高中物理必修3物理 全册全单元精选试卷综合测试(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理必修3物理 全册全单元精选试卷综合测试(Word 版 含答案)
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,
(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?
(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216
109
C -⨯ ,为负电荷 【解析】 【分析】 【详解】
(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 1323
22
()Q Q Q Q k
k x L x =- ∴
1222
()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m
即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.
(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;
② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.
③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.
设电荷C 放在距A 右侧x 处,电荷量为Q 3
对C :1323
22(0.3)Q Q Q Q k
k x x =- ∴ x =0.2m 对B :3212
22
()Q Q Q Q k k L L x =- ∴ 12316
109
Q C -=
⨯,为负电荷. 【点睛】
此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.
2.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。

C 为AB 直线上的另一点(O 、A 、B 、C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2
L
,在空间加一个水平方向的匀强电场后A 处的质点处于静止。

试问: (1)该匀强电场的场强多大?其方向如何?
(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?
【答案】(1)22kQ L ,方向由A 指向C ;(2)22
736kQ L ;(3)22kQ mL 2
2
0kQ v mL
+【解析】 【分析】
(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。

(2)质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,根据力的合成求解 (3)根据牛顿第二定律求出加速度,根据动能定理求出C 点时速度。

【详解】
(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,
AO 间的库仑力为2
2Q F K L
=;
根据平衡条件得:sin F EQ θ=
2sin 2F KQ
E Q L
θ=
= 方向由A 指向C
(2)该质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,
库仑力为2
2'(sin60)
Q F K L =; 水平向右的电场力F EQ "=
B
点时所受的电场力2222
]sin60)6F L
== (3)质点到达C 点时进行受力分析,根据牛顿第二定律得
2
222
sin Q K EQ F KQ L a m m mL θ+===
合. 从A 点到C 点根据动能定理得
22
1122
o EQL mv mv =
-; v =【点睛】
本题的关键要耐心细致地分析物体的运动过程,对物体进行受力分析,运用动能定理、牛顿第二定律进行处理。

3.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远小于两星体间的距离,一般双星系统距离其他星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G . 求: ①该双星系统中星体的加速度大小a ; ②该双星系统的运动周期T .
(2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.已知核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量大小均为e .
①模型Ⅰ、Ⅱ中系统的总动能分别用E k Ⅰ、 E k Ⅱ表示,请推理分析,比较E k Ⅰ、 E k Ⅱ的大小关系;
②模型Ⅰ、Ⅱ中核外电子做匀速圆周运动的周期分别用T Ⅰ、T Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从周期的角度分析这样简化处理的合理性.
【答案】(1) ①02GM a L =
②2T = (2) ①2
k k II =2ke E E r
=Ⅰ
②T T ⅠⅡ为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便. 【解析】 【详解】
(1)①根据万有引力定律和牛顿第二定律有:2
002GM M a L
=
解得0
2
GM a L =
②由运动学公式可知,224π2
L
a T =⋅
解得2T =(2)①模型Ⅰ中,设电子绕原子核的速度为v ,对于电子绕核的运动,根据库仑定律和牛顿
第二定律有22
2ke mv r r
=
解得:2
2k 122ke E mv r
==Ⅰ
模型Ⅱ中,设电子和原子核的速度分别为v 1、v 2,电子的运动半径为r 1,原子核的运动半径为r 2.根据库仑定律和牛顿第二定律 对电子有:22121mv ke r r =,解得2
2k11121=22ke E mv r r
=
对于原子核有:2
2222=Mv ke r r ,解得22
k22221=22ke E Mv r r
=
系统的总动能:E k Ⅱ=E k1+ E k2=()22
12222ke ke r r r r
+=
即在这两种模型中,系统的总动能相等.
②模型Ⅰ中,根据库仑定律和牛顿第二定律有
22224πke m r r T =Ⅰ
,解得232
24πmr T ke =Ⅰ 模型Ⅱ中,电子和原子核的周期相同,均为T Ⅱ 根据库仑定律和牛顿第二定律
对电子有221224πke m r r T =⋅Ⅱ, 解得22
1224πke T r r m =Ⅱ
对原子核有222224πke M r r T =⋅Ⅱ, 解得22222
4πke T r r M
=Ⅱ
因r 1
+r 2=r ,可解得:()
23
22
4πmMr T ke M m =+Ⅱ
所以有
T M m T M
+=Ⅰ
Ⅱ 因为M >>m ,可得T Ⅰ≈T Ⅱ,所以采用模型Ⅰ更简单方便.
4.如图所示在粗糙绝缘的水平面,上有两个带同种正电荷小球M 和N ,N 被绝缘座固定在水平面上,M 在离N 点r 0处由静止释放,开始运动瞬间的加速度大小恰好为μg 。

已知静电常量为k ,M 和地面间的动摩擦因数为μ,两电荷均可看成点电荷,且N 的带电量为Q ,M 带电量为q ,不计空气阻力。

则: (1)M 运动速度最大时离N 的距离;
(2)已知M 在上述运动过程中的最大位移为r 0,如果M 带电量改变为3
2
q ,仍从离N 点r 0处静止释放时,则运动的位移为r 0时速度和加速度各为多大?
【答案】(1)02l r =(2)0v gr μ=4
g
a μ=
,方向水平向左
【解析】 【详解】
(1)以小球为研究对象,分析小球的受力情况,小球受到重力、支持力、摩擦力和库仑力作用。

开始运动瞬间,两小球间的库仑力为:
F 库0 =20
kQq r
由牛顿第二定律可知,开始瞬间
F 库0-μmg=ma
可得:
02F ng μ=库
因M 做加速度减小的加速运动,所以当F ng μ'=库速度最大,即:
0212kQq
F F l
'=
=库库 所以
02l r =
(2)小球q 运动距离r 0过程中由动能定理的得:
000W mgr μ'
-=-电场力
金属球3 2 q
运动距离r0过程中由动能定理的得:
2
1
2
w mgr mv
μ
'-=-
电场力
其中W Uq
=
电场力

3
()
2
W U q
'=
电场力
(U为电荷移动过程中的电势差)
联立以上两式解得:
v gr
μ
=
由牛顿第二定律可知:
()2
3
2
2
kQ q
mg ma
r
μ

-=
由02
F mg
μ
=,解得:
4
g
a
μ
=
方向水平向左。

5.如图,真空中xOy平面直角坐标系上的ABC三点构成等边三角形,边长L=2.0m。

若将电荷量均为q=+2.0×10-6C的两点电荷分别固定在A、B点,已知静电力常量
k=9.0×109N·m2/C2。

求:
(1)两点电荷间的库仑力大小;
(2)C点的电场强度的大小和方向。

【答案】(1)F=9.0×10-3N ;(2)3
7.810N/C
E=⨯,方向沿y轴正方向
【解析】
【分析】
【详解】
(1)根据库仑定律,A、B间的库仑力大小为
2
2
q
F k
L
=
代入数据得
F =9.0×10-3N
(2)A 、B 两点电荷在C 点产生的场强大小相等,均为
12
q E k
L = A 、B 两点电荷形成的电场在C 点的合场强大小为
12cos 30E E ︒=
代入数据得
3393
10N/C 7.810N/C 2
E =
⨯≈⨯ 方向沿y 轴正方向。

6.如图所示,有一水平向左的匀强电场,场强为41.2510N/C E =⨯,一根长 1.5m L =、与水平方向的夹角为37θ=︒的光滑绝缘细直杆MN 固定在电场中,杆的下端M 固定一个带电小球A ,电荷量6
4.510C Q -=+⨯;另一带电小球B 穿在杆上可自由滑动,电荷量
61.010C q -=+⨯,质量21.010kg m -=⨯。

现将小球B 从杆的上端N 静止释放,小球B
开始运动。

(静电力常量9229.010N m /C k =⨯⋅,取2
10m/s g =,sin370.6︒=,
cos370.8︒=)求:
(1)小球B 开始运动时的加速度为多大?
(2)小球B 的速度最大时,与M 端的距离r 为多大?
【答案】(1)a =3.2 m/s 2;(2)r =0.9 m 【解析】 【分析】 【详解】
(1)开始运动时小球B 受重力、库仑力、杆的弹力和电场力,沿杆方向运动,由牛顿第二定律得
2sin cos kQq
mg qE ma L
-
-=θθ 解得
2
2
cos sin 3.2m/s kQq qE a g mL m =-
-=θθ (2)小球B 速度最大时合力为零,即
2
sin cos 0kQq
mg qE r -
-=θθ
解得
0.9m sin cos kQq
r mg qE =
=-θθ
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成。

质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴)。

液滴开始下落时相对于地面的高度为h 。

设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g 。

若容器初始电势为零,求容器可达到的最高电势max V 。

【答案】max ()
mg h R V q
-= 【解析】 【详解】
设在某一时刻球壳形容器的电量为Q 。

以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器G 出口自由下落到容器口的过程。

根据能量守恒有
2122Qq Qq
mgh k
m mgR k h R R
+=++-v (1) 式中,v 为液滴在容器口的速率,k 是静电力常量。

由此得液滴的动能为
21(2)(2)2()Qq h R m mg h R k h R R
-=---v (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有
max (2)
(2)0()Q q h R mg h R k
h R R
---=-(3)
由此得
max ()mg h R R
Q kq
-=
(4)
容器的最高电势为
max
max Q V k
R
=(5) 由(4)和(5)式得
max ()
mg h R V q
-=
(6)
8.如图,带电荷量为q =+2×10-3C 、质量为m =0.1kg 的小球B 静置于光滑的水平绝缘板右端,板的右侧空间有范围足够大的、方向水平向左、电场强度E =103N/C 的匀强电场.与B 球形状相同、质量为0.3kg 的绝缘不带电小球A 以初速度0v =10m/s 向B 运动,两球发生弹性碰撞后均逆着电场的方向进入电场,在电场中两球又发生多次弹性碰撞,已知每次碰撞时间极短,小球B 的电荷量始终不变,重力加速度g 取10m/s 2求: (1)第一次碰撞后瞬间两小球的速度大小; (2)第二次碰撞前瞬间小球B 的动能; (3)第三次碰撞的位置
【答案】25.(1)5m/s ;15m/s (2)6.25J ;(3)第三次碰撞的位置是在第一次碰撞点右方5m 、下方20m 处. 【解析】 【分析】 【详解】
(1)第一次碰撞时,
两小球动量守恒,即3mv 0=3mv 1+mv 2
机械能守恒,即
22201211133222
mv mv mv ⋅=⋅+ 解得碰后A 的速度v 1=5m/s ,B 的速度v 2=15m/s
(2)碰后AB 两球进入电场,竖直方向二者相对静止均做自由落体运动;水平方向上,A 做匀速运动,
B 做匀减速直线运动,其加速度大小a B =
qE
m
=20m/s 2 设经过t 时间两小球再次相碰,则有v 1t =v 2t -1
2
a B t 2 解得t =1s
此时,B 的水平速度为v x =v 2-a B t =-5 m/s (负号表明方向向左) 竖直速度为v y =gt =10 m/s 故第二次碰前B 的动能22211() 6.2522
KB B x y E mv m v v J =
=+=
(3)第二次碰撞时,AB 小球水平方向上动量守恒''
1133x x mv mv mv mv +=+ 机械能守恒,即
2222'2'2'2'21111113()()3()()2222
y x y y x y m v v m v v m v v m v v ⋅++⋅+=⋅++⋅+ 解得第二次碰后水平方向A 的速度'10v =,B 的速度'
x v =10m/s
故第二次碰撞后A 竖直下落(B 在竖直方向上的运动与A 相同), 水平方向上, B 做匀减速直线运动,
设又经过t '时间两小球第三次相碰,则有 '
2
1'02
x B v t a t -= 解得t '=1s
因此,第三次相碰的位置在第一次碰撞点右方x =v 1t =5m 下方y =
1
2
g (t +t ')2=20m
9.如图,一对平行金属板水平放置,板间距为d ,上极板始终接地.长度为
2
d
、质量均匀的绝缘杆,上端可绕上板中央的固定轴0在竖直平面内转动,下端固定一带正电的轻质小球,其电荷量为q .当两板间电压为U 1时,杆静止在与竖直方向OO '夹角30θ=的位置;若两金属板在竖直平面内同时绕O 、O ′顺时针旋转15α=至图中虚线位置时,为使杆仍在原位置静止,需改变两板间电压.假定两板间始终为匀强电场.求:
(1)绝缘杆所受的重力G ; (2)两板旋转后板间电压U 2.
(3)在求前后两种情况中带电小球的电势能W 1与W 2时,某同学认为由于在两板旋转过程中带电小球位置未变,电场力不做功,因此带电小球的电势能不变.你若认为该同学的结论正确,计算该电势能;你若认为该同学的结论错误,说明理由并求W 1与W 2. 【答案】(1)12qU G d =;(2)2113U +=;(3)113
W =,2114W qU =。

【解析】 【分析】 【详解】
(1)绝缘杆长度设为L ,则重力作用点在几何中心即距离O 点
4
d
处,重力的力臂为 sin 48
d d θ= 电场力大小为
1
qU qE d
=
电场力的力臂为
sin 24
d d θ= 根据杠杆平衡有
184
qU d d G d ⨯
=⨯ 整理可得1
2qU G d
=
(2)两板旋转后,质点不变,重力不变,重力力臂不变,两个极板之间的距离变为
cos15d
电场力大小为
2
cos15
qU qE d =
力臂变为
2sin 452d =
根据杠杆平衡则有
228cos154
qu d d
G d ⨯
=⨯
可得
2114
U =
(3)结论错误.虽然小球位置没有变化,但是在极板旋转前后电场强度发生变化,电势发生变化,所以电势能发生变化.设小球所在位置电势为ϕ,没有旋转时,电场强度
1
U E d =
根据绝缘杆平衡判断电场力竖直向上,即电场线竖直向上,电势逐渐降低,所以
0cos 2
d E ϕθ-=⨯
整理得1ϕ= 电势能
11W q ϕ==
金属板转动后,电场强度
2
cos15U E d =
电势差
0cos 452
d E ϕ-=⨯
解得
114
U ϕ=
电势能
211
4
W q qU ϕ==
10.如图,在场强大小为E 、水平向右的匀强电场中,一轻杆可绕固定转轴O 在竖直平面内自由转动.杆的两端分别固定两电荷量均为q 的小球A 、B ;A 带正电,B 带负电;A 、B 两球到转轴O 的距离分别为2l 、l ,所受重力大小均为电场力大小的3倍,开始时杆与电场夹角为θ(0090180θ≤≤).将杆从初始位置由静止释放,以O 点为重力势能和电势能零点.求:
(1)初始状态的电势能e W ;
(2)杆在平衡位置时与电场间的夹角α; (3)杆在电势能为零处的角速度ω.
【答案】(1)-3qElcosθ;(2)30°;(3)当θ<150°时,
;当θ150°时,

【解析】 【分析】 【详解】
(1)初态:W e =qV ++(-q)V-=q(V +-V -)=-3qElcosθ (2)平衡位置如图,
设小球的质量为m,合力矩为
3q Elsinα-mglcosα=0
由此得
α=30°
(3)电势能为零时,杆处于竖直位置,当初始时OA与电场间夹角θ=150°时,A恰好能到达O正上方,在此位置杆的角速度为0
当θ<150°时,A位于O正下方处电势能为零.
初态:W e=—3qElcosθ,E p=mglsinθ
末态:,
能量守恒:
解得
当θ150°时,电势能为0有两处,即A位于O正下方或正上方处
当A位于O正下方时,
当A位于O正上方时,
解得
11.如图所示,ABCD为固定在竖直平面内的轨道,AB段光滑水平,BC段为光滑圆弧,对应的圆心角θ=37º,半径r=2.5m,CD段平直倾斜且粗糙,各段轨道均平滑连接,倾斜轨道所在区域有场强大小为E=2×105N/C、方向垂直于斜轨向下的匀强电场.质量m=5×10-2kg、电荷量q=+1×10-6C的小物体(视为质点)被弹簧枪发射后,沿水平轨道向左滑
行,在C点以速度v0=3 m/s冲上斜轨.以小物体通过C点时为计时起点,0.1s以后,场强大小不变,方向反向.已知斜轨与小物体间的动摩擦因数μ=0.25.设小物体的电荷量保持不变,取g=10 m/s2,sin37º=0.6,cos37º=0.8.
(1)求弹簧枪对小物块所做的功;
(2)在斜轨上小物体能到达的最高点为P,求CP的长度.
【答案】(1)W f=0.475J (2)s=0.57m
【解析】
试题分析:(1)设弹簧枪对小物体做功为W f,由动能定理即可求解;
(2)对小物体进行受力分析,分析物体的运动情况,根据牛顿第二定律求出加速度,结合运动学基本公式即可求解.
解:
(1)设弹簧枪对小物体做功为W f,由动能定理得W f﹣mgr(l﹣cosθ)=mv02①
代人数据得:W f=0.475J ②
(2)取沿平直斜轨向上为正方向.设小物体通过C点进入电场后的加速度为a1,
由牛顿第二定律得:﹣mgsinθ﹣μ(mgcosθ+qE)=ma1③
小物体向上做匀减速运动,经t1=0.1s后,速度达到v1,有:v1=v0+a1t1④
由③④可知v1=2.1m/s,设运动的位移为s1,有:s l=v0t1+a1t12⑤
电场力反向后,设小物体的加速度为a2,由牛顿第二定律得:
﹣mgsinθ﹣μ(mgcosθ﹣qE)=ma2⑥
设小物体以此加速度运动到速度为0,运动的时间为t2,位移为s2,有:
0=v1+a2t2⑦
s2=v1t2+a2t22⑧
设CP的长度为s,有:s=s1+s2⑨
联立相关方程,代人数据解得:s=0.57m
答:(1)弹簧枪对小物体所做的功为0.475J;
(2)在斜轨上小物体能到达的最高点为P,CP的长度为0.57m.
【点评】本题主要考查了动能定理、牛顿第二定律及运动学基本公式的直接应用,要求同学们能正确对物体受力分析,确定物体的运动情况,难度适中.
12.如图,带电量为q=+2×10-3C、质量为m=0.1kg的小球B静置于光滑的水平绝缘板右端,板的右侧空间有范围足够大的、方向水平向左、电场强度E=103N/C的匀强电场.与
B 球形状相同、质量为0.3kg 的绝缘不带电小球A 以初速度v 0=10m/s 向B 运动,两球发生弹性碰撞后均逆着电场的方向进入电场,在电场中两球又发生多次弹性碰撞,已知每次碰撞时间极短,小球B 的电量始终不变,取重力加速度g =10m/s 2.求:
(1)第一次碰撞后瞬间两小球的速度大小; (2)第二次碰撞前瞬间小球B 的动能; (3)又经过多长时间发生第三次碰撞.
【答案】(1) v A =5m/s ,v B =15m/s (2) E KB =6.25J (3)t '=1s 【解析】 【详解】 (1)第一次碰撞时,
两小球动量守恒,即3mv 0=3mv A +mv B 机械能守恒,即:
222011133222
A B mv mv mv =+ 解得碰后A 的速度v A =5m/s ,B 的速度v B =15m/s
(2)碰后AB 两球进入电场,竖直方向二者相对静止均做自由落体运动; 水平方向上,A 做匀速运动,
B 做匀减速直线运动,其加速度大小220m/s B qE
a m
=
= 设经过t 时间两小球再次相碰,则有21
2
A B B v t v t a t =- 解得:t =1s
此时,B 的水平速度为v x =v B -a B t =-5 m/s (负号表明方向向左) 竖直速度为v y =gt =10 m/s 故第二次碰前B 的动能221() 6.25J 2
kB x y E m v v =
+= (2)第二次碰撞时,AB 小球水平方向上动量守恒3mv A +mv x =3mv +mv
机械能守恒,即:
22222222
111113()()3()()2222
A y x y y x y m v v m v v m v v m v v ''+++=+++
解得第二次碰后水平方向A 的速度v =0,B 的速度v =10m/s
故第二次碰撞后A 竖直下落(B 在竖直方向上的运动与A 相同), 水平方向上, B 做匀减速直线运动, 设又经过t ' 时间两小球第三次相碰,则有21
02
x B v t a t ''-
=
解得:t '=1s 【点睛】
解决本题的关键要是分析清楚两球的受力情况,判断出运动情况,知道弹性碰撞遵守两大守恒:动能守恒和动量守恒.根据位移关系研究相碰的时间.
三、必修第3册 电路及其应用实验题易错题培优(难)
13.多用表是由电流表改装的,现测定一个量程为0~5mA 的电流表G 的内阻r = 100.0Ω , 用它改装成如图的一个多量程多用电表,电流、电压和电阻的测量都各有两个量程(或分度值)不同的档位。

电流表的两个档位中,大量程是小量程的10倍。

(1)当转换开关S 旋到位置1或2时,是电流档,且旋到位置_______的量程较大:当转换开关S 旋到位置5或6时,是电压档,且旋到位置______的量程较大; (2)A 、B 两表笔中,______为红表笔;
(3)图中的电源E ˊ的电动势为9.0V ,当把转换开关S 旋到位置4,在AB 之间接900Ω电阻时,表头G 刚好半偏。

己知之前己经进行了必要的、正确的操作。

则R 1=_________Ω,R 2=_________Ω。

【答案】1 6 A 10 90 【解析】 【详解】
(1)[1]电流表并联电阻可以扩大量程,并联电阻越小,分流越大,量程越大,故当转换开关S 旋到位置1时量程较大;
[2]电压表串联电阻可以扩大量程,串联电阻越大,分压越大,量程越大,故当转换开关S 旋到位置6时量程较大;
(2)[3]在测量电阻时,因为欧姆档的电路与电池连接,则将转换开关S 旋到位置3或4时,电流应从红表笔进、黑表笔出,所以A 、B 两表笔中,A 为红表笔;
(3)[4] [5]因为“之前己经进行了必要的、正确的操作”,意味着之前已经将A 、B 短接调零,即让表头满偏。

在A 、B 之间接900Ω电阻时,表头G 刚好半偏,说明当表头半偏时,改装后的欧姆表“4” 总内阻R 内=900Ω,则转换开关S 在2时,电流表2的量程为
29.0A 10mA 900
g E I R =
==内 根据题给条件“电流表的两个档位中,大量程是小量程的10倍”,所以转换开关S 在1时,电流表1的量程为1100mA g I =
又表头G 满偏电流为5mA 时,电流表的内阻r = 100.0Ω,根据并联电路电流分配规律可解得121090R R =Ω=Ω,
14.某实验小组欲描绘额定电压为2.5V 的小灯泡L 的U -I 曲线。

现准备如下实验器材: 电压表(3V ,内阻很大) 电流表(0.6A ,内阻较小) 滑动变阻器(0~5Ω,额定电流1A ) 电键 导线若干 请回答下列问题:
(1)请用笔划线代替导线,将实验电路图甲补充完整_____;
(2)闭合电键,移动滑动变阻器的滑片,其电压表、电流表的示数如图乙所示,则电压表读数为_____V ,电流表读数为_____A ;
(3)将实验数据绘制成U -I 图像如图丙中Ⅰ。

则该小灯泡的额定功率P =_____W ; (4)现有一电子元件,其U -I 图像如图丙中Ⅱ所示。

现将该电子元件与该灯泡L 并联后同电动势3V E =、内阻5r =Ω的电源连接,则该灯泡的实际功率P =_____W (保留两位有效数字)。

【答案】 1.30 0.44 1.45(1.43~1.46之间均可) 0.20
(0.19~0.21之间均可) 【解析】
【分析】
【详解】
(1)[1].由于电压表内阻远大于小灯泡的电阻,故采用电流表外接;滑动变阻器用分压电路,则电路如图;
(2)[2][3].电压表量程为3V,最小刻度为0.1V,则读数为1.30V;电流表量程为0.6V,最小刻度为0.02A,则读数为0.44A;
(3)[4].由图可知,当电压为2.5V时,电流为0.58A,则该小灯泡的额定功率P=IU=1.45W;
(4) [5].电子元件与该灯泡L并联,则电压相等;若画出电源的U-I图像如图;画出平行于I轴的直线即为电压相等的线,与图像Ⅰ、Ⅱ分别交于两点B和A,与U轴交于C点,电源的U-I线交于D,若CD的中点恰在AB的中点,则此时Ⅰ图像对应的B点电压和电流值即为小灯泡的工作状态点,由图可知:U=0.70V,I=0.28A,则灯泡的实际功率
P′=IU≈0.20W。

15.在“描绘小灯泡的伏安特性曲线”的实验中,利用实验得到了8组数据,在图1所示的 坐标系中,通过描点连线得到了小灯泡的伏安特性曲线.
I U
(1)根据图线的坐标数值,请在图2中选出该实验正确的实验电路图:____(选填“甲”或“乙”).
(2)根据所选电路图,请在图3中用笔画线代替导线,把实验仪器连接成完整的实验电路.(________)
(3)根据图1,可判断出图4中正确的关系图象是(图中P为小灯泡功率"为通过小灯泡的电流)___.
(5)将同种规格的两个这样的小灯泡并联后再与R = 10 的定值电阻串联,接在电动势为8V、内阻不计的电源上,如图5所示.闭合开关S后,则电流表的示数为____A,两个小灯泡的总功率为__ W(本小题结果均保留两位有效数字).
【答案】甲 D 0.60 1.2
【解析】
【分析】
【详解】
(1)[1]描绘灯泡伏安特性曲线,电压与电流应从零开始变化,滑动变阻器应采用分压接法,所以正确的实验电路图是甲.
(2)[2]根据实验电路图连接实物电路图,实物电路图如图所示:
(3)[3]由于灯泡电阻随电流增大电阻R 增大,由2P I R =可知,2P I -图象斜率增大,故选D .
(4)[4][5]由图5所示电路图可知,两灯泡并联,可以把电源与定值电阻等效为电源,设每只电灯加上的实际电压和实际电流分别为U 和I ,在这个闭合电路中,则有:
02E U IR =+
代入数据并整理得:
820U I =-
在图a 所示坐标系中作出820U I =-的图象如图所示
由图象可知,两图象交点坐标值为:U =2V ,I =0.3A 此时通过电流表的电流值
2A I I ==0.6A
每只灯泡的实际功率
P UI ==2×0.3=0.6W
所以两个小灯泡的总功率为1.2W .
16.某小组设计实验对电流表内阻进行测量,电路如图甲,其中 A 1是标准电流表(量程 100mA ,内阻约15Ω),电流表A 2(量程略小于 100mA ,内阻约 18Ω)表刻度盘刻度完整但缺少刻度值。

R 1、R 2为电阻箱,实验步骤如下:
①使用螺丝刀,调整A 2机械调零旋钮,使指针指向“0”刻度; ②分别将 R 1和 R 2的阻值调至最大
③断开S 2,合上开关 S 1,调节 R 1 使A 2的指针达到满偏刻度,记下此时A 1的示数I 0 ④开关S 2 接到1,反复调节R 1和R 2,使A 1的示数仍为I 0,记录不同R 2 阻值和对应电流表A 2示数为I 0的 n 倍(n<1)即 n I 0。

⑤做出 n -1—R -1 图象,如图乙所示。

(1)根据图甲和题给条件,将图丙中的实物连线补充完整;
(____)
(2)电流表A2的量程为______(用所测物理量表示);根据图象可计算电流表A2内阻为
_____Ω;(保留两位有效数字)
(3)一同学认为该电路可以进一步测量电流表A1内阻,他把单刀双掷开关接到2,调整电阻箱R1和R2阻值,使电流表A1和电流表A2示数恰当,并分别记下电流表示数I1,I2,请用R1、R2、I1和I2表示电流表 A1内阻R=_____________________________________ 。

【答案】I0202212
1
I
R R R
I
--
【解析】
【分析】
【详解】
(1)[1].电路连线如图:
(2) [2].使A2的指针达到满偏刻度时,此时A1的示数I0,可知电流表A2的量程为I0;
[3].根据电路的结构可得
2
2
00
2
A
R
nI I
R R
=
+
可得
2
2
1
1
A
R
n R
=+
所以11
n R
--
-图象斜率表示A2内阻,内阻为
2
2.0 1.0
20
0.05
A
R k
-
==Ω=Ω;
(3)[4].当单刀双掷开关接到2,根据并联关系
12
211
I R
I I R R
=
-+
所以
2
212
1
I
R R R R
I
=--
17.LED绿色照明技术已经走进我们的生活。

某实验小组要精确测定额定电压为3V的LED 灯正常工作时的电阻,已知该灯正常工作时电阻大约500Ω,电学符号与小灯泡电学符号相同。

实验室提供的器材有:
A.电流表A1(量程为0~5mA,内阻R A约为3Ω)
B.电流表A2(量程为0~4mA,内阻R A2=10Ω)
C.电压表V(量程为0~10V,内阻R v=1000Ω)
D.定值电阻R1=590Ω
E.定值电阻R2=990Ω
F.滑动变阻器R(最大阻值为200)
G.蓄电池E(电动势为4V,内阻很小)
H.开关S一只,导线若干
(1)如图甲所示,请选择合适的器材,电表1为_________,定值电阻为__________(填写器材前的字母序号);
(2)请将图乙中的实物连线补充完整_______;
(3)请写出测量LED灯正常工作时的电阻表达式:R x=____________(电表1的读数用a表示,电表2的读数用b表示,其余电学量用题中所对应的电学符号表示)。

相关文档
最新文档