2020-2021中考物理备考之杠杆平衡压轴培优 易错 难题篇及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初中物理杠杆平衡条件的应用问题
1.如图所示,在探究杠杆平衡条件的实验中,杠杆处于水平平衡状态,所用钩码完全相同。
下列做法中能使杠杆再次平衡的是
A .分别在两边钩码下再增加一个相同钩码
B .左边减少1个钩码,右边减少2个钩码
C .两边钩码均向支点移动相同的距离
D .左边钩码向左移1.5cm ,右边钩码向右移1cm
【答案】D
【解析】
【详解】
设一个钩码的重力为G ,左边钩码到支点的距离为3l ,因为杠杆正处于水平平衡,所以由杠杆平衡条件可得
233G l G l ⨯=⨯右,
解得2l l =右,即右边钩码到支点的距离为2l ;
A .若分别在两边钩码下再增加一个相同钩码,则
3342G l G l ⨯≠⨯,
此时杠杆不再平衡,不符合题意;
B .若左边减少1个钩码,右边减少2个钩码,则
32G l G l ⨯≠⨯ ,
此时杠杆不再平衡,不符合题意;
C .若两边的钩码均向支点移动相同的距离l ,则
223G l G l ⨯≠⨯,
此时杠杆不再平衡,不符合题意;
D .若左边钩码向左移1.5cm ,右边钩码向右移1cm ,则
2(3 1.5)3(21)G l G l ⨯+=⨯+,
此时杠杆平衡,符合题意。
2.按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着体积为1cm 3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q 点处时秤杆恰好平衡,如图所示。
当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是( )
A.密度秤的零点刻度在Q点
B.密度秤的刻度都在Q点的左侧
C.密度秤的刻度都在Q点的右侧
D.秤杆上密度读数较大的刻度在较小的刻度的左边
【答案】C
【解析】
【分析】
【详解】
A.合金块没有浸入液体时,液体的密度应为零,所以秤的零刻度应该在Q处;故A正确,不符合题意;
BC.若秤砣由Q向右移动,它的力臂变长,则左边合金块拉秤杆的力应增大,但合金块受到的浮力不可能竖直向下,所以零点的右边应该是没有刻度的,其刻度都在Q点的左侧。
故B正确,不符合题意,C错误,符合题意;
D.秤砣的质量不变,由Q向左移动时,它的力臂变短,则左边合金块拉秤杆的力减小,说明合金块受到的浮力增大,而合金块排开液体的体积不变,说明液体的密度变大,所以刻度应逐渐变大,即秤杆上较大的刻度在较小的刻度的左边;故D正确,不符合题意。
故选C。
3.如图所示,作用在A点的各个力中,不可能使杠杆平衡的力是
A.F3和F4
B.F1和F3
C.F2和F4
D.F1和F2
【答案】A
【解析】
【详解】
因为力F3的作用线所在的直线过支点O,所以力F3的力臂为0,又因为0乘以任何数都为
0,所以力F3不能使杠杆平衡;力F4使杠杆转动方向与重物使杠杆的转动方向相同,所以力F4不能使杠杆平衡;力F1和F2使杠杆转动方向与重物使杠杆转动方向相反,所以力F1和F2可以使杠杆平衡;故选A。
4.如图所示,杠杆在水平状态保持静止,要使弹簧测力计的示数变为原来的1
2
,下列措
施中可行的是
A.去掉三个钩码
B.把钩码向左移动2小格
C.把钩码向右移动2小格
D.把弹簧秤测力计向左移动2小格
【答案】B
【解析】
【分析】
【详解】
根据杠杆平衡条件F1L1=F2L2得,
4G×4L=F2×8L,解得
F2=2G,
要使弹簧测力计的示数变为原来的1
2
,
即F2=G。
A.去掉三个钩码,根据杠杆平衡条件F1L1=F2L2得,
G×4L=F'2×8L,
所以F'2=1
2
G,不符合题意;
B.把钩码向左移动2小格,根据杠杆平衡条件F1L1=F2L2得,
4G×2L=F'2×8L,
所以F'2=G,故B符合题意;
C.把钩码向右移动2小格,根据杠杆平衡条件F1L1=F2L2得,
4G×6L=F'2×8L,
所以F'2=3G,故C不符合题意;
D.把弹簧秤测力计向左移动2小格,根据杠杆平衡条件F1L1=F2L2得,
4G×4L=F'2×6L,
所以F'2
=8 3
G,故D不符合题意。
故选B。
5.如图所示为等刻度轻质杠杆,A处挂4牛的物体,若使杠杆在水平位置平衡,则在B处施加的力()
A.可能为0.5牛B.一定为2牛C.一定为3牛D.可能是4牛
【答案】D
【解析】
【分析】
【详解】
设杠杆每小格的长度为L,若在B点用垂直OB竖直向下的力使杠杆在水平位置平衡,此时所用的力最小,根据杠杆平衡条件1122
Fl F l
=可得
min
42
F L
G L
⋅=⋅
则有
min
24N2
2N
44
G L
F
L
⋅⨯
===
若在B点斜拉使杠杆在水平位置平衡,由杠杆平衡条件1122
Fl F l
=可知
22
1
1
F l
F
l
=
则此时杠杆左边的阻力与阻力臂的乘积不变,动力臂减小,故动力将增大,故若使杠杆在水平位置平衡,在B点施加的力
2N
F≥
故选D。
6.小明做探究杠杆平衡条件的实验时将手中的5个钩码挂成了如图所示的情况,则()
A.由图可以得到杠杆平衡条件为F1L1=F2L2
B.小明在F1和F2的下方各再挂一个钩码杠杆仍能平衡
C.小明取下F1下的一个钩码并将F2的钩码取下杠杆仍能平衡
D.小明取下F2下的钩码并将F3的钩码向右移至20cm处杠杆仍能平衡
【答案】D
【解析】
【分析】
【详解】
A.假设一个钩码的重力为G
F1=2G,F2=G,F3=2G
各力力臂为
L1=20,L2=10,L3=15
F1L1=2G⨯20=40G
F2L2=G⨯10=10G
F3L3=2G⨯15=30G
杠杆平衡的条件为
F1L1=F2L2+F3L3
故A不符合题意;
B.在F1和F2的下方各再挂一个钩码后
F1L1=3G⨯20=60G
F2L2=2G⨯10=20G
F3L3=2G⨯15=30G
F1L1>F2L2+F3L3
杠杆失去平衡,故B不符合题意;
C.取下F1下的一个钩码并将F2的钩码取下后
F1L1=G⨯20=20G
F2L2=0
F3L3=2G⨯15=30G
F1L1<F2L2+F3L3
杠杆失去平衡,故C不符合题意;
D.取下F2下的钩码并将F3的钩码向右移至20cm处后
F1L1=2G⨯20=40G
F2L2=0
F3L3=2G⨯20=40G
F1L1=F2L2+F3L3
杠杆重新平衡,故D符合题意。
故选D。
OA OB=,A端接一重为G A 7.如图所示装置,杆的两端A、B离支点O的距离之比:1:2
的物体,B端连一滑轮,滑轮上挂有另一重为G B的物体。
现杠杆保持平衡,若不计滑轮重
力,则G A 与G B 之比应是( )
A .1∶4
B .1∶2
C .1∶1
D .2∶1
【答案】C
【解析】
【分析】
【详解】
由杠杆平衡条件可知 A G OA F OB ⋅=⋅
即 A G OA
F OB
⋅=
因 :1:2OA OB =
所以
12
A F G = 由图和动滑轮的特点可知
12
B F G = 故
1:1A B
G G = 故选C 。
8.如图所示,用轻质材料制成的吊桥搭在河对岸.一个人从桥的左端匀速走到桥的右端,桥面始终是水平的,不计吊桥和绳的重力,人从吊桥左端出发时开始计时.则人在吊桥上行走过程中,吊桥右端所受地面支持力F 与人行走时间t 的关系图像是( )
A.B.C.D.
【答案】B
【解析】
【详解】
吊桥相当于一个杠杆,以吊桥的左端为支点,人从吊桥左端出发,匀速走到桥的右端,杠杆受到人的压力(阻力)等于人的重力,动力臂为
OA=L,
杠杆受到物体的压力(阻力)
F′=G,
阻力臂为
OB =vt,
因为杠杆平衡,所以满足
F×OA=F′×OB=G×vt,
即:
F×L=G×vt,
Gvt
F
L
由此可知,当t=0时,F=0.当t增大时,F变大,F与人行走时间t是正比例关系,故图象B正确,符合题意为答案.
9.小明探究杠杆的平衡条件,挂钩码前,调节杠杆在水平位置平衡,杠杆上每格距离相等,杆上A、B、C、D的位置如图所示,当A点挂4个钩码时,下列操作中能使杠杆在水平位置平衡的是()
A.B点挂5个钩码
B.C点挂4个钩码
C.D点挂1个钩码
D.D点挂2个钩码
【答案】D
【解析】
【分析】
【详解】
设每个钩码重力为F,每个小格长度为L,则O点左侧力与力臂的积为
4F×3L=12FL
杠杆的平衡条件是
A.若B点挂5个钩码时,杠杆右侧力与力臂的积为
5F×2L=10FL<12FL
杠杆不能平衡,故A错误;
B.若C点挂4个钩码时,杠杆右侧力与力臂的积为
4F×4L=16FL>12FL
杠杆不能平衡,故B错误;
C.若D点挂1个钩码时,杠杆右侧力与力臂的积为
F×6L=6FL<12FL
杠杆不能平衡,故C错误;
D.若D点挂2个钩码时,杠杆右侧力与力臂的积为
2F×6L=12FL=12FL
杠杆能平衡,故D正确。
故选D
10.如图所示,杠杆处于平衡状态,下列操作中能让杠杆继续保持平衡的是()
A.将左边的钩码去掉二个并保持位置不变,同时将右边钩码向左移二格
B.在左右两边钩码的下方各加一个钩码,位置保持不变
C.将左右两边的钩码各去掉一个,位置保持不变
D.将左右两边的钩码均向外移动一格
【答案】A
【解析】
【详解】
设杠杆的一个小格是1cm,一个钩码的重是1N;
A.将左边的钩码去掉二个并保持位置不变,同时将右边钩码向左移二格,(4-2)N×3cm =3N×(4-2)cm,杠杆仍然平衡,故A符合题意;
B.在左右两边钩码的下方各加一个钩码,位置保持不变,由(4+1)N×3cm<(3+1)
N×4cm得,杠杆的右端下沉,故B不符合题意;
C.将左右两边的钩码各去掉一个,位置保持不变,由(4-1)N×3cm>(3-1)N×4cm 得,杠杆的左端下沉,故C不符合题意;
D.将左右两边的钩码均向外移动一格,由4N×(3+1)cm>3N×(4+1)cm得,杠杆的左端下沉,故D不符合题意。
11.如图所示,杠杆在水平位置平衡.下列操作仍能让杠杆在水平位置保持平衡的是()
A.两侧钩码同时向外移一格
B.两侧钩码同时向内移一格
C.在两侧钩码下方,同时加挂一个相同的钩码
D.左侧增加一个钩码,右侧钩码向外移一格
【答案】D
【解析】
【分析】
【详解】
设一个钩码的重力为G,横梁上一个格的长度为l,原来杠杆处于平衡状态,则有
⨯=⨯
2332
G l G l
A.两侧钩码同时向外移一格,左边为
G l Gl
⨯=
248
右边为
⨯=
339
G l Gl
<
89
Gl Gl
杠杆右端下沉,故A项不符合题意;
B.两侧钩码同时向内移一格,左边为
G l Gl
⨯=
224
右边为
⨯=
313
G l Gl
<
34
Gl Gl
杠杆左端下沉,故B项不符合题意;
C.同时加挂一个相同的钩码,左边为
⨯=
G l Gl
339
右边为
⨯=
428
G l Gl
89Gl Gl <
杠杆左端下沉,故C 项不符合题意;
D .左侧增加一个钩码,右侧钩码向外移一格,左边为
339G l Gl ⨯=
右边为
339G l Gl ⨯=
99Gl Gl =
杠杆平衡,故D 项符合题意。
故选D 。
12.如图所示,七块完全相同的砖块按照图示的方式叠放起来,每块砖的长度均为L ,为保证砖块不倒下,6号砖块与7号砖块之间的距离S 将不超过 ( )
A .3115L
B .2L
C .52L
D .74
L 【答案】A
【解析】
【分析】
因两部分对称,则可只研究一边即可;1砖受2和3支持力而处于平衡状态,则可由力的合成求得1对2的压力;而2砖是以4的边缘为支点的杠杆平衡,则由杠杆的平衡条件可得出2露出的长度,同理可求得4露出的长度,则可求得6、7相距的最大距离。
【详解】
1处于平衡,则1对2的压力应为
2
G ;当1放在2的边缘上时距离最大;2处于杠杆平衡状态,设2露出的长度为x ,则2下方的支点距重心在 -2
L x 处;由杠杆的平衡条件可知
-22
L G G x x ⎛⎫= ⎪⎝⎭ 解得
3L x =
设4露出的部分为x 1;则4下方的支点距重心在
1-2
L x 处;4受到的压力为
2
G G +
则由杠杆的平衡条件可知
114-52G G x G x ⎛⎫⎛
⎫=+ ⎪ ⎪⎝⎭⎝
⎭
解得
15
L x =
则6、7之间的最小距离应为
()131
223515
L L L x x L L ⎛⎫++=++= ⎪⎝⎭
故选A 。
13.如图所示,粗细均匀的铁棒AB 静止在水平地面上,小明用力F 将铁棒从水平地面拉至竖直立起.此过程中,力F 作用在B 端且始终与铁棒垂直,则力F 将( )
A .逐渐变大
B .逐渐变小
C .保持不变
D .先变小后变大 【答案】B 【解析】 【详解】
如下图所示: 在抬起的过程中,阻力F 2 不变,F 与铁棒始终垂直,所以动力臂l 1 不变,由于铁棒的位置的变化,导致了阻力F 2 的阻力臂l 2 在变小,根据杠杆的平衡条件可得:Fl 1=F 2 l 2 可知,l 1 、F 2 都不变,l 2 变小,所以F 也在变小。
故选B 。
14.如图所示为建筑工地上常用的吊装工具,物体M是重5000N的配重,杠杆AB的支点为O,已知长度OA∶OB=1∶2,滑轮下面挂有建筑材料P,每个滑轮重100N,工人体重为700N,杠杆与绳的自重、滑轮组摩擦均不计。
当工人用300N的力竖直向下以1m/s的速度匀速拉动绳子时()
A.建筑材料P上升的速度为3m/s B.物体M对地面的压力为5000N
C.工人对地面的压力为400N D.建筑材料P的重力为600N
【答案】C
【解析】
【分析】
【详解】
A.物重由2段绳子承担,建筑材料P上升的速度
v=1
2
v绳=
1
2
×1m/s=0.5m/s
故A错误;
B.定滑轮受向下的重力、3段绳子向下的拉力、杠杆对定滑轮向上的拉力,由力的平衡条件可得
F A′=3F+G定=3×300N+100N=1000N
杠杆对定滑轮的拉力和定滑轮对杠杆的拉力是一对相互作用力,大小相等,即
F A= F A′=1000N
根据杠杆的平衡条件F A×OA=F B×OB,且OA:OB=1:2,所以
F B=F A×OA
OB
=1000N×
2
OA
OA
=500N
因为物体间力的作用是相互的,所以杠杆对物体M的拉力等于物体M对杠杆的拉力,即
F B′=F B=500N
物体M受竖直向下的重力、竖直向上的支持力、竖直向上的拉力,则物体M受到的支持力为
F M支持=
G M− F B′=5000N−500N=4500N
因为物体间力的作用是相互的,所以物体M对地面的压力
F M压=F M支持=4500N
故B错误;
C.当工人用300N的力竖直向下拉绳子时,因力的作用是相互的,则绳子对工人会施加竖直向上的拉力,其大小也为300N,此时人受竖直向下的重力G、竖直向上的拉力F、竖直向上的支持力F支,由力的平衡条件可得F+F支=G,则
F支=G−F=700N−300N=400N
因为地面对人的支持力和人对地面的压力是一对相互作用力,大小相等,所以工人对地面的压力
F压=F支=400N
故C正确;
D.由图可知n=2,且滑轮组摩擦均不计,由F=1
2
(G+G动)可得,建筑材料P重
G=2F−G动=2×300N−100N=500N
故D错误。
故选C。
15.如图所示,直杆OA的下端挂一重物G且可绕O点转动。
现用一个始终与直杆垂直的力F将直杆由竖直位置缓慢转动到水平位置,不计杆的重力,则拉力F大小的变化情况是()
A.一直变小B.一直不变
C.一直变大D.先变小后变大
【答案】C
【解析】
【分析】
【详解】
由图可知,由于力F始终与杠杆垂直,则力F所对应的力臂始终不变,大小为力F的作用点到O点的距离,设为l1,在逐渐提升的过程中,重力大小不变,方向竖直向下,则对应力臂逐渐变大,设为l2,由于缓慢转动,视为受力平衡,则由杠杆平衡公式可得
Fl1=Gl2
由于等式右端重力G不变,l2逐渐变大,则乘积逐渐变大,等式左端l1不变,则可得F逐渐变大,故选C。
16.如图所示,重力为G的均匀木棒竖直悬于O点,在其下端施一始终垂直于棒的拉力F,让棒缓慢转到图中间虚线所示位置,在转动的过程中()
A .动力臂逐渐变大
B .阻力臂逐渐变大
C .动力F 保持不变
D .动力F 逐渐减小 【答案】B 【解析】 【分析】
先确定阻力臂、动力臂的变化,然后根据杠杆平衡的条件(动力乘以动力臂等于阻力乘以阻力臂)分析动力的变化。
【详解】
A .由图示可知,木棒是一个杠杆,力F 是动力,力F 始终垂直与木棒,则木棒的长度是动力臂,木棒长度保持不变,动力臂保持不变,故A 不符合题意;
B .木棒的重力是阻力,阻力大小不变,木棒在竖直位置时,重力的力臂为0,转过θ角后,重力力臂(阻力臂)逐渐增大,故B 符合题意; CD .已知G 、L 保持不变,L G 逐渐变大,由杠杆平衡条件有
GL G =FL
动力F 逐渐增大,故CD 不符合题意。
故选B 。
【点睛】
本题考查了杠杆平衡条件的应用,知道杠杆平衡的条件,会熟练应用杠杆平衡的条件分析问题解决问题是关键。
17.如图是上肢力量健身器示意图,杠杆AB 可绕O 点在竖直平面内转动,3AB BO =,配重的重力为120牛,重力为500牛的健身者通过细绳在B 点施加竖直向下的拉力为F 1时,杠杆在水平位置平衡,配重对地面的压力为85牛,在B 点施加竖直向下的拉力为F 2时,杠杆仍在水平位置平衡,配重对地面的压力为60牛。
已知122:3:F F =,杠杆AB 和细绳的质量及所有摩擦均忽略不计,下列说法正确的是( )
A .配重对地面的压力为50牛时,健身者在
B 点施加竖直向下的拉力为160牛 B .配重对地面的压力为90牛时,健身者在B 点施加竖直向下的拉力为120牛
C .健身者在B 点施加400牛竖直向下的拉力时,配重对地面的压力为35牛
D .配重刚好被匀速拉起时,健身者在B 点施加竖直向下的拉力为540牛 【答案】C 【解析】 【分析】 【详解】
当配重在地面上保持静止状态时,它受到的绳子的拉力为
N F G F =-
由图知动滑轮上有2段绳子承担物重,因此杠杆A 点受到的拉力
N 22A F F G G F G +⨯=-=+动动()
根据杠杆的平衡条件得到
A B F OA F OB ⋅=⋅
即
N 2B G F G OA F OB ⨯-+⨯=⨯⎡⎤⎣⎦动()
因为
3AB BO =
所以
2AO BO =
则
N 221B G F G F ⨯-+⨯=⨯⎡⎤⎣⎦动()
即
N 42B F G F G ⨯-=+动()
当压力为85N 时
14120N -85N 2F G =⨯+动()
当压力为60N 时
24120N -60N 2F G =⨯+动()
因为
122:3:F F =
所以
124120N -85N 24120N -60N 223
G F F G ⨯+=⨯=+动动()() 解得
30N G =动
A .当配重对地面的压力为50N 时,
B 点向下的拉力为
N 424120N -50N 230N =340N B F G F G ⨯-=⨯⨯=++动()()
故A 错误;
B .当配重对地面的压力为90N 时,B 点向下的拉力为
N 424120N -90N 230N =180N B F G F G ⨯-=⨯⨯=++动()()
故B 错误;
C .健身者在B 点施加400N 竖直向下的拉力时,根据
N 42B F G F G ⨯-=+动()
可得
N 400N 4120N 230N F =⨯-+⨯()
解得
N 35N F =
故C 正确;
D .配重刚好被拉起,即它对地面的压力为0,根据
N 42B F G F G ⨯-=+动()
可得
4120N -0N 230N =540N >500N B F ⨯+⨯=()
因为人的最大拉力等于体重500N ,因此配重不可能匀速拉起,故D 错误。
故选C 。
18.如图所示,小明用一可绕O 点转动的轻质杠杆,将挂在杠杆下的重物提高。
他用一个始终与杠杆垂直的力F 使杠杆由竖直位置缓慢转到水平位置,在这个过程中,此杠杆( )
A .一直是省力的
B .先是省力的,后是费力的
C .一直是费力的
D .先是费力的,后是省力的
【答案】B 【解析】 【分析】 【详解】
由题图可知动力F 的力臂l 1始终保持不变,物体的重力G 始终大小不变,在杠杆从竖直位置向水平位置转动的过程中,重力的力臂l 2逐渐增大,在l 2<l 1之前杠杆是省力杠杆,在l 2>l 1之后,杠杆变为费力杠杆,故选B 。
19.如图所示,在轻质杠杆AB 两端各挂体积相同的实心物体甲、乙,杠杆在水平位置保持不变。
下列说法正确的是( )
A .分别将甲、乙切去等体积的一小块,杠杆右端向下倾斜
B .分别将甲、乙切去等体积的一小块,杠杆仍在水平位置平衡
C .分别将甲、乙切去等质量的一小块,杠杆左端向下倾斜
D .分别将甲、乙切去等质量的一小块,杠杆仍在水平位置平衡 【答案】B 【解析】 【分析】
动态杠杆相关判断。
【详解】
AB .因为为杠杆平衡,所以
G OA G OB =甲乙,
即
Vg OA Vg OB ρρ⨯=⨯甲乙,
所以
OA OB ρρ⨯=⨯甲乙。
若分别将甲、乙切去等体积的一小块,则:
左边()
=OA G OA Vg OA G G ρ⨯=--∆⨯甲甲甲切甲,
右边()OB G OB Vg O G B G ρ⨯==--∆⨯乙乙乙切乙,
左边等于右边,杠杆仍保持水平平衡,故A 错误,B 正确; CD .若分别将两物体切去等质量(即等重G )的一小块,则:
左边()
G G OA G OA G OA -⨯==-⨯甲甲, 右边()=OB G O G G B G OB ⨯=--⨯乙乙,
因OA OB >,则左边小于右边,则杠杆右端向下倾斜,故CD 错误。
【点睛】
较难题.失分原因是:
(1)没有根据题干信息确定出OA OB ρρ⨯=⨯甲乙的等量关系;
(2)将“切去等体积”、“切去等质量”代入杠杆平衡条件后,两边力和力臂的关系确定
(3)忽略了左右两侧的力臂不同,在分析杠杆平衡时判断猎误。
20.如图所示,AC硬棒质量忽略不计,在棒的B点悬挂一个重物,在棒的C点施加一个方向沿OO'的力F,棒在力F的作用下从水平位置被缓慢提升到图示位置。
则下列相关描述正确的是()
A.力F的方向沿OO'向下B.ABC是费力杠杆
C.阻碍杠杆转动的力是悬挂在杠杆上的物体的重力D.在提升过程中,力F变小
【答案】D
【解析】
【详解】
A.F1对杠杆的拉力向下,则为了将杠杆抬起,力F的方向应沿OO'向上,故A错误;B.由于力F的方向应沿OO'向上,则动力臂为S2,阻力臂小于动力臂,则杠杆为省力杠杆,故B错误;
C.与杠杆接触的是悬挂在杠杆上的绳子,则阻碍杠杆转动的力是绳子对杠杆的拉力,故C错误;
D.在移动过程中,F1的力臂逐渐变小,拉力F力臂不变,则由杠杆平衡公式F1l1=F2l2可知力F变小,故D正确。
故选D。
21.如图所示,一块厚度很薄、质量分布均匀的长方体水泥板放在水平地面上,若分别用一竖直向上的动力F1、F2作用在水泥板一端的中间,欲使其一端抬离地面,则()
A.F1>F2,因为甲中的动力臂长
B.F1<F2,因为乙中的阻力臂长
C.F1>F2,因为乙中的阻力臂短
D.F1=F2,因为动力臂都是阻力臂的2倍
【答案】D
【分析】
把水泥板看做一个杠杆,抬起一端,则另一端为支点;由于水泥板是一个厚度、密度都均匀的物体,所以,其重力的作用点在其中心上,此时动力F 克服的是水泥板的重力,即此时的阻力臂等于动力臂的一半;在此基础上,利用杠杆的平衡条件,即可确定F 1与F 2的大小关系。
【详解】
两次抬起水泥板时的情况如图所示:
在上述两种情况下,动力克服的都是水泥板的重力,对于形状规则质地均匀的物体,其重心都在其几何中心上,所以两图中动力臂都是阻力臂的2倍;依据Fl Gl =阻动可得,
1
2
l F G
G l ==阻动, 所以,前后两次所用的力相同,即12F F =,故ABC 都错误,D 正确。
【点睛】
本题作为考查杠杆平衡条件应用的一道经典例题,很容易让学生在第一印象中选错,一定要仔细分析,重点记忆!
22.如图所示,小明利用一根长为L 的扁担挑水,他在扁担的左端挂上质量为m 1的水桶,在右端挂上质量为m 2的水桶,右手扶着扁担右侧。
已知m 1> m 2 ,不计扁担自重,下列说法正确的是( )
A .若要右手不使力,小明的肩应靠近扁担左端
B .若要右手不使力,小明的肩应靠近扁担右端
C .小明的肩位于扁担中点时,右手需要给扁担施加向上的力
D .扁担与肩的接触面积越小,肩受到的压强越小 【答案】A 【解析】 【分析】 【详解】
AB .扁担在左端挂了m 1的水桶,右端挂了m 2的水桶,左端的重力大于右端的重力,根据杠杆的平衡条件1122F L F L =可知,若要扁担平衡右手不使力,人的肩膀应靠近扁担左端,故A 正确,B 错误;
C .小明的肩位于扁担中点时,左端的重力大于右端的重力,根据杠杆的平衡条件1122F L F L =可知,左端下沉,为了使扁担在水平位置平衡,右手需要给扁担施加向下的
力,故C 错误; D .根据压强的公式F
p S
=可知,压力一定时,扁担与肩的接触面积越小,肩受到的压强越大,故D 错误。
故选A 。