湖北省华中师范大学第一附属中学平面向量多选题试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省华中师范大学第一附属中学平面向量多选题试题含答案
一、平面向量多选题
1.下列命题中真命题的是( )
A .向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R )
B .a ,b 为单位向量,其夹角为θ,若|a b -|>1,则
3
π
<θ≤π
C .A 、B 、C 、
D 是空间不共面的四点,若AB •AC =0,AC •AD =0,AB •AD =0则△BCD 一定是锐角三角形
D .向量AB ,AC ,BC 满足AB AC BC =+,则AC 与BC 同向 【答案】BC 【分析】
对于A :利用共线定理判断 对于B :利用平面向量的数量积判断 对于C :利用数量积的应用判断 对于D :利用向量的四则运算进行判断 【详解】
对于A :由向量共线定理可知,当0b =时,不成立.所以A 错误. 对于B :若|a b -|>1,则平方得2221a a b b -⋅+>,即1
2
a b ⋅<,又
1||2a b a b cos cos θθ⋅=⋅=<,所以3
π
<θ≤π,即B 正确.
对于C :
()()
22
0BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=-⋅-=⋅-⋅-⋅+=>,
0||
BC BD cosB BC BD ⋅=
⋅>,即B 为锐角,同理A ,C 也为锐角,故△BCD 是锐角三角形,所
以C 正确.
对于D :若AB AC BC =+,则AB AC BC CB -==,所以0CB =,所以则AC 与BC 共线,但不一定方向相同,所以D 错误. 故选:BC. 【点睛】
(1)多项选择题是2020年高考新题型,需要要对选项一一验证;
(2)要判断一个命题错误,只需举一个反例就可以;要证明一个命题正确,需要进行证明.
2.已知向量(2,1),(3,1)a b ==-,则( ) A .()a b a +⊥
B .|2|5a b +=
C .向量a 在向量b 上的投影是22
D .向量a 的单位向量是255,⎛⎫

⎪⎝⎭ 【答案】ABD 【分析】
多项选择题需要要对选项一一验证: 对于A:利用向量垂直的条件判断; 对于B:利用模的计算公式; 对于C:利用投影的计算公式; 对于D:直接求单位向量即可. 【详解】
(2,1),(3,1)a b ==-
对于A: (1,2),()(1)2210,a b a b a +=-+⋅=-⨯+⨯=∴()a b a +⊥,故A 正确;
对于B:
222(2,1)2(3,1)(4,3),|2|(4)35a b a b +=+-=-∴+=-+=,故B 正确;
对于C: 向量a 在向量b 上的投影是2210
2||(3)1a b b ⋅==--+,故C 错误;
对于D: 向量a 的单位向量是255,55⎛⎫
⎪ ⎪⎝⎭
,故D 正确.
故选:ABD . 【点睛】
多项选择题是2020年高考新题型,需要要对选项一一验证.
3.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且
(),OP xOA yOB x y R =+∈,则下列结论正确的为( )
A .当0x =时,[]2,3y ∈
B .当P 是线段CE 的中点时,1
2x =-,52
y =
C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段
D .x y -的最大值为1- 【答案】BCD 【分析】
利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确. 【详解】
当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错 当P 是线段CE 的中点时,1
3()2
OP OE EP OB EB BC =+=+
+ 115
3(2)222
OB OB AB OA OB =+-+=-+,故B 对
x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一
点,故P 的轨迹是线段,故C 对
如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:
OP ON OM =+;
又OP xOA yOB =+;0x ∴,1y ;
由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;
此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD 【点睛】
结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.
4.在平行四边形ABCD 中,2AB =,1AD =,2DE EC =,AE 交BD 于F 且
2AE BD ⋅=-,则下列说法正确的有( ) A .1233AE AC AD =+ B .2
5
DF DB =
C .,3
AB AD π
=
D .2725
FB FC ⋅=
【答案】BCD 【分析】
根据向量的线性运算,以及向量的夹角公式,逐一判断四个选项的正误即可得正确选项. 【详解】
对于选项A :()
222
33
133AE AD DE AD DC AD AD D C A A A C =+=+=+-=+,故选项A 不正确; 对于选项B :易证DEF BFA ,所以
23DF DE BF AB ==,所以22
35
DF FB DB ==,故选项B 正确;
对于选项C :2AE BD ⋅=-,即()
223AD A B D AB A ⎛

+
-=- ⎪⎝⎭
,所以 2221233AD AD AB AB -⋅-=-,所以114233
2
AD AB -⋅-⨯=-,解得:1AB AD ⋅=,
11
cos ,212
AB AD AB AD AB AD
⋅=
=
=⨯⨯,因为[],0,AB AD π∈,所以,3
AB AD π
=

故选项C 正确; 对于选项D :()(
)33
255
5AB FB FC DB FD DC AD BD AB ⎛⎫
⋅=
⋅+=-⋅+ ⎪⎝⎭
(
)()()3
23325
5555AD AD AB AB AD A AB AB B AD ⎡⎤⎛⎫=
-⋅-+=-⋅+ ⎪⎢⎥⎣⎦⎝⎭
229693627
34252525252525AB AB AD AD =⨯-⋅-⨯=⨯--=,故选项D 正确. 故选:BCD 【点睛】
关键点点睛:选项B 的关键点是能得出DEF BFA ,即可得
2
3
DF DE BF AB ==,选项D 的关键点是由于AB 和AD 的模长和夹角已知,故将FB 和FC 用AB 和AD 表示,即可求出数量积.
5.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是( )
A .()
0a b c -⋅= B .()
0a b c a +-⋅= C .()0a c b a --⋅=
D .2a b c ++=
【答案】ABC 【分析】
作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:
对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,
a b AB BC AB AD DB -=-=-=,()
0a b c DB AC ∴-⋅=⋅=,A 选项正确;
对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()
00a b c a a +-⋅=⋅=,B 选项正确;
对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则
()0a c b a --⋅=,C 选项正确;
对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】
本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.
6.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,
2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )
A .//P
B CQ B .1233
BP BA BC =
+ C .0PA PC ⋅> D .4S =
【答案】BD 【分析】
利用向量的共线定义可判断A ;利用向量加法的三角形法则以及向量减法的几何意义即可判断B ;利用向量数量积的定义可判断C ;利用三角形的面积公式即可判断D. 【详解】
由20PA PC +=,2QA QB =,
可知点P 为AC 的三等分点,点Q 为AB 延长线的点, 且B 为AQ 的中点,如图所示:
对于A ,点P 为AC 的三等分点,点B 为AQ 的中点, 所以PB 与CQ 不平行,故A 错误; 对于B ,()
2212
3333
BP BA AP BA AC BA BC BA BA BC =+=+=+-=+, 故B 正确;
对于C ,cos 0PA PC PA PC PA PC π⋅==-<,故C 错误; 对于D ,设ABC 的高为h ,1
32
ABC
S AB h =
=,即6AB h =, 则APQ 的面积12122
26423233
APQ
S AQ h AB h =
⋅=⋅⋅=⨯=,故D 正确; 故选:BD 【点睛】
本题考查了平面向量的共线定理、共线向量、向量的加法与减法、向量的数量积,属于基础题
7.下列说法中错误的为 ()
A .已知()1,2a =,()1,1b =,且a 与a λb +的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫
-+∞ ⎪⎝⎭
B .向量()12,3e =-,213,24e ⎛⎫=- ⎪⎝⎭
不能作为平面内所有向量的一组基底
C .若//a b ,则a 在b 方向上的正射影的数量为a
D .三个不共线的向量OA ,OB ,OC ,满足
AB CA BA CB OA OB AB CA BA CB ⎛⎫⎛⎫ ⎪ ⎪⋅+=⋅+ ⎪ ⎪⎝⎭⎝⎭0CA BC OC CA BC ⎛⎫
⎪=⋅+
= ⎪⎝⎭
,则O 是ABC 的内心 【答案】AC 【分析】
对于A ,由向量的交角为锐角的等价条件为数量积大于0,且两向量不共线,计算即可; 对于B ,由124e e =,可知1e ,2e 不能作为平面内所有向量的一组基底; 对于C ,利用向量投影的定义即可判断;
对于D ,由0AB CA OA AB CA ⎛⎫
⎪⋅+= ⎪⎝⎭
,点O 在角A 的平分线上,同理,点O 在角B 的平分线上,点O 在角C 的平分线上,进而得出点O 是ABC 的内心. 【详解】
对于A ,已知()1,2a =,()1,1b =,且a 与a λb +的夹角为锐角, 可得()
0a a b λ+>⋅,且a 与a λb +不共线,()1,2a λb λλ+=++, 即有()1220λλ++⨯+>,且()212λλ⨯+≠+,
解得53λ>-
且0λ≠,则实数λ的取值范围是5
3
λ>-
且0λ≠, 故A 不正确;
对于B ,向量,,213,24e ⎛⎫=-
⎪⎝⎭
, 124e e =,
∴向量1e ,2e 不能作为平面内所有向量的一组基底,故B 正确;
对于C ,若a b ,则a 在b 上的投影为a ±,故C 错误; 对于D ,
AB CA AB
CA
+
表示与ABC 中角A 的外角平分线共线的向量,
由0AB CA OA AB CA ⎛⎫
⎪⋅+= ⎪⎝⎭
,可知OA 垂直于角A 的外角平分线,
所以,点O 在角A 的平分线上,
同理,点O 在角B 的平分线上,点O 在角C 的平分线上, 故点O 是ABC 的内心,D 正确. 故选:AC. 【点睛】
本题考查了平面向量的运算和有关概念,具体包括向量数量积的夹角公式、向量共线的坐标表示和向量投影的定义等知识,属于中档题.
8.已知向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,若点A ,B ,C 能构成三角形,则实数t 可以为( ) A .-2 B .
12
C .1
D .-1
【答案】ABD 【分析】
若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,即向量,AB BC 不共线,计算两个向量的坐标,由向量共线的坐标表示,即得解 【详解】
若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,则向量,AB BC 不共线, 由于向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-, 故(3,4)AB OB OA =-=-,(5,9)BC OC OB t t =-=+- 若A ,B ,C 三点不共线,则 3(9)4(5)01t t t ---+≠∴≠ 故选:ABD 【点睛】
本题考查了向量共线的坐标表示,考查了学生转化划归,概念理解,数学运算能力,属于中档题.
二、立体几何多选题
9.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )
A .()
()
2
2
12AA AB AD
AC ++=
B .1A 在底面ABCD 上的射影是线段BD 的中点
C .1AA 与平面ABC
D 所成角大于45 D .1BD 与AC
所成角的余弦值为3
【答案】AC 【分析】
对A ,分别计算()
2
1++AA AB AD 和2
AC ,进行判断;对B ,设BD 中点为O ,连接
1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算
10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算
11
,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角
公式代入计算夹角的余弦值. 【详解】
对A ,由题意,111
11cos602
⋅=⋅=⋅=⨯⨯=
AA AB AA AD AD AB ,所以(
)
2
222
111112*********
++=+++⋅+⋅+⋅=+++⨯⨯
=AA AB AD
AA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()
2
2
2
2
21113=+=+⋅+=++=AC AB AD
AB AB AD AD ,
所以()()2
2
1
26++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1
A O ,
1
111111
222
=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10
⋅=O AB A ,又因为21111111111110
222222224⎛⎫
⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭
O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,
所以()()2
2
11
=2,=3=
+-=
+AD A B A AB AC AB AD D ()()2
2
1
1
1
1
1
⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD AB
AB AD BD
,111cos ,2⋅<>=
=
=B AC D BD BD AC AC
D 不正确;对C ,
112==AC BD ,在
1A AC 中,111,===A A AC AC 2
2
2
11+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 1∠=>A AC ,即145∠>A AC ,故C 正确;
故选:AC
【点睛】
方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.
10.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )
A .存在某个位置,使得1CN A
B ⊥ B .翻折过程中,CN 的长是定值
C .若AB BM =,则1AM B
D ⊥
D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是
43
π 【答案】BD 【分析】
对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三
线,,NE NF NC 共面共点,不可能;
对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =
(定值),AM EC =(定值),由余弦定理可得NC 是定值.
对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.
对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是
43
π. 【详解】 对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F ,
则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥,
如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点,
不可能,故A 选项不正确;
对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112
NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,
整理得2
22212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+ 故CN 为定值,故B 选项正确.
对于C 选项:如图,取AM 中点O ,连接1,B O DO ,
由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,
111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,
从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.
对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,
此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122
BO =,2DM =22
2211221
22B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1, 体积是
43
π.故D 选项正确. 故答案为:BD .
【点睛】 本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.。

相关文档
最新文档