最新人教版初二数学下册第十七章 勾股定理 全单元课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拓展提高
形成技能
今有池方一丈,葭生其中央,出水一尺,引葭赴岸, 适与岸齐.问水深、葭长各几何?
分析: 可设AB=x,则AC=x+1, 有 AB2+BC2=AC2, 2 2 2 (x+1 ), 可列方程,得 x +5 = 通过解方程可得.
B
C
A
17.1 勾股定理(3)
课件说明
• 本课首先运用勾股定理证明了直角三角形全等的HL 判定定理,从中进一步确认,一个直角三角形中, 只要两边的大小确定,则这个三角形就形状大小就 确定了.然后,运用勾股定理,通过作直角三角形, 画出了长度为无理数的线段,并学习在数轴上画出 无理数表示的点的方法.
问题1 你见过这个图案吗? 它由哪些基本图入课题
三个正方形A,B,C 的面积有什么关系?
追问 由这三个正方形 A,B,C的边长构成的等腰 直角三角形三条边长度之间 有怎样的特殊关系?
B
A
C
探究勾股定理
问题3 在网格中的一般的直角三角形,以它的三 边为边长的三个正方形A、B、C 是否也有类似的面积 关系? B 追问 正方形A、B、C 所围成的直角三角形三条边 之间有怎样的特殊关系? C A
析已知量、待求量,让学生掌握解 决实际问题的一般套路.
D
C
A
B
1m
2m
做一做
例2 如图,一架2.6米长的梯子AB 斜靠在一竖直 的墙AO上,这时AO 为2.4米. (1)求梯子的底端B距墙角O多少米? (2)如果梯子的顶端A沿墙下滑0.5米, 那么梯子底端B也外移0.5米吗?
跟踪练习:教科书第26页练习2.
课件说明
• 学习目标: 1.经历勾股定理的探究过程,了解关于勾股定理 的一些文化历史背景,通过对于我国古代研究 勾股定理的成就的介绍,培养学生的民族自豪 感; 2.能用勾股定理解决一些简单问题. • 学习重点: 探索并证明勾股定理.
创设情境
引入课题
国际数学家大会是最高水平的全球性数学科学学术 会议.2002年在北京召开了第24届国际数学家大会.如 图就是大会的会徽的图案.
课件说明
• 学习目标: 1.能用勾股定理证明直角三角形全等的“斜边、 直角边”判定定理; 2.能应用勾股定理在数轴上画出表示无理数的点; 3.体会勾股定理在数学中的地位和作用. • 学习重点: 用勾股定理作出长度为无理数的线段.
初步应用定理
练习3 求下列直角三角形中未知边的长度.
C
A 4
C 6 x B A
5
10
x B
课堂小结
(1)勾股定理的内容是什么?它有什么作用? (2)在探究勾股定理的过程中,我们经历了怎样 的探究过程?
课后作业
作业: 1.整理课堂中所提到的勾股定理的证明方法; 2.通过上网等查找有关勾股定理的有关史料、趣事 及其他证明方法.
B
C
A
巩固练习
如图,一棵树被台风吹折断后,树顶端落在离底端 3米处,测得折断后长的一截比短的一截长1米,你能计 算树折断前的高度吗?
课堂小结
(1)利用勾股定理解决实际问题有哪些基本步骤? (2)你觉得解决实际问题的难点在哪里?你有什么 好的突破办法?利用勾股定理解决实际问题的 注意点是什么?请与大家交流. (3)本节课体现出哪些数学思想方法,都在什么情 况下运用?
说一说
勾股定理: 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么a2+b2=c2.
已知一个直角三角形的两边,应用勾股定理可以求 出第三边,这在求距离时有重要作用.
想一想
例1 一个门框的尺寸如图所示,一块长3 m,宽 2.2 m的长方形薄木板能否从门框内通过?为什么? 解:在Rt△ABC中,根据勾股 定理,得 AC2=AB2+BC2=12+22=5. AC= 5 ≈2.24. 因为 5 大于木板的宽2.2 m,所以 将实际问题转化为数学问 木板能从门框内通过. 题,建立几何模型,画出图形,分
探究勾股定理
问题4 通过前面的探究活动,猜一猜,直角三角 形三边之间应该有什么关系? 猜想: 如果直角三角形两直角边长分别为a,b,斜边长为 c,那么a2+b2=c2.
感受数学文化
这个图案是公元3世纪我国汉代的赵爽在注解《周 髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根 据此图指出:四个全等的直角三角形(红色)可以如图 围成一个大正方形,中间的部分是一个小正方形 (黄 色).勾股定理在数学发展中起 朱实 到了重大的作用,其证明方法据 说有400 多种,有兴趣的同学可 黄实 2 以继续研究,或到网上查阅勾股 c b (b- a) 定理的相关资料.
17.1 勾股定理(1)
课件说明
• 本课从观察网格中的正方形面积关系出发,发现了 等腰直角三角形三边之间的数量关系,再通过观察 网格中以一般直角三角形的三边为边长的正方形面 积关系,发现网格中的一般直角三角形也具有这种 三边长的数量关系,从而提出猜想,直角三角形两 直角边的平方和等于斜边平方,介绍了赵爽的证明 方法.
想一想
问题 如果知道平面直角坐标系坐标轴上任意两点 的坐标为(x,0),(0,y),你能求这两点之间的距 离吗?
拓展提高
形成技能
今有池方一丈,葭生其中央,出水一尺,引葭赴岸, 适与岸齐.问水深、葭长各几何? 利用勾股定理解决实际问题 的一般思路: (1)重视对实际问题题意的 正确理解; (2)建立对应的数学模型, 运用相应的数学知识; (3)方程思想在本题中的运 用.
17.1 勾股定理(2)
课件说明
• 本课是在学习勾股定理的基础上,学习应用勾股定 理进行直角三角形的边长计算,解决一些简单的实 际问题.
课件说明
• 学习目标: 1.能运用勾股定理求线段长度,并解决一些简单的 实际问题; 2.在利用勾股定理解决实际生活问题的过程中,能 从实际问题中抽象出直角三角形这一几何模型, 利用勾股定理建立已知边与未知边长度之间的联 系,并进一步求出未知边长. • 学习重点: 运用勾股定理计算线段长度,解决实际问题.
a
初步应用定理
练习1 求图中字母所代表的正方形的面积.
80 225 A 144
24 B
A
8
A
17
初步应用定理
练习2 如图,所有的三角形都是直角三角形,四 边形都是正方形,已知正方形A,B,C,D 的边长分别 是12,16,9,12.求最大正方形E 的面积. B A
C
D
E
初步应用定理
通过这种方法,可以把一个正方形的面积分成若干 个小正方形的面积的和,不断地分下去,就可以得到一 棵美丽的勾股树.
相关文档
最新文档