区块链群智感知中基于隐私数据真值估计的激励机制
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
区块链群智感知中基于隐私数据真值估计的激励机制
应臣浩;夏福源;李颉;斯雪明;骆源
【期刊名称】《计算机研究与发展》
【年(卷),期】2022(59)10
【摘要】在基于区块链的群智感知系统中构建数据真值估计机制和用户激励机制受到了越来越多的关注.与传统的群智感知系统依赖一个集中平台来承载数据感知任务不同,该系统利用区块链分布式结构和操作透明不可抵赖的特性,使其具有更好的安全性和交互性.但是目前的研究总是独立分离设计数据真值估计机制和参与者激励机制,这导致2类机制在实际应用时往往具有局限性.针对这一问题,在综合考虑了数据真值估计精确度与用户激励后,提出了一类基于隐私保护数据真值估计的用户激励机制.该机制由2个模块组成,具有隐私保护的数据真值估计模块PATD和具有隐私保护的用户激励模块PFPI,这2个模块都是通过利用同态加密机制CKKS来构建的.由于数据采集设备精确度不够等原因,用户收集的数据往往具有噪声,因此PATD对用户提交的含有噪声的数据的加密结果进行计算,并将解密后的计算结果作为相应数据真值的估计.因为所用的数据均是加密的,所以可以保护用户数据隐私,同时,该机制还可以保证解密后的估计值具有较高的估计精度.此外,作为一种激励机制,PFPI满足真实性、个体合理性且具有较高的社会福利,同时利用CKKS保证用户在竞标过程中的竞价隐私安全.最后,进行了大量实验来验证所提的基于隐私保护数据真值估计的用户激励机制的各种特性.实验结果表明,该机制与最新方法相比具有更好的性能.
【总页数】21页(P2212-2232)
【作者】应臣浩;夏福源;李颉;斯雪明;骆源
【作者单位】上海交通大学计算机科学与工程系;上海交通大学区块链研究中心;无锡市区块链高等研究中心
【正文语种】中文
【中图分类】TP391
【相关文献】
1.群智感知应用中基于区块链的激励机制
2.移动群智感知中基于用户联盟匹配的隐私保护激励机制
3.群智感知中基于k-匿名的位置及数据隐私保护方法研究
4.群智感知网络中基于隐私保护的数据融合方法
5.基于区块链的群智感知中任务预算约束的位置隐私保护参与者选择方法
因版权原因,仅展示原文概要,查看原文内容请购买。