2020-2021全国各地中考模拟试卷数学分类:平行四边形综合题汇编附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021全国各地中考模拟试卷数学分类:平行四边形综合题汇编附答案解析
一、平行四边形
1.问题发现:
(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.
问题探究:
(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.
问题解决:
(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点
(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.
【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .
【解析】
试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.
(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.
(3)存在,直线y x =平分五边形OABCD 面积、周长.
试题解析:(1)作图如下:
(2)∵(6,7)P ,(4,3)O ',
∴设:6PO y kx =+',
67{43k b k b +=+=,2{5
k b ==-, ∴25y x =-,
交x 轴于5,02N ⎛⎫ ⎪⎝⎭
, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2
211563522MN ⎛⎫=+-= ⎪⎝⎭.
(3)存在,直线y x =平分五边形OABCD 面积、周长.
∵(1052,102)P --在直线y x =上,
∴连OP 交OA 、BC 于点E 、F ,
设:BC y kx b =+,(8,2)(2,8)B C ,
82{28k b k +=+=,1{10
k b =-=, ∴直线:10BC y x =-+,
联立10{y x y x =-+=,得55x y =⎧⎨=⎩
, ∴(0,0)E ,(5,5)F .
2.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例
当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究
(1)正方形FGCH的面积是;(用含a, b的式子表示)
(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.
联想拓展
小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.
【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.
【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;
应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.
详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;
剪拼方法如图2-图4;
联想拓展:能,
剪拼方法如图5(图中BG=DH=b).

点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.
3.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.
(1)求证:△AED≌△CEB′
(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG +
PH的值.
【答案】(1)证明见解析;(2).
【解析】
【分析】
(1)由折叠的性质知,,,,则由得到;
(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.
【详解】
(1)四边形为矩形,
,,
又,

(2),



在中,,
过点作于,
,,

,,

、、共线,

四边形是矩形,

.
【点睛】
此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作
法,注意数形结合思想的应用.
4.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C 关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;
(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;
(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.
【答案】(1)45°;(2)BP+DP2AP,证明详见解析;(32﹣1.
【解析】
【分析】
(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=1
2
∠ADC=45°;
(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;
(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.
【详解】
(1)由对称得:CD=C'D,∠CDE=∠C'DE,
在正方形ABCD中,AD=CD,∠ADC=90°,
∴AD=C'D,
∵F是AC'的中点,
∴DF⊥AC',∠ADF=∠C'DF,
∴∠FDP=∠FDC'+∠EDC'=1
2
∠ADC=45°;
(2)结论:BP+DP2AP,
理由是:如图,作AP'⊥AP交PD的延长线于P',
∴∠PAP'=90°,
在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,
由(1)可知:∠FDP=45°
∵∠DFP=90°
∴∠APD=45°,
∴∠P'=45°,
∴AP=AP',
在△BAP和△DAP'中,

BA DA
BAP DAP AP AP
'
=


∠=∠

='



∴△BAP≌△DAP'(SAS),∴BP=DP',
∴DP+BP=PP'=2AP;
(3)如图,过C'作C'G⊥AC于G,则S△AC'C=1
2
AC•C'G,
Rt△ABC中,AB=BC2,
∴AC22
(2)(2)2
+=,即AC为定值,
当C'G最大值,△AC'C的面积最大,
连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,
∵CD =C 'D =2,OD =
12AC =1, ∴C 'G =2﹣1,
∴S △AC 'C =
112(21)2122
AC C G '•=⨯-=-. 【点睛】 本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
5.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .
(1)求证:四边形BEDF 是平行四边形;
(2)当四边形BEDF 是菱形时,求EF 的长.
【答案】(1)证明见解析;(2)
133
. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;
(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.
详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,
∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,
∴∠OBE=∠ODF ,
在△BOE 和△DOF 中,
OBE ODF OB OD
BOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△BOE ≌△DOF (ASA ),
∴EO=FO ,
∴四边形BEDF 是平行四边形;
(2)当四边形BEDF 是菱形时,BD ⊥EF ,
设BE=x ,则 DE=x ,AE=6-x ,
在Rt △ADE 中,DE 2=AD 2+AE 2,
∴x 2=42+(6-x )2,
解得:x= 133, ∵BD=22AD AB + =213, ∴OB=12
BD=13, ∵BD ⊥EF ,
∴EO=22BE OB -=
2133, ∴EF=2EO=4133
. 点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键
6.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E ,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。

(I )若点P 落在矩形OBCD 的边OB 上,
①如图①,当点E 与点O 重合时,求点F 的坐标;
②如图②,当点E 在OB 上,点F 在DC 上时,EF 与DP 交于点G ,若7OP =,求点F 的坐标:
(Ⅱ)若点P 落在矩形OBCD 的内部,且点E ,F 分别在边OD ,边DC 上,当OP 取最小值时,求点P 的坐标(直接写出结果即可)。

【答案】(I )①点F 的坐标为(6,6);②点F 的坐标为85,614⎛⎫
⎪⎝⎭;(II )86,55P ⎛⎫ ⎪⎝⎭
【解析】
【分析】 (I )①根据折叠的性质可得45DOF POF ∴∠=∠=o ,再由矩形的性质,即可求出F 的坐标;
②由折叠的性质及矩形的特点,易得DGF PGE ∆≅∆,得到DF PE =,再加上平行,
可以得到四边形DEPF 是平行四边形,在由对角线垂直,得出 DEPF Y 是菱形,设菱形的边长为x ,在Rt ODE ∆中,由勾股定理建立方程即可求解;
(Ⅱ)当O,P ,F 点共线时OP 的长度最短.
【详解】
解:(I )①∵折痕为EF,点P 为点D 的对应点
DOF POF ∴∆≅∆
45DOF POF ∴∠=∠=o
∵四边形OBCD 是矩形,
90ODF ︒∴∠=
45DFO DOF ︒∴∠=∠=
6DF DO ∴==
点F 的坐标为(6,6)
②∵折痕为EF ,点P 为点D 的对应点.
,DG PG EF PD ∴=⊥
∵四边形OBCD 是矩形,
//DC OB ∴,
FDG EPG ∴∠=∠;
DGF PGE ∠=∠Q
DGF PGE ∴∆≅∆
DF PE ∴=
//DF PE Q
∴四边形DEPF 是平行四边形.
EF PD ⊥Q ,
DEPF ∴Y 是菱形.
设菱形的边长为x ,则DE EP x ==
7OP =Q ,
7OE x ∴=-,
在Rt ODE ∆中,由勾股定理得222OD QB DE +=
2226(7)x x ∴+-= 解得8514
x = 8514
DF ∴= ∴点F 的坐标为85,614⎛⎫
⎪⎝⎭ (Ⅱ)86,55P ⎛⎫
⎪⎝⎭
此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题.
7.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .
(1)求证:DE DF ⊥;
(2)求证:DH DF =:
(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.
【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.
【解析】
【分析】
(1)根据正方形性质, CF AE =得到DE DF ⊥.
(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于
45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.
(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得
222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得
HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒
,得22EF AB HM =-.
(1)证明:∵四边形ABCD 是正方形,
∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.
∴90EAD FCD ∠=∠=︒.
∵CF AE =。

∴AED CFD △△≌.
∴ADE CDF ∠=∠.
∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=︒.
∴DE DF ⊥.
(2)证明:∵AED CFD △△≌,
∴DE DF =.
∵90EDF ∠=︒,
∴45DEF DFE ∠=∠=︒.
∵90ABC ∠=︒,BD 平分ABC ∠,
∴45DBF ∠=︒.
∵FH 平分EFB ∠,
∴EFH BFH ∠=∠.
∵45DHF DBF BFH BFH ∠=∠+∠=︒+∠,
45DFH DFE EFH EFH ∠=∠+∠=︒+∠,
∴DHF DFH ∠=∠.
∴DH DF =.
(3)22EF AB HM =-.
证明:过点H 作HN BC ⊥于点N ,如图,
∵正方形ABCD 中,AB AD =,90BAD ∠=︒, ∴222BD AB AD AB =+=.
∵FH 平分,
EFB HM EF HN BC ∠⊥⊥,,
∴HM HN =. ∵4590HBN HNB ∠=︒∠=︒,

∴22sin 45HN BH HN HM ===︒
. ∴22DH BD BH AB HM =-=
-. ∵22cos 45DF EF DF DH ===︒
, ∴22EF AB HM =-.
【点睛】
本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.
8.已知90AOB ∠=︒,点C 是AOB ∠的角平分线OP 上的任意一点,现有一个直角MCN ∠绕点C 旋转,两直角边CM ,CN 分别与直线OA ,OB 相交于点D ,点E .
(1)如图1,若CD OA ⊥,猜想线段OD ,OE ,OC 之间的数量关系,并说明理由. (2)如图2,若点D 在射线OA 上,且CD 与OA 不垂直,则(1)中的数量关系是否仍成立?如成立,请说明理由;如不成立,请写出线段OD ,OE ,OC 之间的数量关系,并加以证明.
(3)如图3,若点D 在射线OA 的反向延长线上,且2OD =,8OE =,请直接写出线段CE 的长度.
【答案】(1)详见解析;(2)详见解析;(334【解析】
【分析】
(1)先证四边形ODCE 为矩形,再证矩形ODCE 为正方形,由正方形性质可得;(2)过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,证四边形OGCH 为正方形,再证()CGD CHE ASA ∆≅∆,可得;(3)根据()CGD CHE ASA ∆≅∆
,可得
OE OD OH OG -=+=.
【详解】
解:(1)∵90AOB ∠=︒,90MCN ∠=︒,CD OA ⊥,
∴四边形ODCE 为矩形.
∵OP 是AOB ∠的角平分线,
∴45DOC EOC ∠=∠=︒,
∴OD CD =,
∴矩形ODCE 为正方形,
∴OC =
,OC =.
∴OD OE +=
. (2)如图,过点C 作CG OA ⊥于点G ,CH OB ⊥于点H ,
∵OP 平分AOB ∠,90AOB ∠=︒,
∴四边形OGCH 为正方形,
由(1
)得:OG OH +=

在CGD ∆和CHE ∆中, 90CGD CHE CG CH
DCG ECH ︒
⎧∠=∠=⎪=⎨⎪∠=∠⎩
, ∴()CGD CHE ASA ∆≅∆,
∴GD HE =,
∴OD OE +=.
(3
)OG OH +=
, ()CGD CHE ASA ∆≅∆,
∴GD HE =. ∵OD GD OG =-,OE OH EH =+,
∴OE OD OH OG -=+=

∴OC =
∴CE =
CE
【点睛】
考核知识点:矩形,正方形的判定和性质.熟练运用特殊四边形的性质和判定是关键.
9.菱形ABCD中、∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD相交于点F.(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;
(2)如图②,点O在CA的延长线上,且OA=1
3
AC,E,F分别在线段BC的延长线和线
段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=27,当CF=1时,请直接写出BE的长.
【答案】(1)CA=CE+CF.(2)CF-CE=4
3
AC.(3)BE的值为3或5或1.
【解析】
【分析】
(1)如图①中,结论:CA=CE+CF.只要证明△ADF≌△ACE(SAS)即可解决问题;
(2)结论:CF-CE=4
3
AC.如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角
形.只要证明△FOG≌△EOC(ASA)即可解决问题;(3)分四种情形画出图形分别求解即可解决问题.【详解】
(1)如图①中,结论:CA=CE+CF.
理由:∵四边形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°
∴△ABC,△ACD都是等边三角形,
∵∠DAC=∠EAF=60°,
∴∠DAF=∠CAE,
∵CA=AD,∠D=∠ACE=60°,
∴△ADF≌△ACE(SAS),
∴DF=CE,
∴CE+CF=CF+DF=CD=AC,
∴CA=CE+CF.
(2)结论:CF-CE=4
3 AC.
理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.
∵∠GOC=∠FOE=60°,
∴∠FOG=∠EOC,
∵OG=OC,∠OGF=∠ACE=120°,
∴△FOG≌△EOC(ASA),
∴CE=FG,
∵OC=OG,CA=CD,
∴OA=DG,
∴CF-EC=CF-FG=CG=CD+DG=AC+1
3AC=
4
3
AC,
(3)作BH⊥AC于H.∵AB=6,AH=CH=3,
∴BH=33,
如图③-1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.
∵OB=27,
∴OH=22
OB BH
=1,
∴OC=3+1=4,
由(1)可知:CO=CE+CF,
∵OC=4,CF=1,
∴CE=3,
∴BE=6-3=3.
如图③-2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.
由(2)可知:CE-CF=OC,
∴CE=4+1=5,
∴BE=1.
如图③-3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.
同法可证:OC=CE+CF ,
∵OC=CH-OH=3-1=2,CF=1,
∴CE=1,
∴BE=6-1=5.
如图③-4中,当点O 在线段CH 上,点F 在线段DC 的延长线上,点E 在线段BC 上时.
同法可知:CE-CF=OC ,
∴CE=2+1=3,
∴BE=3,
综上所述,满足条件的BE 的值为3或5或1.
【点睛】
本题属于四边形综合题,考查了全等三角形的判定和性质,等边三角形的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
10.在ABC V 中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .
()1如图1,求证:四边形ADCF 是矩形;
()2如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).
【答案】(1) 证明见解析;(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.
【解析】
【分析】
(1)由△AEF ≌△CED ,推出EF=DE ,又AE=EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF 是矩形.
(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.
【详解】
()1证明:∵//AF BC ,
∴AFE EDC ∠=∠,
∵E 是AC 中点,
∴AE EC =,
在AEF V 和CED V 中,
AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩

∴AEF CED ≅V V ,
∴EF DE =,∵AE EC =,
∴四边形ADCF 是平行四边形,
∵AD BC ⊥,
∴90ADC ∠=o ,
∴四边形ADCF 是矩形.
()2∵线段DG 、线段GE 、线段DE 都是ABC V 的中位线,又//AF BC , ∴//AB DE ,//DG AC ,//EG BC ,
∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.
【点睛】
考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.
11.(1)问题发现
如图1,点E. F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;
(2)类比引申
如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若
∠B,∠D都不是直角,则当∠B与∠D满足等量关系时,仍有EF=BE+DF;(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC 满足的等量关系,并写出推理过程。

【答案】(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出
△AFG≌△AFE,根据全等三角形的性质得出EF=FG,即可得出答案;
(2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFE≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
(3)把△ACE旋转到ABF的位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,
∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断.
试题解析:(1)理由是:如图1,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重合,如图1,
∵∠ADC=∠B=90∘,
∴∠FDG=180∘,点F. D. G共线,
则∠DAG=∠BAE,AE=AG,
∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90∘−45∘=45∘=∠EAF,
即∠EAF=∠FAG,
在△EAF和△GAF中,
AF=AF,∠EAF=∠GAF,AE=AG,
∴△AFG≌△AFE(SAS),
∴EF=FG=BE+DF;
(2)∠B+∠D=180∘时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重合,如图2,
∴∠BAE=∠DAG,
∵∠BAD=90∘,∠EAF=45∘,
∴∠BAE+∠DAF=45∘,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180∘,
∴∠FDG=180∘,点F. D. G共线,
在△AFE和△AFG中,
AE=AG,∠FAE=∠FAG,AF=AF,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:∠B+∠ADC=180∘;
(3)BD2+CE2=DE2.
理由是:把△ACE旋转到ABF的位置,连接DF,
则∠FAB=∠CAE.
∵∠BAC=90∘,∠DAE=45∘,
∴∠BAD+∠CAE=45∘,
又∵∠FAB=∠CAE,
∴∠FAD=∠DAE=45∘,
则在△ADF和△ADE中,
AD=AD,∠FAD=∠DAE,AF=AE,
∴△ADF≌△ADE,
∴DF=DE,∠C=∠ABF=45∘,
∴∠BDF=90∘,
∴△BDF是直角三角形,
∴BD2+BF2=DF2,
∴BD2+CE2=DE2.
12.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.
【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3)241;【解析】
分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且
∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明
△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似
三角形的性质得到AB AC
AM AN
=,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三
角形的性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据
相似三角形的性质得出BM AB
CN AC
=,得到BM=2,CM=8,再根据勾股定理即可得到答案.
详解:(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,
在△ABM 与△ACN 中,
AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩
, ∴△ABM ≌△ACN (SAS ),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN ∥AB ;
(2)∠ABC=∠ACN ,理由如下: ∵
AB AM BC MN
==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴
AB AC AM AN
=, ∵AB=BC , ∴∠BAC=
12
(180°﹣∠ABC ), ∵AM=MN
∴∠MAN=12
(180°﹣∠AMN ), ∵∠ABC=∠AMN ,
∴∠BAC=∠MAN ,
∴∠BAM=∠CAN ,
∴△ABM ~△ACN ,
∴∠ABC=∠ACN ;
(3)如图3,连接AB ,AN , ∵四边形ADBC ,AMEF 为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC
即∠BAM=∠CAN ,

AB AM BC AN == ∴AB AC AM AN
=, ∴△ABM ~△ACN ∴BM AB CN AC
=,
∴CN AC BM AB ==cos45°=22, ∴22=, ∴BM=2,
∴CM=BC ﹣BM=8, 在Rt △AMC , AM=2222108241AC MC +=+=,
∴EF=AM=241.
点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
13.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,使点D 落在边BC 上的点F 处,过点F 作FG ∥CD ,交AE 于点G ,连接DG .
(1)求证:四边形DEFG 为菱形;
(2)若CD =8,CF =4,求的值.
【答案】(1)证明见试题解析;(2).
【解析】
试题分析:(1)由折叠的性质,可以得到DG=FG ,ED=EF ,∠1=∠2,由FG ∥CD ,可得∠1=∠3,再证明 FG=FE ,即可得到四边形DEFG 为菱形;
(2)在Rt △EFC 中,用勾股定理列方程即可CD 、CE ,从而求出
的值. 试题解析:(1)由折叠的性质可知:DG=FG ,ED=EF ,∠1=∠2,∵FG ∥CD ,∴∠2=∠3,
∴FG=FE ,∴DG=GF=EF=DE ,∴四边形DEFG 为菱形;
(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8﹣x,在Rt△EFC中,,即,解得:x=5,CE=8﹣x=3,∴=.
考点:1.翻折变换(折叠问题);2.勾股定理;3.菱形的判定与性质;4.矩形的性质;5.综合题.
14.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,求证:△PDH的周长是定值;
(3)当BE+CF的长取最小值时,求AP的长.
【答案】(1)证明见解析.(2)证明见解析.(3)2.
【解析】
试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出
∠APB=∠PBC即可得出答案;
(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出
PD+DH+PH=AP+PD+DH+HC=AD+CD=8;
(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.
试题解析:(1)解:如图1,
∵PE=BE,
∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠PBC=∠BPH.
又∵AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:如图2,过B作BQ⊥PH,垂足为Q.
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
在△ABP和△QBP中,

∴△ABP≌△QBP(AAS),
∴AP=QP,AB=BQ,
又∵AB=BC,
∴BC=BQ.
又∠C=∠BQH=90°,BH=BH,
在△BCH和△BQH中,

∴△BCH≌△BQH(SAS),
∴CH=QH.
∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.
∴△PDH的周长是定值.
(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.
又∵EF为折痕,
∴EF⊥BP.
∴∠EFM+∠MEF=∠ABP+∠BEF=90°,
∴∠EFM=∠ABP.
又∵∠A=∠EMF=90°,
在△EFM和△BPA中,

∴△EFM≌△BPA(AAS).
∴EM=AP.
设AP=x
在Rt△APE中,(4-BE)2+x2=BE2.
解得BE=2+,
∴CF=BE-EM=2+-x,
∴BE+CF=-x+4=(x-2)2+3.
当x=2时,BE+CF取最小值,
∴AP=2.
考点:几何变换综合题.
15.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.
(1)求矩形ABCD的边AD的长.
(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.
(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;
②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式
【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)
S=.
【解析】
试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.
试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.
(2)由折叠可知AM=MP,在Rt△MPD中,
∴∴y=-其中,0<x<3.
(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.
∴△PCN为等腰三角形,只可能NC=NP.
过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,
∴解得x=.
(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.
设MP=y,在Rt△ADM中,,即∴ y=.
∴ S=
考点:函数的性质、勾股定理.。

相关文档
最新文档