北安市实验中学2018-2019学年高二上学期第二次月考试卷数学卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北安市实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 已知全集为R ,集合{}
|23A x x x =<->或,{}2,0,2,4B =-,则()
R A B =ð( )
A .{}2,0,2-
B .{}2,2,4-
C .{}2,0,3-
D .{}0,2,4 2. 由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于﹣1,则样本1,x 1,﹣x 2,x 3,﹣x 4,x 5的中位数为( )
A .
B .
C .
D .
3. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( ) A .在[﹣7,0]上是增函数,且最大值是6 B .在[﹣7,0]上是增函数,且最小值是6 C .在[﹣7,0]上是减函数,且最小值是6 D .在[﹣7,0]上是减函数,且最大值是6
4. 已知i z 311-=,i z +=32,其中i 是虚数单位,则2
1
z z 的虚部为( ) A .1- B .
54 C .i - D .i 5
4 【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.
5. 若函数y=|x|(1﹣x )在区间A 上是增函数,那么区间A 最大为( )
A .(﹣∞,0)
B .
C .[0,+∞)
D .
6. 给出下列命题:
①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3
中有三个是增函数;
②若log m 3<log n 3<0,则0<n <m <1;
③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;
④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.
其中假命题的个数为( )
A .1
B .2
C .3
D .4
7. 已知平面向量(12)=,
a ,(32)=-,
b ,若k +a b 与a 垂直,则实数k 值为( )
A .1
5
- B .119 C .11 D .19
【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.
8. 定义行列式运算:.若将函数的图象向左平移m
(m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )
A .
B .
C .
D .
9. 空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)
C .(4,﹣3,1)
D .(﹣5,3,4)
10.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A .
B .(4+π)
C .
D .
11.如图
,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至
少有两个数位于同行或同列的概率是( )
A .
B .
C .
D .
12.已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅ B .{1,4}
C .M
D .{2,7}
二、填空题
13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .
14.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .
15.设平面向量()1,2,3,i a i =,满足1i
a =且120a a ⋅=,则12a a += ,123a a a ++的最大
值为 .
【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.
16.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 . 17.已知直线5x+12y+m=0与圆x 2
﹣2x+y 2
=0相切,则m= . 18. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:
①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-; ③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22
e
m <
-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .
【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.
三、解答题
19.已知
,其中e 是自然常数,a ∈R
(Ⅰ)讨论a=1时,函数f (x )的单调性、极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f (x )>g (x )+.
20.设F 是抛物线G :x 2=4y 的焦点.
(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;
(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四
边形ABCD 面积的最小值.
21.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)图象如图,P是图象的最高点,Q为
图象与x轴的交点,O为原点.且|OQ|=2,|OP|=,|PQ|=.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)将函数y=f(x)图象向右平移1个单位后得到函数y=g(x)的图象,当x∈[0,2]时,求函数h(x)=f (x)•g(x)的最大值.
22.如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,AA′⊥平面ABCD.(1)求证:A′C∥平面BDE;
(2)求体积V A′﹣ABCD与V E﹣ABD的比值.
23.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km.
(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;
(2)如果某人乘车行驶了30km,他要付多少车费?
24.已知直角梯形ABCD中,AB∥CD,,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.
(1)求证:FG∥面BCD;
(2)设四棱锥D﹣ABCE的体积为V,其外接球体积为V′,求V:V′的值.
北安市实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】A 【解析】
考点:1、集合的表示方法;2、集合的补集及交集.
2. 【答案】C
【解析】解:因为x 1<x 2<x 3<x 4<x 5<﹣1,题目中数据共有六个,排序后为x 1<x 3<x 5<1<﹣x 4<﹣x 2,
故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,
故这组数据的中位数是(x 5+1).
故选:C .
【点评】注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
3. 【答案】D
【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数, ∴函数f (x )在x=7时,函数取得最大值f (7)=6, ∵函数f (x )是偶函数,
∴在[﹣7,0]上是减函数,且最大值是6, 故选:D
4. 【答案】B
【解析】由复数的除法运算法则得,i i i i i i i i z z 54
531086)3)(3()3)(31(33121+=+=-+-+=++=,所以2
1z z 的虚部为54.
5. 【答案】B
【解析】解:y=|x|(1﹣x )=,
再结合二次函数图象可知
函数y=|x|(1﹣x)的单调递增区间是:.
故选:B.
6.【答案】A
【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,
1)上减,在(1,+∞)上增.函数y=x3是增函数.
∴有两个是增函数,命题①是假命题;
②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;
③若函数f(x)是奇函数,则其图象关于点(0,0)对称,
∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;
④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,
也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.
∴假命题的个数是1个.
故选:A.
【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.
7.【答案】A
8.【答案】C
【解析】解:由定义的行列式运算,得
=
==
=.
将函数f(x)的图象向左平移m(m>0)个单位后,
所得图象对应的函数解析式为.
由该函数为奇函数,得,
所以,则m=.
当k=0时,m有最小值.
故选C.
【点评】本题考查了二阶行列式与矩阵,考查了函数y=Asin(ωx+Φ)的图象变换,三角函数图象平移的原则是“左加右减,上加下减”,属中档题.
9.【答案】C
【解析】解:设C(x,y,z),
∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,
∴,解得x=4,y=﹣3,z=1,
∴C(4,﹣3,1).
故选:C.
10.【答案】D
【解析】解:由三视图知,几何体是一个组合体,
是由半个圆锥和一个四棱锥组合成的几何体,
圆柱的底面直径和母线长都是2,
四棱锥的底面是一个边长是2的正方形,
四棱锥的高与圆锥的高相同,高是=,
∴几何体的体积是=,
故选D.
【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.
11.【答案】
D
【解析】
古典概型及其概率计算公式.
【专题】计算题;概率与统计.
【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.
【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;
∴所求的概率为=
故选D.
【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.
12.【答案】D
【解析】解:∵M∪N=M,∴N⊆M,
∴集合N不可能是{2,7},
故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
二、填空题
13.【答案】0.3.
【解析】离散型随机变量的期望与方差.
【专题】计算题;概率与统计.
【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).
【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,
∴正态分布曲线的对称轴为x=500,
∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.
故答案为:0.3.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.
14.【答案】【解析】
试题分析:因为ABC ∆中,2,60AB BC C ===︒2
sin A
=
,1sin 2A =,又
BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,1
2
ABC
S AB BC ∆=⨯⨯=. 考点:正弦定理,三角形的面积.
【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2
b 、2
a 时,往往用余弦定理,而题设中如果边和正
弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abc R
等等. 15.【答案】2,21+. 【解析】∵22
2
12112221012a a a a a a +=+⋅+=++=,∴122a a +=,
而2
2
2
123
121233123()2()2221cos ,13a a a a a a a a a a a a ++=+++⋅+=+⋅⋅<+>+≤+,
∴12321a a a ++≤,当且仅当12a a +与3a 1.
16.【答案】 .
【解析】解:∵曲线y=x 2
和直线:x=1的交点为(1,1),和直线y=的一个交点为(,)
∴曲线y=x 2
和直线x=0,x=1,y= 所围成的图形的面积为S=
()dx+dx=(x
﹣x 3
)+(x 3﹣x )=.
故答案为:.
17.【答案】8或﹣18
【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案.
【解答】解:整理圆的方程为(x﹣1)2++y2=1
故圆的圆心为(1,0),半径为1
直线与圆相切
∴圆心到直线的距离为半径
即=1,求得m=8或﹣18
故答案为:8或﹣18
18.【答案】①②④
【解析】
三、解答题
19.【答案】
【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,
∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.
当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.
所以函数f(x)的极小值为f(1)=1.
(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.
又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.
所以g(x)的最大值为g(e)=,
所以f(x)min﹣g(x)max>,
所以在(1)的条件下,f(x)>g(x)+.
【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..20.【答案】
【解析】解:(1)设切点.
由,知抛物线在Q点处的切线斜率为,
故所求切线方程为.
即y=x0x﹣x02.
因为点P(0,﹣4)在切线上.
所以,,解得x0=±4.
所求切线方程为y=±2x﹣4.
(2)设A(x1,y1),C(x2,y2).
由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.
因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.
点A,C的坐标满足方程组,
得x2﹣4kx﹣4=0,
由根与系数的关系知,
|AC|==4(1+k2),
因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.
同理可求得|BD|=4(1+),
S ABCD=|AC||BD|==8(2+k2+)≥32.
当k=1时,等号成立.
所以,四边形ABCD面积的最小值为32.
【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.
21.【答案】
【解析】解:(Ⅰ)由余弦定理得cos∠POQ==,…
∴sin∠POQ=,得P点坐标为(,1),∴A=1,=4(2﹣),∴ω=.…
由f()=sin(+φ)=1 可得φ=,∴y=f(x)的解析式为f(x)=sin(x+).…
(Ⅱ)根据函数y=Asin(ωx+∅)的图象变换规律求得g(x)=sin x,…
h(x)=f(x)g(x)=sin(x+)sin x=+sin xcos x
=+sin=sin(﹣)+.…
当x∈[0,2]时,∈[﹣,],
∴当,
即x=1时,h max(x)=.…
【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求函数的解析式,函数y=Asin(ωx+∅)的图象变换规律,正弦函数的定义域和值域,属于中档题.
22.【答案】
【解析】(1)证明:设BD交AC于M,连接ME.
∵ABCD为正方形,∴M为AC中点,
又∵E为A′A的中点,
∴ME为△A′AC的中位线,
∴ME∥A′C.
又∵ME⊂平面BDE,A′C⊄平面BDE,
∴A′C∥平面BDE.
(2)解:∵V E﹣ABD====V A′﹣ABCD.∴V A′﹣ABCD:V E﹣ABD=4:1.
23.【答案】
【解析】解:(1)依题意得:
当0<x≤4时,y=10;…(2分)
当4<x≤18时,y=10+1.5(x﹣4)=1.5x+4…
当x>18时,y=10+1.5×14+2(x﹣18)=2x﹣5…(8分)
∴…(9分)
(2)x=30,y=2×30﹣5=55…(12分)
【点评】本题考查函数模型的建立,考查利用数学知识解决实际问题,考查学生的计算能力,属于中档题.24.【答案】
【解析】解:
(1)证明:取AB中点H,连接GH,FH,
∴GH∥BD,FH∥BC,
∴GH∥面BCD,FH∥面BCD
∴面FHG∥面BCD,
∴GF∥面BCD
(2)V=
又外接球半径R=
∴V′=π
∴V:V′=
【点评】本题考查的知识点是直线与平面平等的判定及棱锥和球的体积,其中根据E点三条棱互相垂直,故棱锥的外接球半径与以AE,CD,DE为棱长的长方体的外接球半径相等,求出外接球半径是解答本题的关键点.。