备战2013高考理科数学6年高考母题精解精析 专题8 立体几何09 Word版含答案.pdf
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2010辽宁理数)(19)(本小题满分12分)
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=?AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
证明:
设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系如图。
则P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),N(,0,0),S(1,,0).……4分
(Ⅰ),
因为,
所以CM⊥SN ……6分
(2010江西理数)平面BCD,AB平面BCD,。
求点A到平面MBC的距离;
求平面ACM与平面BCD所成二面角的正弦值。
【解析】本题以图形拼折为载体主要考查了考查立体图形的空间感、点到直线的距离、二面角、空间向量、二面角平面角的判断有关知识,同时也考查了空间想象能力和推理能力
(2)CE是平面与平面的交线.
由(1)知,O是BE的中点,则BCED是菱形.
作BF⊥EC于F,连AF,则AF⊥EC,∠AFB就是二面角A-EC-B的平面角,设为.
因为∠BCE=120°,所以∠BCF=60°.
,
,
所以,所求二面角的正弦值是.
【点评】传统方法在处理时要注意到辅助线的处理,一般采用射影、垂线、平行线等特殊位置的元素解决
【点评】向量方法作为沟通代数和几何的工具在考察中越来越常见,此类方法的要点在于建立恰当的坐标系,便于计算,位置关系明确,以计算代替分析,起到简化的作用,但计算必须慎之又慎
(2010重庆理数)(19)(本小题满分12分,(I)小问5分,(II)小问7分)
如题(19)图,四棱锥P-ABCD中,底面ABCD为矩形,PA底面ABCD,PA=AB=,点E是棱PB的中点。
求直线AD与平面PBC的距离;
若AD=,求二面角A-EC-D的平面角的余弦值。
(2010北京理数)(16)(本小题共14分)
如图,正方形ABCD和四边形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1.
(Ⅰ)求证:AF∥平面BDE;
(Ⅱ)求证:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大小。
所以,
所以,.
所以BDE.
(2010四川理数)(18)(本小题满分12分)
已知正方体ABCD-A'B'C'D'的棱长为1,点M是棱AA'的中点,点O是对角线BD'的中点.
(Ⅰ)求证:OM为异面直线AA'和BD'的公垂线;
(Ⅱ)求二面角M-BC'-B'的大小;
(Ⅲ)求三棱锥M-OBC的体积.
本小题主要考查异面直线、直线与平面垂直、二面角、正方体、三棱锥体积等基础知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决数学问题的能力。
解法一:(1)连结AC,取AC中点K,则K为BD的中点,连结OK
因为M是棱AA’的中点,点O是BD’的中点
所以AM
所以MOw_w w. k#s5_u.c o*m
由AA’⊥AK,得MO⊥AA’
因为AK⊥BD,AK⊥BB’,所以AK⊥平面BDD’B’
所以AK⊥BD’
所以MO⊥BD’
又因为OM是异面直线AA’和BD’都相交
故OM为异面直线AA'和BD'的公垂线
(3)易知,S△OBC=S△OA’D’,且△OBC和△OA’D’都在平面BCD’A’内
点O到平面MA’D’距离h=
VM-OBC=VM-OA’D’=VO-MA’D’=S△MA’D’h=(2)设平面BMC'的一个法向量为=(x,y,z)=(0,-1,), =(-1,0,1) 即。