新苏科七年级苏科初一数学下学期第3次月考数学试题word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新苏科七年级苏科初一数学下学期第3次月考数学试题word 版
一、选择题
1.计算(﹣2a 2)•3a 的结果是( )
A .﹣6a 2
B .﹣6a 3
C .12a 3
D .6a 3
2.如图,下列推理中正确的是( )
A .∵∠1=∠4, ∴BC//AD
B .∵∠2=∠3,∴AB//CD
C .∵∠BCD+∠ADC=180°,∴AD//BC
D .∵∠CBA+∠C=180°,∴BC//AD
3.已知,则a 2-b 2-2b 的值为 A .4 B .3
C .1
D .0 4.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CD
E ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )
A .①④
B .②③
C .①③
D .①③④
5.下列图形中,不能通过其中一个四边形平移得到的是( )
A .
B .
C .
D .
6.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是
( )
A .22()()a b a b a b +-=-
B .222()a b a b -=-
C .2()b a b ab b -=-
D .2()ab b b a b -=-
7.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是( )
A .0
B .1
C .3
D .7
8.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨
-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( )
A .13
B .9
C .9-
D .13-
9.点M 位于平面直角坐标系第四象限,且到x 轴的距离是5,到y 轴的距离是2,则点M 的坐标是( )
A .(2,﹣5)
B .(﹣2,5)
C .(5,﹣2)
D .(﹣5,2)
10.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( )
A .8312x y x y +=⎧⎨-=⎩
B .8312x y x y -=⎧⎨-=⎩
C .18312x y x y +=⎧⎨+=⎩
D .8312x y x y -=⎧⎨+=⎩ 11.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c
B .2a +2b
C .2c
D .0 12.一个三角形的两边长分别是2和4,则第三边的长可能是( )
A .1
B .2
C .4
D .7 二、填空题
13.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.
14.分解因式:m 2﹣9=_____.
15.某球形流感病毒的直径约为0.000000085m ,0.000000085用科学记数法表为_____.
16.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.
17.若关于x 、的方程()2233b a ax b y -+++=是二元一次方程,则b a =_______
18.二元一次方程7x+y =15的正整数解为_____.
19.计算:5-2=(____________)
20.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )
A .6
B .7
C .8
D .9
21.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.
22.若满足方程组33221x y m x y m +=+⎧⎨-=-⎩
的x 与y 互为相反数,则m 的值为_____.
三、解答题
23.因式分解
(1) 228ax a (2) a 3-6a 2 b+9ab 2 (3) (a ﹣b )2+4ab
24.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助于网格).
(1)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .
(2)连接AD 、BE ,那么AD 与BE 的关系是 ,线段AB 扫过的部分所组成的封闭图形的面积为 .
25.(1)已知2(1)()2x x x y ---=,求22
2
x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.
26.因式分解:
(1)12abc ﹣9a 2b ;
(2)a 2﹣25;
(3)x 3﹣2x 2y +xy 2;
(4)m 2(x ﹣y )﹣(x ﹣y ).
27.计算:
(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭
(2)3()6m m n mn -+
(3)4(2)(2)x x -+-
(4)2(2)(2)a b a a b ---
28.如图,有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a 米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.
29.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)
(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ;
(2)根据(1)中的结论,若x+y =5,x•y =94
,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.
30.如图 1,直线GH 分别交,AB CD 于点 ,
E F (点F 在点E 的右侧),若12180︒∠+∠= (1)求证://AB CD ;
(2)如图2所示,点M N 、在
,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.
(3)如图 3 所示,点M 在线段EF 上,点N 在直线CD 的下方,点P 是直线AB 上一点(在E 的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【分析】
用单项式乘单项式的法则进行计算.
【详解】
解:(-2a2)·3a=(-2×3)×(a2·a)=-6a3
故选:B.
【点睛】
本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.
2.C
解析:C
【分析】
根据平行线的判定方法一一判断即可.
【详解】
A、错误.由∠1=∠4应该推出AB∥CD.
B、错误.由∠2=∠3,应该推出BC//AD.
C、正确.
D、错误.由∠CBA+∠C=180°,应该推出AB∥CD,
故选:C.
【点睛】
本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.3.C
解析:C
【分析】
先将原式化简,然后将a−b =1整体代入求解.
【详解】
()()2212221a b a b b a b a b b
a b b
a b
-∴--+--+--=,
====.
故答案选:C .
【点睛】
此题考查的是整体代入思想在代数求值中的应用. 4.D
解析:D
【详解】
解:①∵∠1=∠2,∴AB ∥CD ,故本选项正确;
②∵∠3=∠4,∴BC ∥AD ,故本选项错误;
③∵∠A=∠CDE ,∴AB ∥CD ,故本选项正确;
④∵∠A+∠ADC=180°,∴AB ∥CD ,故本选项正确.
故选D.
5.D
解析:D
【详解】
解:A 、能通过其中一个四边形平移得到,不符合题意;
B 、能通过其中一个四边形平移得到,不符合题意;
C 、能通过其中一个四边形平移得到,不符合题意;
D 、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意. 故选D .
6.A
解析:A
【分析】
根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.
【详解】
解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -
故选A .
【点睛】
本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.
7.A
解析:A
【分析】
观察所给等式发现规律末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,进而可得算式:3+32+33+34+…+32020结果的末位数字.
【详解】
解:观察下列等式:
31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,
发现规律:
末位数字为:3,9,7,1,3,9,7,…,
每4个数一组循环,
所以2020÷4=505,
而3+9+7+1=20,
20×505=10100.
所以算式:3+32+33+34+…+32020结果的末位数字是0.
故选:A.
【点睛】
本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律.
8.A
解析:A
【分析】
先解方程组
4
25
x y
x y
+=
⎧
⎨
-=
⎩
求出该方程组的解,然后把这个解分别代入7
ax y
+=与
32
x by
+=-即可求出a、b的值,进一步即可求出答案.【详解】
解:解方程组
4
25
x y
x y
+=
⎧
⎨
-=
⎩
,得
3
1
x
y
=
⎧
⎨
=
⎩
,
把
3
1
x
y
=
⎧
⎨
=
⎩
代入7
ax y
+=,得317
a+=,解得:a=2,
把
3
1
x
y
=
⎧
⎨
=
⎩
代入32
x by
+=-,得92
b
+=-,解得:b=﹣11,
∴a-b=2-(﹣11)=13.
故选:A.
【点睛】
本题考查了同解方程组的知识,正确理解题意、熟练掌握解二元一次方程组的方法是解题关键.
9.A
解析:A
【分析】
先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而
判断出点的符号,得到具体坐标即可.
【详解】
∵M到x轴的距离为5,到y轴的距离为2,∴M纵坐标可能为±5,横坐标可能为±2.∵点M在第四象限,∴M坐标为(2,﹣5).
故选:A.
【点睛】
本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.
10.A
解析:A
【分析】
设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.
【详解】
解:设这个队胜x场,负y场,
根据题意,得
8 312 x y
x y
+=
⎧
⎨
-=
⎩
.
故选:A.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.
11.D
解析:D
【解析】
试题解析:∵a、b、c为△ABC的三条边长,
∴a+b-c>0,c-a-b<0,
∴原式=a+b-c+(c-a-b)
=0.
故选D.
考点:三角形三边关系.
12.C
解析:C
【分析】
根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..
【详解】
设第三边为x,由三角形三条边的关系得
4-2<x<4+2,
∴2<x<6,
∴第三边的长可能是4.
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.二、填空题
13.1×10-10.
【解析】
【分析】
根据科学记数法的定义进行求解即可.
【详解】
根据题意得:0.0000000001m=1×10-10(m).
故答案为:1×10-10.
【点睛】
本题考查科学
解析:1×10-10.
【解析】
【分析】
根据科学记数法的定义进行求解即可.
【详解】
根据题意得:0.0000000001m=1×10-10(m).
故答案为:1×10-10.
【点睛】
本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).
14.(m+3)(m﹣3)
【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a +b)(a﹣b).
【详解】
解:m2﹣9
=m2﹣32
=(m+3)(m﹣3).
故答案为
解析:(m+3)(m﹣3)
【分析】
通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).
【详解】
解:m2﹣9
=m2﹣32
=(m+3)(m﹣3).
故答案为:(m+3)(m﹣3).
【点睛】
此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.
15.5×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解析:5×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000000085=8.5×10﹣8.
故答案为:8.5×10﹣8
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
16.10°或50°或130°
【分析】
分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.
【详解】
解:①如图1,当CE⊥BC时,
解析:10°或50°或130°
【分析】
分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.
【详解】
解:①如图1,当CE⊥BC时,
∵∠A=60°,∠ACB=40°,∴∠ABC=80°,
∵BM平分∠ABC,
∴∠CBE=1
2
∠ABC=40°,
∴∠BEC=90°-40°=50°;
②如图2,当CE⊥AB时,
∵∠ABE=1
2
∠ABC=40°,
∴∠BEC=90°+40°=130°;
③如图3,当CE⊥AC时,
∵∠CBE=40°,∠ACB=40°,
∴∠BEC=180°-90°-40°-40°=10°;
综上所述:∠BEC的度数为10°,50°,130°,
故答案为:10°,50°,130°.
【点睛】
本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.17.1
【解析】
根据题意得:,
解得:b=3或−3(舍去),a=−1,
则ab=−1.
故答案是:−1.
解析:1【解析】
根据题意得:
21
21
{
30
b
a
a
b
-=
+=
≠
+≠
,
解得:b=3或−3(舍去),a=−1,
则ab=−1.
故答案是:−1.
18.或
【分析】
将x看做已知数求出y,即可确定出正整数解.【详解】
解:方程7x+y=15,
解得:y=﹣7x+15,
x=1,y=8;x=2,y=1,
则方程的正整数解为或.
故答案为:或.
【点
解析:
1
8
x
y
=
⎧
⎨
=
⎩
或
2
1
x
y
=
⎧
⎨
=
⎩
【分析】
将x看做已知数求出y,即可确定出正整数解.【详解】
解:方程7x+y=15,
解得:y=﹣7x+15,
x=1,y=8;x=2,y=1,
则方程的正整数解为
1
8
x
y
=
⎧
⎨
=
⎩
或
2
1
x
y
=
⎧
⎨
=
⎩
.
故答案为:
1
8
x
y
=
⎧
⎨
=
⎩
或
2
1
x
y
=
⎧
⎨
=
⎩
.
【点睛】
此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.19.【分析】
直接根据负整数指数幂的运算法则求解即可.
【详解】
,
故答案为:.
【点睛】
本题考查了负整数指数幂的运算法则,比较简单. 解析:125 【分析】
直接根据负整数指数幂的运算法则求解即可.
【详解】
22115525
-==, 故答案为:
125. 【点睛】
本题考查了负整数指数幂的运算法则,比较简单.
20.B
【解析】
连接OC ,OB ,OA ,OD ,
∵E 、F 、G 、H 依次是各边中点,
∴△AOE 和△BOE 等底等高,所以S △OAE=S △OBE ,
同理可证,S △OBF=S △OCF ,S △ODG=S △OCG ,
解析:B
【解析】
连接OC ,OB ,OA ,OD ,
∵E 、F 、G 、H 依次是各边中点,
∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,
同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,
∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,
∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,
∴6+8=7+S 四边形DHOG ,
解得S 四边形DHOG =7.
故答案为7.
点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这
个条件,证得三角形的面积相等,进而证得结论.
21.4×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
解析:4×10﹣8
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00000004,4的前面有8个0,所以n=8,
所以0.00000004=4×10-8.
故答案为:4×10-8.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22.【分析】
把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.
【详解】
解:,
①+②得:5x=3m+2,
解得:x=,
把x=代入①得:y=,
由x与y互为相反数,得到=0,
去分母
解析:【分析】
把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.
【详解】
解:
33
221
x y m
x y m
+=+
⎧
⎨
-=-
⎩
①
②
,
①+②得:5x=3m+2,
解得:x=32
5
m+
,
把x=32
5
m+
代入①得:y=
94
5
m
-
,
由x 与y 互为相反数,得到
3294+55
m m +-=0, 去分母得:3m +2+9﹣4m =0,
解得:m =11,
故答案为:11
【点睛】 此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.
三、解答题
23.(1)2a (x+2)(x-2); (2)2a a 3b -();(3)2
a b)+(. 【分析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)原式提取公因式,再利用完全平方公式分解即可;
(3)原式先将(a ﹣b )2展开,再利用完全平方公式分解即可.
【详解】
(1)原式=22(4)a x -=2a (x+2)(x-2);
(2)原式=22(69)a a ab b =2a a 3b -()
(3)原式=2224a ab b ab -++=222a ab b ++=
2a b)+( 【点睛】
本题主要考查了多项式的因式分解,在因式分解时,有公因式的首先提公因式,然后用公式法进行因式分解,注意分解要彻底.
24.(1)见解析;(2)平行且相等; 9 .
【分析】
(1)将三个顶点分别上平移3格,再向右平移6格得到对应点,再顺次连接即可得; (2)根据图形平移的性质和平行四边形的面积公式即可得出结论
【详解】
(1)如图所示△DEF 即为所求;
(2)∵△DEF 由△ABC 平移而成,
∴AD ∥BE ,AD =BE ;
线段AB 扫过的部分所组成的封闭图形是□ABED ,339ABED S
=⨯=
故答案为:平行且相等;9
【点睛】
本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.
25.(1)2;(2)15.
【分析】
(1)先化简条件,再把求值的代数式变形,整体代入即可,
(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.
【详解】
解:(1) 2(1)()2x x x y ---=, 222,x x x y ∴--+=
2,y x ∴-=
222222
2()2 2.2222
x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,
226912360,a a b b ∴-++-+=
22(3)(6)0,a b ∴-+-=
3,6,a b ∴==
当3a =为腰时,三角形不存在,
当6b =为腰时,三角形三边分别为:6,6,3,
∴ △ABC 的周长为:15.
【点睛】
本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三
角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.
26.(1)3ab (4c ﹣3a );(2)(a +5)(a ﹣5);(3)x (x ﹣y )2;(4)(x ﹣y )(m +1)(m ﹣1)
【分析】
(1)由题意原式直接提取公因式即可;
(2)根据题意原式利用平方差公式分解即可;
(3)由题意原式提取公因式,再利用完全平方公式分解即可;
(4)根据题意原式提取公因式,再利用平方差公式分解即可.
【详解】
解:(1)12abc ﹣9a 2b =3ab (4c ﹣3a );
(2)a 2﹣25=(a +5)(a ﹣5);
(3)x 3﹣2x 2y +xy 2
=x (x 2﹣2xy +y 2)
=x (x ﹣y )2;
(4)m 2(x ﹣y )﹣(x ﹣y )
=(x ﹣y )(m 2﹣1)
=(x ﹣y )(m +1)(m ﹣1).
【点睛】
本题考查提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.
27.(1)12;(2)233m mn +;(3)28x -;(4)224ab b -+.
【分析】
(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;
(2)先做单项式乘多项式,再合并同类项即可得出答案;
(3)先利用平方差公式计算,再合并同类项即可得出答案;
(4)先利用完全平方公式以及单项式乘多项式计算,再合并同类项即可得出答案.
【详解】
解:(1)1021(3)(4)5π-⎛⎫---- ⎪⎝⎭
5116=--
12=-;
(2)3()6m m n mn -+
2336m mn mn =-+
233m mn =+;
(3)4(2)(2)x x -+-
()244x =--
244x ==-+
28x =-;
(4)()()2
22a b a a b --- ()()222442a ab b a ab =-+--
222442a ab b a ab =-+-+
224ab b +=-.
【点睛】
此题主要考查了平方差公式以及完全平方公式、实数运算,正确应用公式是解题关键.
28.()
2223a ab b ++平方米;40平方米. 【分析】
(1)根据平移的原理,四块绿化面积可拼成一个长方形,其边长为原边长减去再减去道路宽为a 米,由此即可求绿化的面积的代数式;然后利用多项式乘多项式法则计算,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.
【详解】
解:根据题意得:22(3)(2)(2)()23a b a a b a a b a b a ab b +-+-=++=++(平方米).
则绿化的面积是()
2223a ab b ++平方米; 当3a =,2b =时,原式2223233240=⨯+⨯⨯+=(平方米).
故当a =3,b =2时,绿化面积为40平方米.
答:绿化的面积是()
2223a ab b ++平方米;当a =3,b =2时,绿化面积为40平方米. 【点睛】
此题考查整式的混合运算与代数式求值,掌握长方形的面积计算方法是解决问题的关键.
29.(1)(a+b)2-(a-b)2=4ab ;(2)±4;(3)-7
【分析】
(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.
(2)由(1)知,(x+y)2-(x-y)2=4xy ,将x+y =5,x•y =
94代入(x+y)2-(x-y)2=4xy ,即可求得x-y 的值
(3)因为(2019﹣m)+(m ﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m ﹣2020)2=15,即可求解.
【详解】
(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2 ∵图1的面积和图2中白色部分的面积相等
∴(a+b)2-(a-b)2=4ab
故答案为:(a+b)2-(a-b)2=4ab
(2)由(1)知,(x+y)2-(x-y)2=4xy
∵x+y =5,x•y =94
∴52-(x-y)2=4×9 4
∴(x-y)2=16
∴x-y=±4
故答案为:±4
(3)∵(2019﹣m)+(m﹣2020)=-1
∴[(2019﹣m)+(m﹣2020)]2=1
∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1
∵(2019﹣m)2+(m﹣2020)2=15
∴2(2019﹣m)(m﹣2020)=1-15=-14
∴(2019﹣m)(m﹣2020)=-7
故答案为:-7
【点睛】
本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.
30.(1)证明过程见解析;(2)1
2
N AEM NFD
∠=∠-∠,理由见解析;(3)
1
3
∠N+∠PMH=180°.
【分析】
(1)根据同旁内角互补,两直线平行即可判定AB∥CD;
(2)设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y,过M作MP∥AB,过N作NQ∥AB 可得∠PMN=3α-x,∠QNM=2α-y,根据平行线性质得到3α-x=2α-y,化简即可得到
1 2
N AEM NFD ∠=∠-∠;
(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-
∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到
3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-
∠PMI=1
3
∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到
1 3∠FNP=180°-∠PMH,即
1
3
∠N+∠PMH=180°.
【详解】
(1)证明:∵∠1=∠BEF,12180︒
∠+∠=
∴∠BEF+∠2=180°
∴AB∥CD.
(2)解:1
2
N AEM NFD ∠=∠-∠
设∠N=2α,∠M=3α,∠AEM=x,∠NFD=y 过M作MP∥AB,过N作NQ∥AB
∵//
AB CD,MP∥AB,NQ∥AB
∴MP∥NQ∥AB∥CD
∴∠EMP=x,∠FNQ=y
∴∠PMN=3α-x,∠QNM=2α-y
∴3α-x=2α-y
即α=x-y
∴1
2
N AEM NFD ∠=∠-∠
故答案为1
2
N AEM NFD ∠=∠-∠
(3)解:1
3
∠N+∠PMH=180°
过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R.
∵//
AB CD,MI∥AB,NQ∥CD
∴AB∥MI∥NQ∥CD
∴∠BPM=∠PMI
∵∠MPN=2∠MPB
∴∠MPN=2∠PMI
∴∠MON=∠MPN+∠PMI=3∠PMI
∵∠NFH=2∠HFD
∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD
∵∠RFN=∠HFD
∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM
∴∠MON+∠PRF+∠RFM=360°-∠OMF
即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH
∵3∠PMI+∠PNH=180°
∴3∠PMI+∠FNP+∠FNH=180°
∵3∠RFM+∠FNH=180°
∴3∠PMI-3∠RFM+∠FNP=0°
即∠RFM-∠PMI=1
3
∠FNP
∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH
∠FNP-2×1
3
∠FNP=180°-∠PMH
1
3
∠FNP=180°-∠PMH
即1
3
∠N+∠PMH=180°
故答案为1
3
∠N+∠PMH=180°
【点睛】
本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.。