林芝市第一高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

林芝市第一高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知变量,x y 满足约束条件20
170
x y x x y -+≤⎧⎪
≥⎨⎪+-≤⎩
,则y x 的取值范围是( )
A .9[,6]5
B .9(,][6,)5
-∞+∞ C .(,3][6,)-∞+∞ D .[3,6]
2. 已知角α的终边上有一点P (1,3
),则的值为( )
A
.﹣ B
.﹣ C
.﹣ D .﹣4 3. 椭圆=1的离心率为( ) A .
B .
C .
D .
4. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )
A .m >2
B .m >4
C .m >6
D .m >8
5. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .14101
6. 下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
7. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 8. 已知集合M={0,1,2},则下列关系式正确的是( ) A .{0}∈M B .{0}∉M C .0∈M
D .0⊆M
9. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )
A .54
B .162
C .54+18
D .162+18
10.已知定义在R 上的函数f (x )满足f (x )=
,且f (x )=f (x+2),g (x )=

则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11
C .10
D .9
11.复数2
(2)i z i
-=(i 为虚数单位),则z 的共轭复数为( )
A .43i -+
B .43i +
C .34i +
D .34i -
【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 12.已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆
1)1()3(22=-++y x 上,使得2
π
=
∠APB ,则31≤≤n ;命题:函数x x
x f 3log 4
)(-=
在区间 )4,3(内没有零点.下列命题为真命题的是( )
A .)(q p ⌝∧
B .q p ∧
C .q p ∧⌝)(
D .q p ∨⌝)(
二、填空题
13.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .
14.已知函数f (x )=,g (x )=lnx ,则函数y=f (x )﹣g (x )的零点个数为 .
15.已知函数()()31
,ln 4
f x x mx
g x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数
()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .
16.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.
17.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,
且θ∈[

],则该椭圆离心率e 的取值范围为 .
18.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=(
)t ﹣a (a 为常数),
如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.
三、解答题
19.(本题满分15分)
已知抛物线C 的方程为2
2(0)y px p =>,点(1,2)R 在抛物线C 上.
(1)求抛物线C 的方程;
(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于
M ,N 两点,求MN 最小时直线AB 的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
20.(本小题满分12分)若二次函数()()2
0f x ax bx c a =++≠满足()()+12f x f x x -=,
且()01f =.
(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.
21.(本小题满分12分)
成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从 某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试 成绩(百分制)的茎叶图如图所示.
(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;
(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)
22.已知数列{}n a 的前项和公式为2230n S n n =-. (1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.
23.已知f (x )=x 2+ax+a (a ≤2,x ∈R ),g (x )=e x ,φ(x )=.
(Ⅰ)当a=1时,求φ(x )的单调区间;
(Ⅱ)求φ(x )在x ∈[1,+∞)是递减的,求实数a 的取值范围;
(Ⅲ)是否存在实数a ,使φ(x )的极大值为3?若存在,求a 的值;若不存在,请说明理由.
24.证明:f(x)是周期为4的周期函数;
(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.
18.已知函数f(x)=是奇函数.
林芝市第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】A 【解析】
试题分析:作出可行域,如图ABC ∆内部(含边界),y
x 表示点(,)x y 与原点连线的斜率,易得59(,)22
A ,(1,6)
B ,
9
9
2552
OA
k ==,661OB k ==,所以965y x ≤≤.故选A .
考点:简单的线性规划的非线性应用. 2. 【答案】A
【解析】解:∵点P (1,3)在α终边上, ∴tan α=3,

=
=
=
=﹣.
故选:A .
3.【答案】D
【解析】解:根据椭圆的方程=1,可得a=4,b=2,
则c==2;
则椭圆的离心率为e==,
故选D.
【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.
4.【答案】C
【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)
∵函数的定义域为[0,2]
∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,
∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,
则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m
由题意知,f(1)=m﹣2>0 ①;
f(1)+f(1)>f(2),即﹣4+2m>2+m②
由①②得到m>6为所求.
故选C
【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值
5.【答案】B
【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,
∴,可得a n+1=a n﹣1,
因此数列{a n}是周期为2的周期数列.
a1=3,∴3a2+2=2a2+2×3,解得a2=4,
∴S2015=1007(3+4)+3=7052.
【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.
6.【答案】B
【解析】
考点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 7.【答案】C
【解析】
试题分析:()2222
==+=+,故向上平移个单位.
g x x x x
log2log2log1log
考点:图象平移.
8.【答案】C
【解析】解:对于A、B,是两个集合的关系,不能用元素与集合的关系表示,所以不正确;
对于C,0是集合中的一个元素,表述正确.
对于D,是元素与集合的关系,错用集合的关系,所以不正确.
故选C
【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用
9.【答案】D
【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,
其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组
成,
故表面积S=3×6×6+3××6×6+×=162+18,
故选:D
10.【答案】B
【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,
函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,
函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,
设A ,B ,C ,D 的横坐标分别为a ,b ,c ,d , 则a+d=4,b+c=4,由图象知另一交点横坐标为3, 故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11, 即函数y=f (x )﹣g (x )在[﹣3,7]上的所有零点之和为11.
故选:B .
【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.
11.【答案】A
【解析】根据复数的运算可知43)2()2(22
--=--=-=i i i i
i z ,可知z 的共轭复数为43z i =-+,故选A.
12.【答案】A 【解析】
试题分析:命题p :2
π
=
∠APB ,则以AB 为直径的圆必与圆()
()1132
2
=-++y x 有公共点,所以
121+≤≤-n n ,解得31≤≤n ,因此,命题p 是真命题.命题:函数()x
x
x f 3log 4-=
,()0log 144
3<-=f ,()0log 3
4
333>-=
f ,且()x f 在[]4,3上是连续不断的曲线,所以函数()x f 在区间()4,3内有零点,因此,命题是假命题.因此只有)(q p ⌝∧为真命题.故选A .
考点:复合命题的真假.
【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点P 满足2
π
=
∠APB ,因此在以AB 为直径的圆上,又点P 在圆
1)1()3(22=-++y x 上,因此P 为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数
x x
x f 3log 4
)(-=是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.
二、填空题
13.【答案】 .
【解析】解:∵asinA=bsinB+(c ﹣b )sinC ,
∴由正弦定理得a 2=b 2+c 2﹣bc ,即:b 2+c 2﹣a 2
=bc , ∴由余弦定理可得b 2=a 2+c 2
﹣2accosB ,
∴cosA===,A=60°.可得:sinA=,
∵bc=4,
∴S △ABC =bcsinA==.
故答案为:
【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.
14.【答案】 3
【解析】解:令g (x )=f (x )﹣log 4x=0得f (x )=log 4x
∴函数g (x )=f (x )﹣log 4x 的零点个数即为函数f (x )与函数y=log 4x 的图象的交点个数, 在同一坐标系中画出函数f (x )与函数y=log 4x 的图象,如图所示, 有图象知函数y=f (x )﹣log 4 x 上有3个零点. 故答案为:3个.
【点评】此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力.
15.【答案】()
53
,44
--
【解析】
试题分析:()2
3f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足
()10,0,0f f m ><<,解得51534244
m m >-⇒-<<- 考点:函数零点
【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.
16.【答案】 4
【解析】解:由PA ⊥平面ABC ,则△PAC ,△PAB 是直角三角形,又由已知△ABC 是直角三角形,∠ACB=90°所以BC ⊥AC ,从而易得BC ⊥平面PAC ,所以BC ⊥PC ,所以△PCB 也是直角三角形,
所以图中共有四个直角三角形,即:△PAC ,△PAB ,△ABC ,△PCB .
故答案为:4
【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.
17.【答案】 [,﹣1] .
【解析】解:设点A (acos α,bsin α),则B (﹣acos α,﹣bsin α)(0≤α≤);
F (﹣c ,0); ∵AF ⊥BF ,

=0,
即(﹣c ﹣acos α,﹣bsin α)(﹣c+acos α,bsin α)=0,
故c 2﹣a 2cos 2α﹣b 2sin 2
α=0,
cos 2α==2﹣,
故cos α=,
而|AF|=

|AB|==2c,
而sinθ=
==,
∵θ∈[,],
∴sinθ∈[,],
∴≤≤,
∴≤+≤,
∴,
即,
解得,≤e≤﹣1;
故答案为:[,﹣1].
【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.
18.【答案】0.6
【解析】解:当t>0.1时,可得1=()0.1﹣a
∴0.1﹣a=0
a=0.1
由题意可得y≤0.25=,
即()t﹣0.1≤,
即t﹣0.1≥
解得t≥0.6,
由题意至少需要经过0.6小时后,学生才能回到教室. 故答案为:0.6
【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.
三、解答题
19.【答案】(1)24y x =;(2)20x y +-=.
【解析】(1)∵点(1,2)R 在抛物线C 上,22212p p =⨯⇒=,…………2分 即抛物线C 的方程为24y x =;…………5分
20.【答案】(1)()2
=+1f x x x -;(2)1m <-.
【解析】
试题分析:(1)根据二次函数()()2
0f x ax bx c a =++≠满足()()+12f x f x x -=,利用多项式相等,即
可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为2
31m x x <-+,设
()2g 31x x x =-+,只需()min m g x <,即可而求解实数m 的取值范围.
试题解析:(1) ()()20f x ax bx c a =++≠ 满足()01,1f c ==
()()()()2
212,112f x f x x a x b x ax bx x +-=+++--=,解得1,1a b ==-,
故()2
=+1f x x x -.
考点:函数的解析式;函数的恒成立问题.
【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,
推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键.
21.【答案】
【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.
22.【答案】(1)432n a n =-;(2)当7n =或时,n S 最小,且最小值为78112S S =-. 【解析】
试题分析:(1)根据数列的项n a 和数列的和n S 之间的关系,即可求解数列{}n a 的通项公式n a ;(2)由(1)中的通项公式,可得1270a a a <<<<,80a =,当9n ≥时,0n a >,即可得出结论.1
试题解析:(1)∵2230n S n n =-,
∴当1n =时,1128a S ==-.
当2n ≥时,221(230)[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-. ∴432n a n =-,n N +∈. (2)∵432n a n =-, ∴1270a a a <<
<,80a =,
当9n ≥时,0n a >.
∴当7n =或8时,n S 最小,且最小值为78112S S =-. 考点:等差数列的通项公式及其应用. 23.【答案】
【解析】解:(I)当a=1时,φ(x)=(x2+x+1)e﹣x.φ′(x)=e﹣x(﹣x2+x)
当φ′(x)>0时,0<x<1;当φ′(x)<0时,x>1或x<0
∴φ(x)单调减区间为(﹣∞,0),(1,+∞),单调增区间为(0,1);
(II)φ′(x)=e﹣x[﹣x2+(2﹣a)x]
∵φ(x)在x∈[1,+∞)是递减的,
∴φ′(x)≤0在x∈[1,+∞)恒成立,
∴﹣x2+(2﹣a)x≤0在x∈[1,+∞)恒成立,
∴2﹣a≤x在x∈[1,+∞)恒成立,
∴2﹣a≤1
∴a≥1
∵a≤2,1≤a≤2;
(III)φ′(x)=(2x+a)e﹣x﹣e﹣x(x2+ax+a)=e﹣x[﹣x2+(2﹣a)x]
令φ′(x)=0,得x=0或x=2﹣a:
由表可知,φ(x)极大=φ(2﹣a)=(4﹣a)e a﹣2
设μ(a)=(4﹣a)e a﹣2,μ′(a)=(3﹣a)e a﹣2>0,
∴μ(a)在(﹣∞,2)上是增函数,
∴μ(a)≤μ(2)=2<3,即(4﹣a)e a﹣2≠3,
∴不存在实数a,使φ(x)极大值为3.
24.【答案】
【解析】(1)证明:由函数f(x)的图象关于直线x=1对称,
有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).
又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).
从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.
(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],
.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],

从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.
【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.。

相关文档
最新文档