2019高考数学备考冲刺之易错点点睛系列专题 数列(教师版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学备考冲刺之易错点点睛系列
三 数列 教师版
一、高考预测
数列是历年高考的重点与难点,以等差数列与等比数列为基础考查数列的性质及前n 项和的问题是数列中的中低档难度问题,一般只要熟悉等差数列与等比数列及其前n 项和的性质即可正确得出结果.等差数列与等比数列是高中阶段学习的两种最基本的数列,也是高考中经常考查并且重点考查的内容之一,这类问题多从数列的本质入手,考查这两种基本数列的概念、基本性质、简单运算、通项公式、求和公式等.本讲内容在高考中多以选择题和填空题的形式出现,属于中低档题.解题时应从基础处着笔,首先要熟练掌握这两种基本数列的相关性质及公式,然后要熟悉它们的变形使用,善用技巧,减少运算量,既准又快地解决问题.除此以外,数列与其他知识的综合考查也是高考中常考的内容,数列是一种特殊的函数,它能与很多知识进行综合,如方程、函数、不等式、极限,数学归纳法(理)等为主要综合对象,概率、向量、解析几何等为点缀.数列与其他知识的综合问题在高考中大多属于中高档难度问题.
数列是新课程的必修内容,从课程定位上说,其考查难度不应该太大,数列试题倾向考查基础是基本方向.从课标区的高考试题看,试卷中的数列试题最多是一道选择题或者填空题,一道解答题.由此我们可以预测2019年的高考中,数列试题会以考查基本问题为主,在数列的解答题中可能会出现与不等式的综合、与函数导数的综合等,但难度会得到控制. 二、知识导学
要点1:有关等差数列的基本问题
1.涉及等差数列的有关问题往往用等差数列的通项公式和求和公式“知三求二”解决问题;
2.等差数列前n 项和的最值问题,经常转化为二次函数的最值问题;有时利用数列的单调性(d >0,递增;d <0,递减);
3.证明数列{n a }为等差数列有如下方法:①定义法;证明1n n a a d +-=(与n 值无关的常数);②等差中项法:证明112(2,)n n n a a a n n N *-+=+≥∈。
要点2:有关等比数列的基本问题
1证明数列{n a }为等比数列有如下方法:①定义法:证明
1
()n n
a q n a +=与值无关的非零常数。
②等比中项法:2
11(2,)n n n a a a n n N *-+=≥∈。
2求一般数列{n a }通项公式时常用构造数列法、待定系数法等。
要点向3:等差、等比数列综合问题
1.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
2.数列求通项的常见类型与方法:公式法、由递推公式求通项,由n S 求通项,累加法、累乘法等
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、分组法、倒序相加法等。
4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略. 要点4:可转化为等差、等比数列的求和问题
某些递推数列可转化为等差、等比数列解决,其转化途径有:
1.凑配、消项变换——如将递推公式1n n a pa q +=+(p q 、为常数,q ≠0,p ≠1)。
通过凑配变成1()11
n n q q
a p a p p ++
=+--;或消常数转化为11()n n n n a a p a a +--=-
2.取倒数法—如将递推公式)(11b a k ma a n n n +=
--递推式,考虑函数倒数关系有)1
1(11m
a k a n n +=-
⇒
m
k
a k a n n +⋅=-111令n n a
b 1=则{}n b 可归为q pa a n n +=+1型。
3.对数变换——如将递推公式1p n n a ca +=(0,0,0,1)n a
c p p >>>≠取对数得
1lg lg lg n n a c p a +=+
4.换元变换——n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq (或1n n n a pa rq +=+,其中p ,q, r 均为常数)。
一般地,要先在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q ++=⋅+引入辅助数列{}n b (其中n
n n q
a b =),得:q b q p b n n 1
1+=+则转化为1n n b Aa B +=+的形式。
要点5:数列求和的常用方法:
1、直接由等差、等比数列的求和公式求和,注意对公比1≠q 的讨论.
2、错位相减法:主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.
3、分组转化法:把数列的每一项分成两项,使其转化为几个等差、等比数列,再求解.
4、裂项相消法:主要用于通项为分式的形式,通项拆成两项之差求和,正负项相消剩下首尾若干项,注意一般情况下剩下正负项个数相同.
5、倒序相加法:把数列正着写和倒着写相加(即等差数列求和公式的推导过程的推广). 三、易错点点睛
1.已知数列{a n }满足a 1=1,a n =a 1+2a 2+3a 3+…+(n-1)a n-1,(n ≥2),则{a n }的通项a n =_________. [考场错解] ∵a n =a 1+2a 2+3a 3+…+(n-1)a n-1,∴a n-1=a 1+2a 2+3a 3+…+(n-2)a n-2,两式相减得a n -a n-1=(n-1)a n-1,∴a n =na n-1.由此类推: a n-1=(n-1)a n-2,…a 2=2a 1,由叠乘法可得a n =
2
!n [专家把脉] 在求数列的通项公式时向前递推一项时应考虑n 的范围.当n=1时,a 1=2
1
与已知a 1=1,矛盾.
[对症下药] ∵n ≥2时,a n =a 1+2a 2+3a 3+…+(n-1)a n-1① 当n ≥3时,a n-1=a 1+2a 2+3a 3+…
+(n-2)·a n-2② ①-②得 a n -a n-1=(n-1)·a n-1∴当n ≥3时,1
-n n
a a =n ,∵a n =
1-n n a a ·21--n n a a ·...·22
334a a a
a a ∙∙=n·…·4·3×a 2=2!n a 2,∵a 2=a 1=1
∴当n ≥2时,a n =2!n . 当n=1时,a 1=1故a n =⎪⎪⎩
⎪⎪⎨
⎧≥=).2(2
!
)1(1n n n
2.设数列{a n }的前n 项和为S n ,S n =2
)
13(1-n a (对于所有n ≥1),且a 4=54,则a 1的数值是
________.
[考场错解]∵S n =2)13(1-n a =3
1)
31(1--n a ,∴此数列是等比数列,首项是a 1,公比是3,由
a 4=a 1·34-1
,
∴a 1=2.
[专家把脉] 此题不知数列{a n }的类型,并不能套用等比数列的公式.而答案一致是巧合.
[对症下药]∵a 4=S 4-S 3=
21a (34-1)-2
1a (33
-1)=54,解得a 1=2.
3.已知数列{a n }满足a 1=1,a n =3n-1
+a n-1(n ≥2) (1)求a 2,a 3; (2)求通项a n 的表达式.
[考场错解] (1)∵a 1=1,∴a 2=3+1=4,a 3=32
+4=13.
(2)由已知a n =3n-1+a n-1,即a n -a n-1=3n-1 即a n 成等差数列,公差d=3n-1.故a n =1+(n-1)·3n-1
.
[专家把脉] (2)问中a n -a n-1=3n-1,3n-1
不是常数,它是一个变量,故不符合等差数列的定义.
[对症下药] (1)∵a 1=1,∴a 2=4,a 3=32
+4=13.
(2)由已知a n -a n-1=3n-1
,故a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=3n-1
+3n-2
+…+3+1=2
1
3-n .
4.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于 ( ) A.160 B .180 C. 200 D .220
[考场错解] 由通项公式a n =a 1+(n+1)d.将a 2,a 3,a 18,a 19,a 20都表示成a 1和d.求a 1、d ,再利用等差数列求和,选C .
[专家把脉] 此方法同样可求得解.但解法大繁,花费时间多,计算量大故而出错,应运用数列的性质求解就简易得多.
[对症下药] B 由公式m+n=2P ⇒a m +a n =2ap?(只适用等差数列)即可求解.由a 1+a 2+a 3=-24,可得:3a 2=-24 由a 18+a 19+a 20=78,可得:3a 19=78 即 a 2=-8,a 19=26又∵S 20=
2
)
(20201a a +=10(a 2+a 19)=180 2.若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是 ( )
A.4005 B .4006 C.4007 D.4008 [考场错解] ∵a 2004+a 2003>0,即2a 1+2002d+2003d>0,(a 1+2002d)(a 1+2003d)<0,要使S n >0.即使na 1+
2
)
1(-n n d >0.这样很难求出a 1,d.从而求出最大的自然数 n.故而判断a 2003>0,a 2004<0,所以前2003项为正,从第2004项起为负,由等差数列的n 项和的对称性使S n >0.故而取n=4005使S n >0.
[专家把脉] 此题运用等差数列前n 项的性质及图象中应注意.a 2003>0,a 2004<0. 且忽视了这两项的大小.
[对症下药] B ∵a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,且{a n }为等差数列 ∴{a n }表示首项为正数,公差为负数的单调递减等差数列,且a 2003是绝对值最小的正数,a 2004是绝对值最大的负数(第一个负数),且|a 2003|>|a 2004|∴在等差数列{a n }中,a 2003+a 2004=a 1+a 4006>0,S 4006=
2
)
(400640061a a +>0 ∴使S n >0成立的最大自然数n 是4006.
3.设无穷等差数列{a n }的前n 项和为S n .(Ⅰ)若首项a 1=2
3,公差d=1,求满足S k2=(S k )
2
的正整数k;
(Ⅱ)求所有的无穷等差数列{a n };使得对于一切正整数中k 都有S k2=(S k )2
成立.
[考场错解] (1)当a 1=23,d=1时,S n =21n 2+n ,由S k2=(S k )2得21k 4+k 2=2
221⎪⎭
⎫
⎝⎛+k k ,即k=0或
k=4.
∴k ≠0.故k=4.
(Ⅱ)由对一切正整数k 都有S k2=(S k )2成立. 即k 2
a 1+2
)1(22-k k d=(ka 1+d k k 2)1(-)2
即(a 1-2
1a )k 2-adk 2(k-1)+2d k 2(k 2-1)-42
d k 2(k-1)2=0对—切正整数k 恒成立故⎪⎪⎩
⎪⎪⎨⎧===-0
,0,01211d d a a a 求
得a 1=0或1,d=0 ∴等差数列a n ={0,0,0,…},或a n ={1,1,1,…}.
[专家把脉] (Ⅱ)中解法定对一切正整数k 都成立.而不是一切实数.故而考虑取k 的特值也均成立.
[对症下药] (Ⅰ)当a 1=2
3,d=1时,S n =na 1+
.2
12)1(232)1(2n n n n n d n n +=-+=-由Sk 2=(S k )2
,得
2
1k 4+k 2=(21k 2+k)2,即k 3)141
(-k =0.又k ≠0,所以k=4.
(Ⅱ)设数列{a n }的公差为d ,则在S k2=(S k )2
中分别取k=1,2,得
⎪⎩
⎪⎨⎧⨯+=⨯⨯=⎪⎩⎪⎨⎧==)2.()2122(2344)1(,.)(,)(21121122421
1d a d a a a S S S S 即 由(1)得a 1=0或a 1=1. 当a 1=0时,代入(2)得d=0或d=6.若a 1=0,d=0,则a n =0,s n =0,
从而S k2=(S k )2成立;若a 1=0,d=6,则a n =6(n-1),由S 3=18,(S 3)2=324,S 9=216知S 9≠(S 3)2
,故
所得数列不符合题意.当a 1=1时,代入(2)得 4+6b=(2+d)2
解得d=0或d=2.若a 1=1,d=0,则
a n =1,S n =n,从而S k2=(S k )2成立;若a 1=1,d=2,则a n =2n-1,S n =1+3+…+(2n-1)=n 2,从而S k2=(S k )2
成立.综上,共有3个满足条件的无穷等差数列:①{a n }:a n =0,即0,0,0,…;②{a n }:a n =1,即1,1,1,…;③{a n }:a n =2n-1,即1,3,5,….
4.已知数列{a n }的各项都是正数,且满足:a 0=1,a n+1=2
1a n ·(4-a n ),n ∈N.(1)证明a n <a n+1<2,n ∈N.(2)求数列{a n }的通项公式a n
.
[考场错解] 用数学归纳法证明:(1)1°当n=1时,a 0=1,a 1=2
1a 0(4-a 0)=2
3,∴a 0<a 1<2,
2°假设n=k 时有a k-1<a k <2.则n=k+1时,a k -a k+1=2
1
a k-1(4-a k-1)-21a k (4-a k )
=2(a k-1-a k )-21(a k-1-a k )(a k-1+a k )=21
(a k-1-a k )(4-a k-1-a k ).而a k-1-a k <0. 4-a k-1-a k >0,∴a k -a k-1
<0.又a k-1=21a k (4-a k )=21[4-(a k -2)2
]<2.∴n=k+1时
(2)a n+1=21a n (4-a n )=21[-(a n -2)2+4].∴2(a n+1-2)=-(a n -2)2∴a n+1-2=21(a n -2)2
令b n =a n -2,∴
b n =-(21)1+2+…+2n-1·n b 21又∵b 1=a 1-2=-21.∴b n =-(21)2n+2n-1.即a n =2-(2
1)2n+2n-1
.
[专家把脉] 在(Ⅱ)问中求b n 的通项时,运用叠代法.最后到b 0而不是b 1.
[对症下药](Ⅰ)同上,方法二:用数学归纳法证明:1°当n=1时,a 0=1,a 1=21a 0(4-a 0)=2
3,∴0<a 0<a 1<2;2°假设n=k 时有a k-1<a k <2成立,令f(x)= 2
1x(4-x),f(x)在[0,2]上单调递增,所以由假设有:f(a k-1)<f(a k )<f(2),即2
1a k-1(4-a k-1)<2
1a k (4-a k ) 2
1×2(4-2),也即当x=k+1时 a k <a k+1<2成立,所以对一切n ∈N,有a k <a k+1<2
(2)下面来求数列的通项:a n+1=2
1
a n (4-a n )=
2
1[-(a n -2)2+4],所以2(a n+1-2)=-(a n -2)2
令b n =a n -2,则b n =-2121-n b =-21(-2122-n b )2=-21·(21)22
21-n b …=-(2
1)1+2+…+2n-1b 2n
,又b n =-1,所以
b n =-(21)2n-1
,即a n =2+b n =2-(2
1)
2n-1 专家会诊1.要善于运用等差数列的性质:“若m+n=p+q,则a m +a n =a p +a q ”;等差数列前n 项和符合二次函数特征.借助二次函数性质进行数形结合法解等差数列问题.2.会运用一般与特殊的逻辑思维,利用满足条件的特值求相关参数的值,学会分析问题和解决问题. 1.数列{a n }的前n 项和记为S n ,已知a 1=1,a a+1=n S n n 2
+(n=1,2,3…).证明:(Ⅰ)数列{n
Sn }是等比数列;(Ⅱ)S n+1=4a n .
[考场错解] (Ⅰ)已知a 1=1,a n+1=n S n n 2+,∴a 2=3S 1=3,∴S 2=4 a 3=2
4
·S 2=2×4=8.∴S 3=1+3+8=12.
即
43
,22,11321===S
S S .故{n Sn }是公比为2的等比数列.
(Ⅱ)由(Ⅰ)知11++n S n =4·,11--n S n 于是S n+1=4(n+1)·,1
1--n S
n =4a n .又a 2=3.S 2=a 1+a 2=4,因此对于任意
正整数n ≥1,都有S n+1=4a n .
[专家把脉] (Ⅰ)中利用有限项判断数列类型是运用不完全归纳法,应给予证明. (Ⅱ)中运用前推一项必须使 n ≥2.
[对症下药] (Ⅰ) ∵a n+1=S n+1-S n ,a n+1=n
n 2
+S n ,∴(n+2)S n =n(S n+1-S n ),整理得nS n+1=2(n+1)=S n ,所以
11++n S n =2n Sn 故{n
Sn
}是以2为公比的等比数列. (Ⅱ)由(Ⅰ)知11++n S n =4·,11--n S n (n2).于是S n+1=4(n+1)·,1
1--n S
n =4a n (n ≥2).又a 2=3S 1=3, 故
S 1=a 1+a 2=4.因此对于任意整数n ≥1,都有S n+1=4a n .
2.已知数列{a n }的前n 项和为S n ,S n =3
1(a n -1)(n ∈N *
).(Ⅰ) 求a 1,a 2;(Ⅱ)求证数列{a n }是等比数列.
[考场错解] (Ⅰ)S 1=3
1
(a 1-1),得a 1=-2
1,S 2=3
1(a 2-1),即a 1+a 2=3
1(a 2-1),得a 2=4
1. (Ⅱ)a n =S n -S n-1=3
1(a n -1)-3
1(a n-1-1),得
2
1
1-=-n n a a ,所以{a n }是首项为-21,公比为-21的等比数列.
[专家把脉] 在利用a n =S n -S n-1公式时,应考虑n ≥2时才能成立. [对症下药] (Ⅰ)由S 1=31(a 1-1), 得a 1=31(a 1-1),∴a 1=-21.又S 2=3
1
(a 2-1),即a 1+a 2=3
1
(a 2-1),得a 2=4
1.
(Ⅱ)当 n >1时,a n =S n S n-1=3
1(a n -1)-3
1(a n-1-1),得1
-n n
a a =-21,所以{a n }是首项为-21,公比为-2
1
的等比数列.
3.等比数列的四个数之和为16,中间两个数之和为5,则该数列的公比q 的取值为 ( ) A. 4
1 或4 B. 4
1或
833415- C. 4或-841533+ D. 4或41或833415-或8
41
533+
[考场错解] 设这四个数为q a q a ,,aq,aq 3
.由题意得⎪⎩
⎪⎨⎧=+=),
2(5),
1(164 aq q a
a 由①得a=±21,代入②得q=±21或q 2=±2.q 2=41或q 2
=4,故所求的公比为4
1或4.故应选A.
[专家把脉] 上述解答设等比数列的公比为q 2
是不合理的.这相当于增加了四个数同号这个条件,而题设中的四个数不一定同号.因此,产生了漏解现象.
[对症下药]设这四个数为a,aq,aq 2
,aq 3
,则833415414,
5,
16232-=⎪⎩⎪⎨⎧=+=∙∙∙或或解之得q aq aq aq aq qa a 或
-
8
41
533+.因此,应选D. 4.设数列{a n }的首项a 1=a ≠41,且a n+1= ,3,2,1,4
1
,41
2112=-=⎪⎪⎩
⎪⎪⎨
⎧+-n a b n a n a n n n n
记为奇数
为偶数
(Ⅰ)求a 2,a 3;(Ⅱ)判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)求
∞
→n lim (b 1+b 2+b 3+…+b n ).
[考场错解] (Ⅰ)a 2=a 1+41
=a+41,a 3=21a 2=21a 8
1;
(Ⅱ)b n+1=a 2n+1-414
.412221241
121==-
=
---++n n n n n
n a a a a
b b . (Ⅲ)求∞→n lim (b 1+b 2+b 3+…+b n )=
∞→n lim 4
11)411(1--b =3134)41(34411414111-=-=--
=-a a a b . [专家把脉]在求证b n 是等比数列是时,222-n n a a 式子中,an 中n 为偶数时,2
1
1=+n n a a 是连
续两项,并不能得出
4
1
2=+n n a a . [对症下药]
(Ⅰ)a 2=a 1+41
=a+41
,a 3=21
a 2=21
a+81
; (Ⅱ)∵a 4=a 3+41=2
1
a+83,所以
a 5=
2
1
a 4=
4
1a+
16
3,所以
b 1=a 1-41=a-41,b 2=a 3-41=21(a-41),b 3=a 5-41=41(a-41),猜想:{b n }是公比为2
1
的等比数列.
证明如下:因为b n+1=a 2n+1-41=21a 2n -41=21(a 2n-1-41)=21b n ,(n ∈N *
)所以{b n }是首项为a-4
1,公
比为2
1
的等比数列.
(Ⅲ)求∞→n lim (b 1+b 2+b 3+…+b n )=
∞→n lim ).41(2211211)
211(11-=-
=--a b b n 专家会诊1.证明等比数列时应运用定义证n n a a 1+为非0常数,而不能1
-n n a a
(此时n ≥2).2.等
比数列中q 可以取负值.不能设公比为q 2
.3.会运用等比数列性质,“若m+n=p+k,则a m ·a n =a p ·a k ”.
1.(典型例题)已知数列{a n }的前n 项和S n =a[2-(2
1)n-1
]-b[2-(n+1)(2
1)n-1
](n=1,2,…),其中a,b 是非零常数,则存在数列{x n }、{y n }使得( )
A.a n =x n +y n ,其中{x n }为等差数列,{y n }为等比数列 B .a n =x n +y n ,其中{x n }和{y n }都为等差数列
C .a n =x n ·y n ,其中{x n }为等差数列,{y n }为等比数列
D .a n =x n ·y n ,其中{x n }和{y n }都为等比数列
[考场错解]∵a[2-(2
1)n-1
]=x n ,b[2-(n-1)(2
1)n-1
]=y n ,又∵x n ,y n 成等比数列,故选D. [专家把脉]应从数列{a n }的前n 项和S n 的表达式入手,而不能从形式上主观判断. [对症下药] C. a 1=S 1=3a a n =S n -S n-1=a[2+(2
1)n-1
]-b[2-(n+1)·(2
1)n+1
] -a[2+(2
1)n-2
]+b[2-n(2
1)n-2
]=(b n -b-a)·(2
1)n-1
∵{(2
1)n-1
}为等比数列,{b n -a-b}为等差数
列.
2.已知数列{a n }是首项为a 且公比q 不等于1的等比数列,S n 是其前n 项和,a 1,2a 7,3a 4
成等差数列.(Ⅰ) 证明12S 3,S 6,S 12-S 6成等比数列; (Ⅱ)求和T n =a 1+2a 4+3a 7+…+na 3n-2.
[考场错解] (Ⅰ)由a 1,2a 7,3a 4 成等差数列.得4a 7=a 1+3a 4,4aq 6
=a+3aq 3
.从而可求q 3
=-4
1,或q 3
=1.当q 3
=-41时,3612S S =161,6
612S S S -=q 6=161.故12S 3,S 6,S 12-S 6成等比数列.当q 3=1
时,
3612S S =61,6
612S S S -=q 6
=1.故12S 3,S 6,S 12-S 6不成等比数列. [专家把脉]本题条件中已规定q ≠1.故应将q=1时舍去.
[对症下药](Ⅰ)证明:由a 1,2a 7,3a 4成等差数列.得4a 7=a 1+3a 4,即4aq 6=a+3aq 3
.变形得(4q 3
+1)(q 3
-1)=0,所以q 3
=-4
1或q 3
=1(舍去)由
3612S S =,1611211)1(121)1(3161=+=----q q q a q
q a 6612S S S -==-----=-11)
1(1)1(11121612q
q a q
q a S S 1+q 6-1=q 6=161,得3612S S =6612S S S -.所以12S 3,S 6,S 12-S 6成等比数列.
(Ⅱ)解法:T n =a 1+2a 4+3a 7+…+na3a-2=a+2aq 3+3aq 6+…+naq 3(n-2)
,
即T n =a+2·(-4
1)a+3·(-41)2a+…+n·(-4
1)n-1
a. ①
①×(-41)3a 得:-41T n =-41a+2·(-41)2a+3·(-41)3a+…+n·(-4
1)n
a ②
①-②有:45T n =a+(-41)a+(-41)2a+(-41)3a+…(-41)n-1a-n·(-4
1)n
a
=⎪
⎭
⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--411411n a -n·(-41)n a=54a-(54+n)·(-41)n a.所以T n =⎪
⎭⎫ ⎝⎛+-n a 5425162516·(-41)n a. 3.如图,△OBC 的三个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n ,y n ),a n =2
1y n +y n+1+y n+2. (Ⅰ)求a 1,a 2,a 3及a n ;(Ⅱ)证明y n+4=1-4
n y ,n ∈N *,(Ⅲ)若记b n =y 4n+4-y 4n ,n ∈N *
,证明{b n }是等比数列.
[考场错解](1)∵y 1=y 2=y 4=1,y 3=2
1
,y 5=4
3,可求得a 1=a 2=a 3=2,由此类推可求得a n =2
(Ⅱ)将2
1y n +y n+1+y n+2=2同除以2,得y n+4=
,2
21+++n n y y ∴y n+4=1-44
y . (Ⅲ)b n+1=y 4n+8-y 4n+4=-41(y 4n+4-y 4n )=-
41b n .∴n n b b
1+=-41.故{b n }是等比数列.
[专家把脉]第(Ⅰ)问题运用不完全归纳法求出a n 的通项.理由不充分,第(Ⅲ)问中
n n b b 1+=-4
1.要考虑b 1是否为0.即n n b b
1+有意义才更完整. [对症下药] (Ⅰ)因为y 1=y 2=y 4=1,y 3=2
1
,y 5=4
3,所以a 1=a 2=a 3=2.又由题意
可
知y n+3=
2
1
++n n y y .∴
a n+1=2
1y n+1+y n+2+y n+3=2
1y n+1+y n+2+
21++n n y y =2
1y n +y n+1+y n+2=a n ,∴{a n }为常数列.∴a n =a 1=2,n ∈N *
. (Ⅱ)将等式21
y n +y n+1+y n+2=2两边除以2,得4
1y n +221+++n n y y =1,又∵y n+4=221+++n n y y ,∴
y n+4=1-4
n y
.
(Ⅲ)∵b n+1=y 4n+8-y 4n+4=⎪⎭⎫ ⎝⎛-+4144n y -⎪⎭⎫ ⎝⎛-414n y =-41(y 4n+4-y 4n )=-
41 b n ,又∵b 1=y 8-y 4=-41
≠0,∴
{b n }是公比为-4
1 的等比数列.
4.在等差数列{a n }中,公差d ≠0,a 2是a 1与a 4的等比中项.已知数
列
a 1,a 3,21,k k a a ,…,akn,…成等比数列,求数列{k n }的通项k n .
[考场错解]∵a n =a 1+(n-1)d,2
2a =a 1·a 4
∴(a 1+d)2
=a 1(a 1+3d ).∴d=a 1,∴a n =nd.a 1=d.a 3=3d.∴1
3
d a =3=q.∴d k a n k n =..11d k a n k n +=+ ∴
n
n k k k k a a n
n 11+=
+=q=3.∴{k n }是公比为3的等比数列.∴k n =1·3n-1=3n-1
. [专家把脉]错因在把k 1当作数列{a n }的首项.k 1=1.而实际上k 1=9.
[对症下药]依题设得a n =a 1+(n-1)d,2
2a =a 1a 4,∴(a 1+d)2=a 1(a 1+3d),整理得d 2=a 1d, ∵d ≠0,∴d=a 1,得a n =nd,所以,由已知得d,3d,k 1d,k 2d,…k n d n …是等比数列.由d ≠0,所以数列1,3,k 1,k 2,…k n ,… 也是等比数列,首项为1,公比为q=1
3=3,由此得k 1=9.等比数列{k n }的首项k 1=9,公比q=3,所以k n =9×q n-1
=3n+1
(n=1,2,3,…),即得到数列{k n }的通项k n =3n+1
.
专家会诊1.赋值法在解等差、等比数列问题中是常用方法.从而求出系数的值及从中找出规律.2.等比数列中应注意考虑公比等于1的特殊情况,等比数列中的公差为0的特殊情况在解题时往往被忽视.3在等差数列与等比数列中,经常要根据条件列方程(组)求解.要注意常两种情形的不同之处.
1.已知定义在R 上的函数f(x)和数列{a n }满足下列条件:a 1=a,a n =f(a a-1)(n=2,3,4,…),a2≠a1,f(a n )-f(a n-1)=k(a n -a n-1)(n=2,3,4,…),其中a 为常数,k 为非零常数.(Ⅰ)令b n =a a+1-a n (n ∈N *
),证明数列{b n }是等比数列;(Ⅱ)求数列{a n }的通项公式;(Ⅲ)当|k|<1时,求
∞
→n a n .lim
[考场错解](Ⅰ)证明:由b 1=a 2-a 1≠0,可得:b 2=a 3-a 2=f(a 2)-f(a 1)=k(a 2-a 1)≠0.由数学归纳
法可证b n =a n+1-a n ≠0(n ∈N *
).由题设条件,当n ≥2时
1
111111)
()()(-----+---=
--=--=n n n n n n n n n n n n n n a a a a k a a a f a f a a a a b b =k 故数列{b n }是公比为k 的等比数列.
(Ⅱ)由(Ⅰ)知b n =k n-1
(a 2-a 1)(n ∈N *
)b 1+b 2+…+b n-1=(a 2-a 1)k
k n ---111
. (n ≥2)
而b 1+b 2+…+b n-1=a 2-a 1+a 3-a 2+…+a n -a n-1=a n -a 1(n ≥2)∴a n -a 1=(a 2-a 1)k
k n ---111
(n ≥2)
故a n =a[f(a)-a] k
k n ---111(n ∈N *)∴a n =a+(n-1)[f(a)-a](n ∈N *
)
(Ⅲ)当|k|<1时
∞
→n a n lim =
∞→n lim
⎥⎥⎦
⎤⎢⎢⎣⎡---+-k k a a f a n 11)][(1=a+
k a a f --1)( 2.如图,直线l 1:y=kx+1-k(k ≠0,k ≠2
1
±)与l 2相交于点P.直线
l 1与x 轴交于点P 1,过点P 1作x 轴的垂线交于直线l 2于点Q 1,过点Q 1作y 轴的垂线交直线l 1于点P 2,过点P 2作x 轴的垂线交直线l 2于点Q 2,…这样一直作下去,可得到一系列点P 1,Q 1,P 2,Q 2,…点P n (n=1,2,…)的横坐标构成数列{x n }.
(Ⅰ)证明x n+1-1=
k
21(x n -1),(n ∈N *
);(Ⅱ)求数列{x n }的通项公式; (Ⅲ)比较2|PP n |2
与4k 2
|PP 1|2
+5的大小.
[考场错解]证明:设点P n 的坐标是(x n ,y n ),由已知条件得点Q n 、P n+1的坐标分别是:
⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝
⎛
++2121,,2121,1n n n n x a x x .由P n+1在直线l 1上,得2121+n x = kx n+1+1-k.所以21(x n -1)
=k(x n+1-1).
即x n+1-1=
k
21(x n -1),n ∈N *
. (Ⅱ)由(Ⅰ)知=--+1
11n n x x k 21,故{x n -1}是等比数列,且首项x 1-1=-k 1,公比为k 21
.从而求得x n =1-2×(
k
21)n ,n ∈N *
. [专家把脉] (Ⅱ)问中对于x n+1-1=
k
21
(x n -1)先应考虑x n -1能否为0,继而可求. [对症下药](Ⅰ)同错解中(Ⅰ).
(Ⅱ)解法:由题设知x 1=1-
k 1,x 1-1=-k
1≠0,又由(Ⅰ)知
x n+1-1=k 21(x n -1), 所以数列{x n -1}是首项为x 1-1,公比为k
21
的等比数列.
从而x n -1=-k 1×(k 21)n-1,即x n =1-2×(k
21)n ,n ∈N *
.
(Ⅲ)解法:由⎪⎩
⎪
⎨⎧+=-+=,2121,
1x y k kx y 得点P 的坐标为(1,1).所以2|PP n |2=2(x n -1)2+2(kx n +1-k-1)2=8
×(k 21)2n +2(2k 21)2n-2,4k 2|PP 1|2+5=4k 2[(1-k
1-1)2(0-1)2]+5=4k 2
+9.
(i )当|k|>21
,即k <-21或k >2
1时,4k 2 |PP 1|2
+5>1+9=10.D 而此时0<|k
21
|<1,所以2|PP n |2
<8×1+2=10,故2|PP n |2
<4k 2
|PP 1|2
+5.
(ii)当0<|k|<21,即k ∈(-21,0)∪(0,2
1)时,4k 2|PP 1|2
+5<1+9=10.而此时|k
21
|>1,所以2|PP N |2
>8×1+2=10.故2|PP n |2
>4k 2
|PP 1|2
+5. 3.已知函数f(x)=
).1(1
3
-≠++x x x 设数列{a n }满足a 1=1,a n+1=f(a n ),数列{b n }满足b n =|a n -3|,S n =b 1+b 2+…+b n (n ∈N *
).(Ⅰ)用数学归纳法证明b n ≤
1
2)13(--n n ;(Ⅱ)证明S n <
3
3
2. [考场错解](Ⅰ)b n =|a n -3|,又∵a n =1+
1
21+-n a ,a n +1=
1
2
1+-n a (n ≥2),∴a 2=2,a 3=3
5,a 4=2.…
∴a n ≥1.b n =
323
1
22321
221-+++=
-++--n n a a =…由叠代法.b n ≤1
2
)13(--n n .
(Ⅱ)S n =b 1+b 2+…+b n <(3-1)+
2
1
31)
213(
1)13(2)
13(22)13(1
2--
--∙
-=-++--n
n n
<332
.
[专家把脉]运用叠代法时并不能化简成
1
2
)13(--n n .
[对症下药](Ⅰ)证明:当x ≥0时,f(x)=1+1
2+x ≥1.因为a 1=1,所以a n ≥1(n ∈N *
).下面用数学归纳法证明不等式b n ≤
1
2)13(--n n .
(1)当n=1时,b 1=3-1,不等式成立,(2)假设当n=k 时,不等式成立,即b k ≤1
2
)13(--k k .
那么b k-1=|a k+1-3|=
k
k k
k b a a 2)13(21
313
)13(1+-≤
-≤+--κ.所以,当n=k+1时,不等式也成立.根据(1)和(2),可知不等式对任意n ∈N *
都成立.
(Ⅱ)证明:由(Ⅰ)知,b n ≤
1
2)13(--n n .所以S n =b 1+b 2+…+b n ≤(3
-1)+
(3
1)
-+
111)θ--=<(3-1)·
3322
1
311=
--
.故对任意n ∈N *
,S n <.33
2 [专家会诊]函数、数列、解析几何三者的综合,展示了知识的交汇性,方法的灵活性.因
此解此类题目应充分运用函数与数列的联系,即数列是一种特殊函数,以及解析几何中方程与函数、数列的关系来解题.而数列与不等式的综合更显出问题的综合性.
1.某企业20典型例题)若a n =n 2
+A n ,且数列{a n }为递增数列,则实数的取值范围是____________.
[考场错解] ∵(n,a n )(n ∈N +)是函数f(x)=x 2
+λx 图象上的点,且数列{a n }为递增数列,
只需-2
λ
≤1,即λ≥-2,∴λ的取值范围是[-2,+∞]. [专家把脉] 忽视了数列的离散型特征.数列{a n }为递增数列,只要求满足a 1<a 2<…<a n <… [对症下药] ∵数列{a n }是递增数列,且a n =n 2
+λn ,其对称轴x=-2
A
既可以不超过直线x=1,也可以在 1<x<2
3
之间,故-2A <2
3
,即λ>-3. ∴λ的取值范围是(-3,+∞).(答案不唯一,λ>-3的所有实数均可).
4.(典型例题)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上
考察其再生能力及捕捞强度对鱼群总量的影响.用x n 表示某鱼群在第n 年年初的总量,n ∈N +
,
且x 1>0.不考虑其他因素,设在第n 年内鱼群的繁殖量及捕捞量都与X n 成正比,死亡量与x 2
n 成正比,这些比例系数依次为正常数a ,b ,C ,(Ⅰ)求x n+1与x n 的关系式;(Ⅱ)猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明) (Ⅲ)设a=2,
c=1,为保证对任意x 1∈(0,2),都有x n >0,n ∈N +
,则捕捞强度b 的最大允许值是多少?证明你的结论.
[考场错解] (1)x n+1 -x n =ax n -bx n -cx 2n (ax n ,bx n ,cx 2
n 分别为繁殖量、捕捞量,死亡量) (Ⅱ)x n =x 1(n ∈N +
).由(Ⅰ)式得x n (a-b-cx n )=0. ∴x 1=
c
b
a - (Ⅲ)∵x 1 ∈(0,2).a=2.c=1.∴0<2-b<2 0<b<2. 故
b 最大值为2.
[专家把脉] (Ⅲ)问中使用了第(Ⅱ)问的结论,而第(Ⅲ)中并不一定每年年初鱼群的总量
不变.
[对症下药] (1)从第n 年初到第n+1年初,鱼群的繁殖量为ax n ,被捕捞量为bx n ,死亡
量为cx 2n ,因此x x+1- x n =ax n -bx n -cx 2n ,n ∈N *.(*) 即x n+1=x n (a-b+1- cx n ),n ∈N *
.(答案:)
(Ⅱ)若每年年初鱼群总量保持不变,则x n 恒等于x 1,n ∈N *
,从而由(*)式得x n (a-b-cx n )恒等于0,n ∈ N *
,所以a-b-cx 1=0.即x 1=.c
b
a -因为x 1>0,所以a>
b .猜测:当且仅当a>b ,且x 1=
c
b
a -时,每年年初鱼群的总量保持不变. (Ⅲ)若
b 的值使得x n >0,n ∈N *
,由x n +1=x n (3-b-x n ),n ∈N *
,知0<x n <3-b ,n ∈N *
,特别地,有0<x 1<3 -b .即0<b<3-x 1.而x 1∈(0,2),所以b ∈(0,1],由此猜测b 的最大允许值是1.下
证,当x 1∈(0,2),b=1时,都有x n ∈(0,2),n ∈N *
①当n=1时,结论显然成立. ②假设当n=k 时结论成立,即x k ∈(0,2),则当n =k+1时,x k+1=x k (2-x k )>0.又因为x k+1=x k (2- x k )=-(x k -1)2+l ≤1<2,所以x k+1∈(0,2),故当n=k+1时结论也成立.由①、②可知,对于任
意的n ∈N *,都有x n ∈(0,2).综上所述,为保证对任意x 1∈(0,2),都有x n >0,n ∈N *
,则捕捞强度b 的最大允许值是1.
5.假设某市:2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
[考场错解] (1){a n }是等差数列 a n 是中低价房面积.a 1=250,d=50.∴S n =25n 2
+225n 由25n2+ 225n
≥4750即n ≥10.
(2)设几年后新建住房面积S 为:400(1+8%)n . 85%<25n 2
+225n .
[专家把脉] (2)问中应是第几年的中低价房的面积而不是累计面积.
[对症下药] (1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d=50,则S n = 250n+
2
)1(-n n ×50=25n 2+225n , 令25n 2+225n ≥4750,即n 2
+9n-190≥0,而n 是正整数,∴n ≥10.到 2019年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.设新建住房面积形成数列{b n },由题意可知 {b n }是等比数列,其中b 1=400,q=1.08,
则b n =400·(1.08)n-1·0.85.由题意可知a n >0.85b n ,有250+ (n-1)·50>400·(1.08)n-1
·0.85.由计算器解得满足上述不等式的最小正整数n=6.到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 四、典型习题导练
1、各项都为正数的数列{}n a 满足12
2
11,2n n a a a +=-=。
(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)
求数列11
n
n a a +⎧
⎫⎨
⎬+⎩⎭的前n 项和。
【解析】(Ⅰ)由12
2
2n n a a +-=可知数列{}
2
n a 是以1为首项,公差为2的等差数列
212(1)21n a n n ∴=+-=-,又0n a >
,则n a =(Ⅱ)
21n a n =
-11n n a a +==
+ 12231
11
1n n a a a a
a a +∴
+++
++
+1
122
n
=
+++1
1)2
=
2、已知数列}{n a 满足:11=a ,且n n a n n a 2
2
1)
1(+=+)(+∈N n ,1212+-⋅=n n n a a b ,数列}{n b 的前n 项和为n S (Ⅰ)求数列}{n a 的通项n a (Ⅱ)求证:2
1
<n S
【解析】(Ⅰ)112211a a a a a a a a n n n n n ⋅⋅⋅=--- 2
2222221
121)1()2()1(n
n n n n =⋅--⋅-= (Ⅱ))121121(21)12)(12(1)
12(1)12(12
2+--=+-=+⋅-=n n n n n n b n 数列}{n b 的前n 项和n S 为:
2
41
21)1211(21)12112171515131311(21+-=+-=+--++-+-+-=
n n n n S n 因为n 是正整数,所以
0241>+n 故2
1
<n S 3、已知{}n b 是公比大于1的等比数列,它的前n 项和为n S , 若3S 14=,1b 8+,23b ,3b 6+成等差数列,且1a 1=,n n 12
n 111
1a b b b b -⎛⎫
=⋅+++
⎪⎝⎭
(n 2≥)
(Ⅰ)求n b ;(Ⅱ)求数列{}n na 的前n 项和n S .
【解析】(Ⅰ)依3S 14=,1b 8+,23b ,3b 6+成等差数列,得()2
1
2
111b 1q q 146b q b b q 14
⎧++=⎪⎨
=++⎪⎩ -----(2分)
从而2
2q 5q 20-+= 得1q 2b 2
=⎧⎨=⎩ 故n b n
2=.------(4分)
(Ⅱ)当n 2≥时, n
n 2n 111
1a 222
2-⎛⎫=⋅+++ ⎪⎝⎭n 22=-
则n S 123n a 2a 3a na =+++
+()()()23n 1222322n 22=+-+-+
+-
()23n 12232n 2=+⨯+⨯+
+⨯()223n -++
+----------(1分)
令23n n T 2232n 2=⨯+⨯++⨯,34n 1n 2T 2232n 2+=⨯+⨯+
+⨯
得()n 2n 1n 812T 8n 212
-+--=+
-⨯-()n 11n 2+=-⋅故()n 1n T n 12+=-⋅.------------(3分)
于是n S ()()()
n 1n 1n 21n 1222
+-+=+-⋅-⨯
()n 12n 12n n 3+=-⋅--+.------(2分)
4、已知数列{}n a 满足121,3a a ==,1143(2)n n n a a a n N n *
+-=-∈≥且.(Ⅰ)证明数列
1{}n n a a +-是等比数列,并求出数列{}n a 的通项公式;
(Ⅱ)设数列{}n b 的前n 项和为n S ,且对一切n N *
∈,都有
12
12212n n
b b b n a a na +++=+ 成立,求n S . 【解析】(Ⅰ)由1134-+-=n n n a a a 可得)(311-+-=-n n n n a a a a
所以数列}{1n n a a -+是以2为首项,3为公比的等比数列 …………3分
故有112211)()()(a a a a a a a a n n n n n +-++-+-=--- 11313
1)
31(2--=+--=
n n …6分 (Ⅱ) 由 1222211+=+++n na b a b
a b n n 可知当1=n 时,311=a b ,31=b ,31=S
当2≥n 时,2)12(12=--+=n n na b
n
n ,132-⨯=n n n b ……………8分
1221323323223-⨯⨯+⨯⨯+⨯⨯+=+++=n n n n b b b S
1)3333231(21210+⨯+⨯+⨯+⨯=-n n 设1
2
1
3
333231-⨯++⨯+⨯+⨯=n n x
=x 3n n n n 33)1(3231121⨯+⨯-++⨯+⨯-
)333(320
2
1
++-⨯=--n n n
n x 2
133--
⨯=n n
n ,233)21(+⨯-=n
n n S ……11分 综上*
∈+⨯-=N n n S n n ,2
33)21(……………12分
5、已知函数21
()+4f x x
=(x ≠0),各项均为正数的数列{}n a 中11a =,2n+1
1
()n f a a =,()x n N ∈.(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)在数列{}n b 中,对任意的正整数n , 22
(31)1n n n n a n
b a -+⋅=都成立,设n S 为数列{}n
b 的前n 项和试比较n S 与12的大小. 【解析】(Ⅰ)由题意知2222
111111
44n n n n
a a a a ++=+⇒-=,∴21n a ⎧⎫⎨⎬⎩⎭
是以1为首项4为公差的等差数列 . ∴
2
1
43n n a =-, ∴0n a >,
∴n a =..6分 (Ⅱ)2
2
211
(31)(31)(43)(31)n n n n
a b n n a n n n n n a ===-+-+--+111()22121n n =--+, ∴111111111
[(1)()...()](1)233521212212n S n n n =-+-++-=-<-++
13分
6、已知数列{}n a 满足:21=a 且()n a a n a n n n ++=
+121(*
∈N n )(Ⅰ)求证:数列⎭
⎬
⎫⎩⎨⎧-1n a n 为等比数列,并求数列{}n a 的通项公式;(Ⅱ)证明:2
1
...321321+≥++++n n a a a a n (*
∈N n )。
【解析】(Ⅰ)由题得:a n+1(a n +n )=2(n+1)a n , 即n n n n a n na a a )1(211+=+++ 故11121-=⎪⎪⎭⎫
⎝⎛-++n n a n a n 又21
111-=-a 所以数列⎭
⎬⎫⎩⎨⎧-1n a n 为等比数列, ……3分
∴n
n n a n ⎪⎭
⎫
⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=--21212111, ∴ 12-+=n
n n n a ……6分 (Ⅱ)由上知1
21
1-+=n n n a …8分
∴n n n n a a a a 2
1...212121...321321321+++++≥++++
2
1121121-⎪⎪
⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=n n n n )21(1-+=
n n 1+≥所以2
1
...321321+≥++++n n a a a a n (*∈N n )。
…………12分
7、已知等差数列{}n a 满足158,0a a ==,数列{}n b 的前n 项和为()1
122
n n S n N -*=-∈.①
求数列{}n a 和{}n b 的通项公式;②解不等式n n a b <.
【解析】考查等差数列、等比数列,考查探究能力和逻辑思维能力.①设数列{}n a 的公差为d ,
由514a a d =+,得2d =-,∴210n a n =-+.由数列
{}
n b 的前n 项和为
()1122
n n S n N -*=-∈可知
当1n =时,1112
b S ==,当2n ≥时,212n n n n b S S --=-=,该式对1n =也成立.
所以数列{}n a 的通项公式为{}210,n n a n b =-+的通项公式为22n n b -=.
②由n n a b <得2
1022
n n --<∵1,2,3n =时,n n a b >4n =时,n n a b <
又{}n a 单调递减,{}n b 单调递增.∴不等式n n a b <的解集为{}|4,n n n N ∈≥.
8、数列{n a }的前n 项和记为n S ,点(,)n n S 在曲线2()4f x x x =-上(x N +∈). (Ⅰ)求数列{n a }的通项公式;(Ⅱ)设1(5)2n n n b a -=+⋅,求数列{n b }的前n 项和n T 的值. 【解析】(Ⅰ)由点(,)n n S 在曲线2()4f x x x =-上(x N +∈)知24n S n n =-, (1分)
当n ≥2时1n n n a S S -=-=224(1)4(1)n n n n ⎡⎤-----⎣⎦=25n -;
(4分) 当1n =时,113a S ==- ,满足上式;(5分)∴数列{n a }的通项公式为25n a n =- (6分)
(Ⅱ)由1(5)2n n n b a -=+⋅得2n n b n =⋅(7分)∴231122232(1)22n n n T n n -=⨯+⨯+⨯++-⋅+⋅①
(8分)
上式两边乘以2,得23412122232(1)22n n n T n n +=⨯+⨯+⨯+
+-⋅+⋅ ②(9分) ①-②得2
322
22
2n
n n T n +
-=++++
-⋅ 10
分∴
12(12)
212
n n n T n +--=-⋅-,即
1(1)22n n T n +=-⋅+.12分
9、在等差数列{a n }中,满足3a 5=5a 8,S n 是数列{a n }的前n 项和.(Ⅰ)若a 1>0,当S n 取得最
大值时,求n 的值;(Ⅱ)若a 1=-46,记b n =S n -a n
n
,求b n 的最小值.
【解析】(Ⅰ)设{a n }的公差为d ,则由3a 5=5a 8,得3(a 1+4d)=5(a 1+7d),∴d =-2
23
a 1.
∴S n =na 1+n(n -1)2×(-223a 1)=-123a 1n 2+2423a 1n =-123a 1(n -12)2
+14423
a 1.
∵a 1>0,∴当n =12时,S n 取得最大值.………(6分)
(Ⅱ)由(Ⅰ)及a 1=-46,得d =-2
23
×(-46)=4,
∴a n =-46+(n -1)×4=4n -50,S n =-46n +n(n -1)2×4=2n 2
-48n .
∴b n =S n -a n n =2n 2
-52n +50n =2n +50n -52≥22n ×50n
-52=-32,
当且仅当2n =50
n
,即n =5时,等号成立.故b n 的最小值为-32.………(12分)
10、数列}{n a 的前n 项和记为S n ,1a t =,点(S n ,1+n a )在直线21y x =+上,n ∈N*.(Ⅰ)若数列{}n a 是等比数列,求实数t 的值;(Ⅱ)设n n na b =,在(1)的条件下,求数列{}n b 的前n 项和n T ;(Ⅲ)设各项均不为0的数列}{n c 中,所有满足01<⋅+i i c c 的整数i 的个数称为这个数列}{n c 的“积异号数”,令n
n n b b c 4
-=(n N *∈),在(2)的条件下,求数列}{n c 的“积异号数”
【解析】(Ⅰ)由题意,当2n ≥时,有1121
21n n n
n a S a S +-=+⎧⎨
=+⎩ (1分)两式相减,得
)2(3,211≥==-++n a a a a a n n n n n 即,(2分)
所以,当2n ≥时{}n a 是等比数列,要使1n ≥时{}n a 是等比数列,则只需
2121
3a t a t
+==从而得出1t =(4分)
(Ⅱ)由(Ⅰ)得,等比数列{}n a 的首项为11a =,公比3q =,∴13n n a -= (5分) ∴13n n n b na n -==⋅ (6分)∴01221132333(1)33n n n T n n --=⨯+⨯+⨯++-⋅+⋅ ① (7分)
上式两边乘以3得12313132333(1)33n n n T n n -=⨯+⨯+⨯++-⋅+⋅ ② (8分)
①-②得0121233333n n n T n --=++++-⋅(9分)∴211
344
n n n T -=⋅+ (10分)
(Ⅲ) 由(Ⅱ)知13n n b n -=⋅,∵41n n c b =-∵14131c =-=-,241
1233
c =-=⨯,∴1210
c c =-<(11分) ∵03
)1()32(44411>⋅++=-=-++n n n n n n n n b b c c ,∴数列{}n c 递增.(12分) 由21
03
c =
>,得当2≥n 时,c n >0. (13分)∴数列{}n c 的“积异号数”为1.(14分) 11、定义数列{}n a : 121,2a a ==,且对任意正整数n ,有122(1
)(
1)1n
n n n a a ++⎡⎤=+-+-+⎣⎦. (Ⅰ)求数列{}n a 的通项公式与前n 项和n S ;(Ⅱ)问是否存在正整数,m n ,使得
221n n S mS -=?若存在,则求出所有的正整数对(,)m n ;若不存在,则加以证明.
【解析】考查了等差、等比数列的通项公式、求和公式,数列的分组求和等知识,考查了学生变形的能力,推理能力,探究问题的能力,分类讨论的数学思想、化归与转化的思想以及创新意识.
(Ⅰ)对任意正整数k , 2122121
212(1)(1)12k k
k k k a a a -+--⎡⎤=+-+-+=+⎣⎦, 221
22222(1)(1)
13k k k k k a a a ++⎡⎤=+-+-+=⎣⎦.1分 所以数列{}21k a -是首项11a =,公差为2
等差数列;数列{}2k a 是首项22a =,公比为3的等比数列2分 对
任意正整数
k ,2121k a k -=-,1223k k a -=⨯.3分
所
以
数
列
{}
n a 的通项公式
1
21,21,.23,2n k k n k a k n k
*
--=-⎧⎪=∈⎨⨯=⎪⎩N 或12,
21,.23,2N n
n n n k a k n k *
-=-⎧⎪=∈⎨⎪⨯=⎩
4分 对任意正整数k ,21321242()()k k k S a a a a a a -=++
++++
+
(121)2(13)
213
k k k +--=+-231k k =+-. 5分
21122122312331k k k k k k S S a k k ---=-=+--⨯=+- 6分
所以数列{}n a 的前n 项和为122
31,21,31,2k n k k n k S k k n k -*
⎧+-=-⎪=∈⎨+-=⎪⎩
N . 或 1
222
2233,214,31,24
N n n n n n n k S k n n k -*
⎧+-+=-⎪⎪=∈⎨⎪+-=⎪⎩7分 (Ⅱ)21222131(31)n n n n S mS n m n --=⇔+-=+-123(3)(1)(1)n m m n -⇔-=--,从而
3m ≤,由m *∈N 知1,2,3.m = 8分
①当1m =时, 123(3)0(1)(1)n m m n -->=--,即221n n S mS -≠;9分 ②当3m =时, 2
2(1)0,1n n -==,即213S S =;10分 ③当2m =时, 1
231(1)(1)n n n n -=-=-+,则存在1212,,N k k k k ∈<,
使得
121213,13,1,k k n n k k n -=+=+=-从而2112
1333(3
1)
2
k k k k k --=-=,得12131,312k k k -=-=,
1210,1k k k =-=,得2n =,即432S S =. 13分
综上可知,符合条件的正整数对(,)m n 只有两对:(2,2)与(3,1). 14分
12、在数列{}n a 中,已知1≥n a ,11=a ,且+
++∈-+=
-N n a a a a n n n n ,12
11
(Ⅰ)记+∈-=N n a b n n ,)2
1(2
,求证:数列{}n b 是等差数列;(Ⅱ)求{}n a 的通项公式;(Ⅲ)
对+∈∀N k , 是否总+∈∃N m 使得k a m =?若存在,求出m 的值,若不存在,请说明理由。
【解析】(Ⅰ)由题意得2)1)(()21()21(112
211=-+-=---=-++++n n n n n n n n a a a a a a b b
又41212
11=⎪⎭⎫ ⎝
⎛
-=a b ,故{}n b 是以41为首项,以2为公差的等差数列; 4分
(Ⅱ)由(Ⅰ)得*∈-=-+=N n n n b n ,472)1(241 *
∈-+=∴N n n a n ,4
7221 8
分。