主要考查了作图﹣应用与设计作图,等腰三角形的性质和勾股定理的应用,根据已知熟练利用勾股定理求出勾股数是解题关键.
25.(14分)(2013•东营)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,
则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;
(2)与(1)的证明方法一样;
(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,
利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.
【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)成立.
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中
,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)△DEF是等边三角形.
由(2)知,△ADB≌△CEA,
BD=AE,∠DBA=∠CAE,
∵△ABF和△ACF均为等边三角形,
∴∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE,
∵BF=AF
在△DBF和△EAF中
,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF为等边三角形.
【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.。