备战高考物理提高题专题复习电磁感应现象的两类情况练习题及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战高考物理提高题专题复习电磁感应现象的两类情况练习题及答案解析
一、电磁感应现象的两类情况
1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)
(1)求导体棒下滑的最大速度;
(2)求当速度达到5m/s 时导体棒的加速度;
(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).
【答案】(1)18.75m/s (2)a=4.4m/s 2
(32
22mgs mv Rt
【解析】
【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;
解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R
θ==, 解得: 222
sin 18.75cos mgR v B L θ
θ
=
=; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R
θ
=
=, 0.2F BIL N ==, 24.4/a m s =;
(3)根据能量守恒有:22012
mgs mv I Rt =
+ , 解得: 2
02mgs mv I Rt -=
2.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。

一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。

现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。

不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。

(1)求ab棒沿斜面向上运动的最大速度;
(2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q;
(3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。

【答案】(1) (2)q=40C (3)
【解析】
【分析】
(1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。

据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。

(2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。

(3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。

【详解】
(1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知
对物体,有;对ab棒,有
又、
联立解得:
(2) 感应电荷量
据闭合电路的欧姆定律
据法拉第电磁感应定律
在ab 棒开始运动到匀速运动的这段时间内,回路中的磁通量变化
联立解得:
(3)对物体和ab 棒组成的系统,根据能量守恒定律有:

解得:电阻R 上产生的焦耳热
3.如图所示,在倾角为θ的斜面内有两条足够长的不计电阻的平行金属导轨,导轨宽度为L ,导轨上端连有阻值为R 的电阻;在垂直于导轨边界ab 上方轨道空间内有垂直于导轨向上的均匀变化的匀强磁场B 1。

边界ab 下方导轨空间内有垂直于导轨向下的匀强磁场B 2。

电阻也为R 、质量为m 的导体棒MN 垂直于导轨放置,磁场B 1随时间均匀减小,且边界ab 上方轨道平面内磁通量变化率大小为k ,MN 静止且受到导轨的摩擦力为零;撤去磁场B 2,MN 从静止开始在较短的时间t 内做匀加速运动通过的距离为x 。

重力加速度为g 。

(1)求磁场B 2的磁感应强度大小; (2)求导体棒MN 与导轨之间动摩擦因数;
(3)若再撤去B 1,恢复B 2,MN 从静止开始运动,求其运动过程中的最大动能。

【答案】(1)2sin Rmg kL
θ
;(2)22tan cos x gt θθ-;(3)4224442sin k x mR g t θ
【解析】 【分析】 【详解】
(1)当磁场B 1随时间均匀减小,设回路中感应电动势为E ,感应电流为I ,则根据法拉第电磁感应定律
E k t
∆Φ
=
=∆ 根据闭合电路欧姆定律
E
I R R
=
+ MN 静止且受到导轨的摩擦力为零,受力平衡
2sin mg B IL θ=
解得
22sin Rmg B kL
θ
=
(2)撤去磁场B 2,设MN 从静止开始做匀加速运动过程中的加速度为a ,导体棒MN 与导轨之间动摩擦因数为μ,则
212
x at =
根据牛顿第二定律
sin cos mg mg ma θμθ-=
解得
22tan cos x
gt μθθ
=-
(3)若再撤去B 1,恢复B 2,设MN 运动过程中的最大速度为v m ,最大动能为E km ,稳定时
sin cos mg mg F θμθ=+安
导体切割磁感线
2m E B Lv '=
通过回路的感应电流
2E I R
''=
安培力为
222m
22B L v F B I L R
='=
安 最大动能
2km m 12
E mv =
联立方程解得
42
km
24442sin k x E mR g t θ
=
4.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。

接通电路,导体棒PQ 在安培力作用下从静止开始向左运动,最终以速度v 匀速运动,此过程中通过导体棒PQ 的电量为q ,A 上升的高度为h 。

已知电源的电动势为E ,重力加速度为g 。

不计一切摩擦和导轨电阻,求:
(1)当导体棒PQ 匀速运动时,产生的感应电动势的大小E ’; (2)当导体棒PQ 匀速运动时,棒中电流大小I 及方向; (3)A 上升h 高度的过程中,回路中产生的焦耳热Q 。

【答案】(1) E Blv =;(2) mg I Bl =,方向为P 到Q ;(3)2
1()2
qE mgh m M v --+ 【解析】 【分析】 【详解】
(1)当导体棒PQ 最终以速度v 匀速运动,产生的感应电动势的大小
E Blv =
(2)当导体棒PQ 匀速运动时,安培力方向向左,对导体棒有
T mg F ==安
又因为
F BIl =安
联立得
mg
I Bl
=
根据左手定则判断I 的方向为P 到Q 。

(3) 根据能量守恒可知,A 上升h 高度的过程中,电源将其它形式的能量转化为电能,再将电能转化为其他形式能量,则有
()21
2
qE Q m M v mgh =+
++ 则回路中的电热为
()21
2
Q qE mgh m M v =--
+
5.如图所示,在倾角为37︒的光滑斜面上存在两个磁感应强度均为B 的匀强磁场区域。

磁场Ⅰ的方向垂直于斜面向下,其上下边界'AA 与DD'的间距为H 。

磁场H 的方向垂直于斜面向上,其上边界'CC 与'DD 的间距为h 。

线有一质量为m 、边长为L (h <L <H )、电阻为R 的正方形线框由'AA 上方某处沿斜面由静止下滑,恰好能匀速进入磁场Ⅰ。

已知当cd 边刚要进入磁场Ⅱ的前一瞬间,线框的加速度大小为10.2a g =,不计空气阻力,求: (1)cd 边刚到达'AA 时的速度1v ;
(2)cd 边从'AA 运动到'CC 过程中,线框所产生的热量Q ; (3)当cd 边刚进入磁场H 时,线框的加速度大小2a 。

【答案】(1)12235mgR v B L =(2)322
44
3()2525mg H h m g R Q B L
+=-(3)2a g =- 【解析】 【分析】 【详解】
(1)cd 边刚到达'AA 时有
221
sin 37B L v mg R

= 解得
122
35mgR
v B L =
(2)已知当cd 边刚要进入磁场Ⅱ的前一瞬间,由牛顿第二定律得
222
1sin 37B L v mg ma R

-=
解得
22225mgR v B L
=
由能量守恒得
2
21()sin 372
mg H h Q mv ︒+=+
解得
322
44
3()2525mg H h m g R Q B L +=-
(3)当cd 边刚进入磁场II 时,ab ,cd 两边分别在两磁场中切割磁感线,则有此时线圈中的电动势变为只有cd 切割时的两倍,电流也为两倍,由左手定则可知,ab ,cd 两边受的安培力相同,方向沿斜面向上,线圈此时受的安培力变为原来的4倍,则有
222
2sin 374B L v mg ma R

-=
解得
2a g =-。

6.如图,POQ 是折成60°角的固定于竖直平面内的光滑金属导轨,导轨关于竖直轴线对称,OP =OQ =L .整个装置处在垂直导轨平面向里的足够大的匀强磁场中,磁感应强度随时间变化规律为B =B 0-kt (其中k 为大于0的常数).一质量为m 、长为L 、电阻为R 、粗细均匀的导体棒锁定于OP 、OQ 的中点a 、b 位置.当磁感应强度变为
1
2
B 0后保持不变,同时将导体棒解除锁定,导体棒向下运动,离开导轨时的速度为v .导体棒与导轨始终保持良好接触,导轨电阻不计,重力加速度为g .求导体棒: (1)解除锁定前回路中电流的大小及方向; (2)滑到导轨末端时的加速度大小; (3)运动过程中产生的焦耳热.
【答案】⑴2
38kL R
,顺时针方向或b→a ;⑵g -2204B L v mR ;⑶
【解析】 【分析】 【详解】
⑴导体棒被锁定前,闭合回路的面积不变,B t
∆∆=k 由法拉第电磁感应定律知:E =
t Φ∆∆=B S t ∆∆=2
316
kL 由闭合电路欧姆定律知:I =E R 总=2
38kL R
由楞次定律知,感应电流的方向:顺时针方向或b→a ⑵导体棒刚离开导轨时受力如图所示
根据法拉第电磁感应定律有:E =01
2
B Lv 根据闭合电路欧姆定律知:I =
E R
根据安培力公式有:F =01
2
ILB 解得:F =
01
2
ILB 由牛顿第二定律知:mg -F =ma
解得:a =g -2204B L v
R
⑶由能量守恒知:mgh =2
12
mv +Q 由几何关系有:h =
3L 解得:Q =
3
4
mgL -212mv
7.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ = 37°角,下端连接阻值为R =2Ω的电阻.磁场方向垂直导轨平面向上,磁感应强度为0.4T .质量为0.2kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.金属棒沿导轨由静止开始下滑.(g=10m/s 2,sin37°=0.6,cos37°=0.8)
(1)判断金属棒下滑过程中产生的感应电流方向; (2)求金属棒下滑速度达到5m/s 时的加速度大小; (3)当金属棒下滑速度达到稳定时,求电阻R 消耗的功率. 【答案】(1)由a 到b (2)22/a m s =(3)8P W = 【解析】 【分析】 【详解】
(1)由右手定则判断金属棒中的感应电流方向为由a 到b .
(2)金属棒下滑速度达到5/m s 时产生的感应电动势为0.4152E BLv V V ==⨯⨯=
感应电流为1E
I A R
=
=,金属棒受到的安培力为0.4110.4?F BIL N N ==⨯⨯= 由牛顿第二定律得:mgsin mgcos F ma θμθ--=,解得:22/a m s =.
(3)设金属棒运动达到稳定时,所受安培力为F ',棒在沿导轨方向受力平衡
mgsin mgcos F θμθ=+',解得:0.8F N '=,又:F BI L '=',
0.820.41
F I A A BL ''=
==⨯ 电阻R 消耗的功率:28P I R W ='=. 【点睛】
该题考查右手定则的应用和导体棒沿着斜面切割磁感线的运动,该类题型综合考查电磁感应中的受力分析与法拉第电磁感应定律的应用,要求的解题的思路要规范,解题的能力要求较高.
8.在如图甲所示区域(图中直角坐标系Oxy 的一、三象限)内有匀强磁场,磁感应强度方向垂直于纸面向里,大小为B ,半径为l ,圆心角为60°的扇形导线框OPQ 以角速度ω绕O 点在纸面内沿逆时针方向匀速转动,导线框回路电阻为R .
(1)求线框中感应电流的最大值I 0和交变感应电流的频率f ;
(2)在图乙中画出线框在一周的时间内感应电流I 随时间t 变化的图象(规定与图中线框的位置相应的时刻为t =0)
【答案】(1)2012I bl R ω=
,f ω
π
= (2)
【解析】 【详解】
(1)在从图1中位置开始t =0转过60°的过程中,经△t ,转角△θ=ω△t ,回路的磁通增量为
△Φ=
1
2
△θ l 2B 由法拉第电磁感应定律,感应电动势为:
ε=
t
Φ 因匀速转动,这就是最大的感应电动势.由欧姆定律可求得:
I 0=1 2R
ωBl 2
前半圈和后半圈I (t )相同,故感应电流周期为:
T = πω

频率为:
1f T =
ωπ
=. 故感应电流的最大值为
I 0=1 2R
ωBl 2,
频率为
f =
ωπ
. (2)由题可知当线框开始转动
3
π
过程中,有感应电流产生,全部进入时,无感应电流,故当线框全部进入磁场接着再旋转6
π
过程中无电流,然后出磁场时,又有感应电流产生.故图线如图所示:
【点睛】
本题考查了法拉第电磁感应定律的应用,注意公式=E t
Φ
和E =BLv 的区别以及感应电流产生条件,并记住旋转切割产生感应电动势的公式E =
1
2
BωL 2.
9.如图,两根相距l =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连.导轨x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5T/m ,x =0处磁场的磁感应强度B 0=0.5T .一根质量m =0.1kg 、电阻r =0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x =0处以初速度v 0=2m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:
(1)同路中的电流;
(2)金属棒在x=2m处的速度;
(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;
(4)金属棒从x=0运动到x=2m过程中外力的平均功率.
【答案】(1)2(2)(3)1.6(4)0.71
【解析】
【分析】
【详解】
(1)因为运动过程中电阻上消耗的功率不变,所以回路中电流不变,感应电动势不变
x=0处导体棒切割磁感线产生电动势
电流
(2) x=2m处
解得
(3)
F-X图像为一条倾斜的直线,图像围成的面积就是二者的乘积即
x=0时,F=0.4N x=2m时,F=1.2N
(4)从x=0运动到x=2m,根据动能定理
解得
解得
所以
【点睛】
(1)由法拉第电磁感应定律与闭合电路欧姆定律相结合,来计算感应电流的大小;(2)由因棒切割产生感应电动势,及电阻的功率不变,即可求解;(3)分别求出x=0与x=2m 处的安培力的大小,然后由安培力做功表达式,即可求解;(4)依据功能关系,及动能定理可求出外力在过程中的平均功率.
10.如图所示,间距L=1m的足够长的两不行金属导轨PQ、MN之间连接一个阻值为R
=0.75Ω的定值电阻,一质量m=0.2kg、长度L=1m、阻值r=0.25Ω的金属棒ab水平放置在
θ=︒,导轨所在的空间存导轨上,它与导轨间的动摩擦因数μ=0. 5。

导轨不面的倾角37
在着垂直于导轨不面向上的磁感应强度大小B = 0.4T 的匀强磁场。

现让金属棒b 由静止开始下滑,直到金属棒b 恰好开始做匀速运动,此过程中通过定值电阻的电量为q =1.6 C 。

已知运动过程中金属棒ab 始终与导轨接触良好,导轨电阻不计,sin370.6︒=,
cos370.8︒=,重力加速度g =10m/s 2,求: (1)金属棒ab 下滑的最大速度;
(2)金属棒ab 由静止释放后到恰好开始做匀速运动所用的时间;
(3)金属棒ab 由静止释放后到恰好开始做匀速运动过程中,整个回路产生的焦耳热。

【答案】(1) 2.5/m v m s = (2) 2.85t s = (3) 0.975Q J = 【解析】 【详解】
(1)设金属棒ab 下滑的最大速度为m v ,由法拉第电磁感应定律和闭合电路的欧姆定律得
()m BLv I R r =+
由平衡条件得
sin cos mg mg BIL θμθ=+
联立解得 2.5m/s m v =;
(2)金属棒ab 由静止开始下滑到恰好匀速运动的过程,由动量定理得
()sin cos 0m mg mg BIL t mv θμθ--=-

q It =
联立解得 2.85t s =;
(3)由法拉第电磁感应定律和闭合电路的欧姆定律得
BLx
q R r
=
+ 由能量守恒定律得
2
1sin cos 2
m mgx mg x mv Q θμθ=++
联立解得0.975J Q =。

11.如图所示,水平面上有一个高为d 的木块,木块与水平面间的动摩擦因数为μ=0.1.由均匀金属材料制成的边长为2d 、有一定电阻的正方形单匝线框,竖直固定在木块上表面,它们的总质量为m .在木块右侧有两处相邻的边长均为2d 的正方形区域,正
方形底边离水平面高度为2d .两区域各有一水平方向的匀强磁场穿过,其中一个方向垂直于纸面向里,另一个方向垂直于纸面向外,区域Ⅱ中的磁感应强度为区域Ⅰ中的3倍.木块在水平外力作用下匀速通过这两个磁场区域.已知当线框右边MN 刚进入Ⅰ区时,外力大小恰好为0320
F g m =
,此时M 点电势高于N 点,M 、N 两点电势差U MN =U .试求:
(1)区域Ⅰ中磁感应强度的方向怎样?
(2)线框右边MN 在Ⅰ区运动过程中通过线框任一横截面的电量q . (3)MN 刚到达Ⅱ区正中间时,拉力的大小F . (4)MN 在Ⅱ区运动过程中拉力做的功W .
【答案】(1)向外 (2)340mgd q U = (3)
4750mg (4)47
25
mgd 【解析】 【详解】
(1)因为线框从左向右匀速通过这两个磁场区域,所以拉力方向向右,安培力方向向左。

因为M 点电势高于N 点,由右手定制可判断区域Ⅰ中磁感应强度的方向向外。

(2)设线框的总电阻为R ,磁场Ⅰ区的磁感强度为B ,线框右边MN 在Ⅰ区运动过程中有一半长度切割磁感线产生感应电动势,有
Bdv I R R
ε
=
=
,33
44U I R Bdv =⋅=
线框右边MN 在Ⅰ区运动过程中,木块与线框受力平衡,有
0A F F mg μ--=
解得
31
0.12020
A F BId mg mg mg ==
-= 通过线框任一横截面的电量q 为q It =,其中2d
t v
= 联立以上各式,解得
340mgd
q U
=
(3)MN 刚到达Ⅱ区正中间时,流过线框的电流为
34'4Bdv Bdv Bdv
I I R R
+=
== 线框左、右两条边均受到向左的安培力作用,总的安培力大小为
4
''3'165
A A F BI d
BI d F mg =+==
由于线框上边各有一半处在磁场Ⅰ区、Ⅱ区中,所以分别受到向上与向下的安培力作用,此时木块受到的支持力N 为
7
3''85
A N mg BI d BI d mg F mg =+-=+=
木块与线框组成的系统受力平衡,因此拉力F 为
4747
'55050
A F F N mg mg mg μ=+=+=
(4)随着MN 在磁场Ⅱ区的运动,木块受到的支持力N x 随发生的位移x 而变化,有
3''(2)2'4'x N mg BI x BI d x mg BI d BI x =+--=-+
由于N x 随位移x 线性变化,因此MN 在Ⅱ区运动过程中木块受到的平均支持力为
4'27
2'2'25
BI d N mg BI d mg BI d mg ⋅=-+
=+= 此过程中拉力做的功W 为
4747
'222255025
A W F d N d mg d mg d mgd μ=⋅+⋅=⋅+⋅=
12.如图所示,间距为
L 、电阻不计的足够长双斜面型平行导轨,左导轨光滑,右导轨粗糙,
左、右导轨分别与水平面成α、β角,分别有垂直于导轨斜面向上的磁感应强度为 B1、B2 的匀强磁场,两处的磁场互不影响.质量为 m 、电阻均为 r 的导体棒 ab 、cd 与两平行导轨垂直放置且接触良 好.ab 棒由静止释放,cd 棒始终静止不动.求: (1)ab 棒速度大小为 v 时通过 cd 棒的电流大小和 cd 棒受到的摩擦力大小. (2)ab 棒匀速运动时速度大小及此时 cd 棒消耗的电功率.
【答案】(1)12B Lv r ;2122B B L v
r
-mgsin β(2)222221sin m g r B L α
【解析】 【分析】 【详解】
(1)当导体棒ab 的速度为v 时,其切割磁感线产生的感应电动势大小为:E =B 1Lv① 导体棒ab 、cd 串联,由全电路欧姆定律有:2E I r
=

联立①②式解得流过导体棒cd 的电流大小为:12B Lv
I
r
=③ 导体棒cd 所受安培力为:F 2=B 2IL④ 若mgsin β >F 2,则摩擦力大小为:
21212sin ?sin 2B B L v
f m
g F mg r
ββ=-=-
⑤ 若mgsin β ≤F 2,则摩擦力大小为: 21222sin sin 2B B L v
f F m
g mg r
ββ=-=-⑥
(2)设导体棒ab 匀速运动时速度为v 0,此时导体棒ab 产生的感应电动势为:E 0=B 1Lv 0⑦
流过导体棒ab 的电流大小为:0
02E I r
=
⑧ 导体棒ab 所受安培力为:F 1=B 1I 0L⑨
导体棒ab 匀速运动,满足:mgsin α-F 1=0⑩ 联立⑦⑧⑨⑩式解得:022
12sin mgr v B L α
=
此时cd 棒消耗的电功率为:22220
22
1sin m g r P I R B L α
==
【点睛】
本题是电磁感应与力学知识的综合应用,在分析中要注意物体运动状态(加速、匀速或平衡),认真分析物体的受力情况,灵活选取物理规律,由平衡条件分析和求解cd 杆的受力情况.
13.如图所示,宽0.2m L =、长为2L 的矩形闭合线框abcd ,其电阻为4R =Ω,线框以速度10m/s v =垂直于磁场方向匀速通过匀强磁场区域,磁场的宽度为L ,磁感应强度
1T B =问:
(1)当bc 边进入磁场时,线框中产生的感应电动势是多大? (2)bc 边进入磁场后,它所受到的磁场力是多大? (3)整个过程中线框产生的热量是多少?
【答案】(1)2V (2)0.1N (3)0.04J 【解析】 【分析】
bc 边进入磁场时,bc 切割磁感线运动,产生的感应电动势;同样ad 边进入磁场时,ad 切
割磁感线运动,产生的感应电动势。

【详解】
(1)当bc 边进入磁场时,bc 切割磁感线运动,产生的感应电动势
10.210V 2V E BLv ==⨯⨯=
(2)bc 边进入磁场后,它所受到的磁场力即为安培力
2
10.2N 0.1N 4
B E F BIL B L R ==⋅⋅=⨯⨯=
(3)整个过程中,bc 边进入磁场和ad 边进入磁场过程都有感应电动势产生,产生的感应电动势大小相等。

两边在磁场中运动的时间:
0.222s 0.04s 10
L t v ⨯===
产生热量:
220.540.04J 0.04J Q I Rt ==⨯⨯=
答:(1)当bc 边进入磁场时,线框中产生的感应电动势是2V ; (2)bc 边进入磁场后,它所受到的磁场力是0.1N ; (3)整个过程中线框产生的热量是0.04J 。

14.如图所示,竖直平面存在宽度均为0.2m L =的匀强电场和匀强磁场区域,电场方向竖直向上,磁场方向垂直纸面向外,磁感应强度大小0.5T B =.电场的下边界与磁场的上边界相距也为L .电荷量4
2.510C -=⨯q 、质量0.02kg m =的带正电小球(视为质点)通过长度为
3.5L 的绝缘轻杆与边长为L 、电阻0.01ΩR =的正方形线框相连,线框质量
0.08kg M =.开始时,线框下边与磁场的上边界重合,现将该装置由静止释放,当线框
下边刚离开磁场时恰好做匀速运动;当小球刚要运动到电场的下边界时恰好返回.装置在运动过程中空气阻力不计,求:
(1)线框下边刚离开磁场时做匀速运动的速度大小; (2)线框从静止释放到线框上边匀速离开磁场所需要的时间; (3)经足够长时间后,小球能到达的最低点与电场上边界的距离; (4)整个运动过程中线框内产生的总热量.
【答案】(1)1m/s ;(2) 0.5s t =;(3)0.133m ; (4) 0.4J Q = 【解析】 【详解】
(1)设线框下边离开磁场时做匀速直线运动的速度为0v ,则有:
0E BLv =,E I R = ,220
A B L v F BIL R
==
根据平衡条件:
220
)A B L v F M m g R
==+(
可解得:
022
)1m/s M m Rg
v B L
+=
=( (2)由动量定理得:
0()()m m gt BILt M m v +-=+
其中:
2
2BL q It R
== 由以上两式代入数据解得:
0.5s t =
(3)从线框刚离开磁场区域到小球刚运动到电场的下边界的过程中,由动能定理得:
2
0()(11502
.)()qEL m m g L M m v =+--++
解得:
3710N/C E =⨯
设经足够长时间后,线框最终不会再进入磁场,即运动的最高点是线框的上边与磁场的下
边界重合,小球做上下往复运动.
设小球运动的最低点到电场上边界的距离为x,从图中“1”位置到“2”位置由动能定理得:
M m g L x qEx
++-=
()(0.5)0
可得:
2
x==
m0.133m
15
(4)从开始状态到最终稳定后的最高点(线框的上边与磁场的下边界重合处)
由能量守恒得:
()2
=+
Q M m g L
代入数值求得:
Q=
0.4J
15.如图所示,在竖直平面内有间距L=0.2 m的足够长的金属导轨CD、EF,在C、E之间连接有阻值R=0.05 Ω的电阻。

虚线M、N下方空间有匀强磁场,磁感应强度B=1 T,方向与导轨平面垂直。

质量均为m=0.2 kg的物块a和金属杆b通过一根不可伸长的轻质细绳相连,跨放在质量不计的光滑定滑轮两侧。

初始时a静止于水平地面上,b悬于空中并恰好位于磁场边界MN上(未进入磁场)。

现将b竖直向上举高h=0.2 m后由静止释放,一段时间后细绳绷直,a、b以大小相等的速度一起运动,之后做减速运动直至速度减为0。

已知运动过程中a、b均未触及滑轮,金属杆与导轨始终垂直且接触良好,金属杆及导轨的电阻不
计,取重力加速度g =10 m/s 2,求: (1)整个过程中电阻R 产生的热量; (2)金属杆b 刚进入磁场时的加速度大小; (3)物块a 最终的位置离地面的高度。

【答案】(1)0.2 J(2)2 m/s 2(3)0.5 m 【解析】 【详解】
(1)设细绳绷直前瞬间b 的速度为v 0,绷直后瞬间b 的速度为v ,蹦直瞬间细绳对b 的拉力的冲量大小为I ,则b 自由下落过程中,根据动能定理有
mgh =
2
012
mv -0 细绳蹦直瞬间,对a 、b 根据动量定理分别有
I =mv -0 I =mv 0-mv
此后系统机械能转化为电能并最终变成电阻R 产生的热量Q ,故有
Q =2×
12
mv 2 由以上各式解得
Q =0.2 J ;
(2)设b 刚进入磁场时受到的安培力为F ,绳中拉力为T ,b 的加速度大小为a ,则有
F =BiL , i =
E R
, E =BLv ,
对a 、b 根据牛顿第二定律分别有
mg -T =ma ,
T +F -mg =ma , 由以上各式得
a =2 m/s 2;
(3)联立上面各式可得
22
B L R
v =2ma 对一小段时间Δt ,有
22
B L R
v Δt =2ma Δt 故有
22
B L R
∑v Δt =2m ∑a Δt , 即
22
B L R
Δx =2m Δv 从b 进入磁场到a 、b 速度减为0的过程中
Δv =v -0
所以a 上升的高度
Δx =
22
2mvR
B L 解得
Δx =0.5 m
另解:
由牛顿第二定律得
BiL =2ma
对一小段时间Δt ,有
BiL Δt =2ma Δt BLq =2m Δv
又有
q =
R
其中
ΔΦ=BL Δx
由以上各式得
Δx =
222mvR B L
解得
Δx =0.5 m ;。

相关文档
最新文档