中考数学(直角三角形的边角关系提高练习题)压轴题训练及答案解析(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学(直角三角形的边角关系提高练习题)压轴题训练及答案解析(1)
一、直角三角形的边角关系
1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E e 于点D ,连接OD .
(1)求证:直线OD 是E e 的切线;
(2)点F 为x 轴上任意一动点,连接CF 交E e 于点G ,连接BG :
①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BG CF
的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫
⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12. 【解析】
【分析】
(1)连接DE ,证明∠EDO=90°即可;
(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得
12
BG CF ≤,从而得解. 【详解】
(1)证明:连接DE ,则:
∵BC 为直径
∴90BDC ∠=︒
∴90BDA ∠=︒
∵OA OB =
∴OD OB OA ==
∴OBD ODB ∠=∠

EB ED =
∴EBD EDB ∠=∠
∴EBD OBD EDB ODB ∠+∠=∠+∠
即:EBO EDO ∠=∠
∵CB x ⊥轴
∴90EBO ∠=︒
∴90EDO ∠=︒
∴直线OD 为E e 的切线.
(2)①如图1,当F 位于AB 上时:
∵1~ANF ABC ∆∆ ∴11NF AF AN AB BC AC == ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=-
∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531
AF x == 1504333131
OF =-= 即143,031F ⎛⎫
⎪⎝⎭
如图2,当F 位于BA 的延长线上时:
∵2~AMF ABC ∆∆
∴设3AM x =,则224,5MF x AF x ==
∴103CM CA AM x =+=+
∴241tan 1037F M x ACF CM x ∠=
==+ 解得:25
x =
∴252AF x ==
2325OF =+=
即2(5,0)F
②如图,作GM BC ⊥于点M ,
∵BC 是直径
∴90CGB CBF ∠=∠=︒
∴~CBF CGB ∆∆ ∴8BG MG MG CF BC == ∵MG ≤半径4= ∴
41882
BG MG CF =≤= ∴BG CF 的最大值为12.
【点睛】
本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
2.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,
【答案】(1)∠BPQ=30°;
(2)该电线杆PQ的高度约为9m.
【解析】
试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;
(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.
试题解析:延长PQ交直线AB于点E,
(1)∠BPQ=90°-60°=30°;
(2)设PE=x米.
在直角△APE中,∠A=45°,
则AE=PE=x米;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,BE=
3
3
PE=
3
3
x米,
∵AB=AE-BE=6米,
则3

解得:3
则BE=(3)米.
在直角△BEQ 中,QE=33BE=33
(33+3)=(3+3)米. ∴PQ=PE-QE=9+33-(3+3)=6+23≈9(米).
答:电线杆PQ 的高度约9米.
考点:解直角三角形的应用-仰角俯角问题.
3.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为
1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,
2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到1cm )?
【答案】
【解析】
过A 作AF CD ⊥于F ,根据锐角三角函数的定义用θ1、θ2表示出DF 、EF 的值,又可证四边形ABCE 为平行四边形,故有EC=AB=25cm ,再再根据DC=DE+EC 进行解答即可.
4.如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE=90°,CD=4,DE=4,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:
(1)如图(2),当Rt △CDE 运动到点D 与点O 重合时,设CE 交AB 于点M ,求∠BME
的度数.
(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.
(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.
【答案】(1)∠BME=15°;
(2BC=4;
(3)h≤2时,S=﹣h2+4h+8,
当h≥2时,S=18﹣3h.
【解析】
试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;
(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;
(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.
试题解析:解:(1)如图2,
∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).
∴OA=OB,
∴∠OAB=45°,
∵∠CDE=90°,CD=4,DE=4,
∴∠OCE=60°,
∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,
∴∠BME=∠CMA=15°;
如图3,
∵∠CDE=90°,CD=4,DE=4,
∴∠OBC=∠DEC=30°,
∵OB=6,
∴BC=4;
(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,
∵CD=4,DE=4,AC=h,AN=NM,
∴CN=4﹣FM,AN=MN=4+h﹣FM,
∵△CMN∽△CED,
∴,
∴,
解得FM=4﹣,
∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,
S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.
考点:1、三角形的外角定理;2、相似;3、解直角三角形
5.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为;
(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.
【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.
【解析】
分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;
(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;
(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;
详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,
∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,
∴BD=AF,BF=AD.
∵AC=BD,CD=AE,
∴AF=AC.
∵∠FAC=∠C=90°,
∴△FAE≌△ACD,
∴EF=AD=BF,∠FEA=∠ADC.
∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EHD.
∵AD∥BF,
∴∠EFB=90°.
∵EF=BF ,
∴∠FBE=45°,
∴∠APE=45°.
(2)(1)中结论不成立,理由如下:
如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,
∴BD=AF ,BF=AD .
∵AC=3BD ,CD=3AE , ∴
3AC CD BD AE
==. ∵BD=AF , ∴
3AC CD AF AE
==. ∵∠FAC=∠C=90°,
∴△FAE ∽△ACD , ∴
3AC AD BF AF EF EF
===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EMD .
∵AD ∥BF ,
∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=
33
EF BF =, ∴∠FBE=30°,
∴∠APE=30°,
(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,
∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,
∴BE=DH ,EH=BD .
∵AC=3BD ,CD=3AE ,
∴3AC CD BD AE
==. ∵∠HEA=∠C=90°,
∴△ACD ∽△HEA , ∴
3AD AC AH EH
==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°,
∴∠HAE+∠CAD=90°,
∴∠HAD=90°. 在Rt △DAH 中,tan ∠ADH=
3AH AD =, ∴∠ADH=30°,
∴∠APE=30°.
点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.
6.如图,等腰△ABC 中,AB=AC ,∠BAC=36°,BC=1,点D 在边AC 上且BD 平分∠ABC ,设CD=x .
(1)求证:△ABC ∽△BCD ;
(2)求x 的值;
(3)求cos36°-cos72°的值.
【答案】(1)证明见解析;(215-+;(3758+ 【解析】 试题分析:(1)由等腰三角形ABC 中,顶角的度数求出两底角度数,再由BD 为角平分线求出∠DBC 的度数,得到∠DBC=∠A ,再由∠C 为公共角,利用两对角相等的三角形相似得到三角形ABC 与三角形BCD 相似;
(2)根据(1)结论得到AD=BD=BC ,根据AD+DC 表示出AC ,由(1)两三角形相似得比例求出x 的值即可;
(3)过B 作BE 垂直于AC ,交AC 于点E ,在直角三角形ABE 和直角三角形BCE 中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果. 试题解析:(1)∵等腰△ABC 中,AB=AC ,∠BAC=36°, ∴∠ABC=∠C=72°, ∵BD 平分∠ABC , ∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,
设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,
∴AB BC BD CD =
,即11
1x x +=, 整理得:x 2+x-1=0,
解得:x 1=15
-+,x 2=15--(负值,舍去),
则x=
15
-+; (3)过B 作BE ⊥AC ,交AC 于点E ,
∵BD=CD ,
∴E 为CD 中点,即DE=CE=
15
4
-+, 在Rt △ABE 中,cosA=cos36°=15
1514151AE AB -++
+==-++ 在Rt △BCE 中,cosC=cos72°=15
1541EC BC --+==

则cos36°-cos72°=
51
4
+
=-
15
4
-+
=
1
2

【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.
7.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O
于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,,求PD的长;
(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)
【答案】(1)证明见解析;(2);(3).
【解析】
试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.
(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得
,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,
由(1)△PAC∽△PDF得,即可求得PD的长.
(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得
,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.
试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,
又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.
∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.
又∵∠PAC=∠PDC,∴△PAC∽△PDF.
(2)连接BP,设,∵∠ACB=90°,AB=5,
∴.∴.
∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.
如图,连接BP,
∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.
由(1)△PAC∽△PDF得,即.
∴PD的长为.
(3)如图,连接BP,BD,AD,
∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.
∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.
∵,∴.
∵△AGP∽△DGB,∴.
∵△AGD∽△PGB,∴.
∴,即.
∵,∴.
∴与之间的函数关系式为.
考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.
8.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若
314
cos,
53
BAD BE
∠==,求OE的长.
【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35
6

【解析】
试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;
(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;
(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.
试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,
∵AB为⊙O的直径,
∴∠ADB=90°,
在Rt△BDC中,E为斜边BC的中点,
∴CE=DE=BE=BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,
∴∠C+∠A=90°,
∴∠ADO+∠CDE=90°,
∴∠ODE=90°,
∴DE⊥OD,又OD为圆的半径,
∴DE为⊙O的切线;
(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)解:∵cos∠BAD=,
∴sin∠BAC=,
又∵BE=,E是BC的中点,即BC=,
∴AC=.
又∵AC=2OE,
∴OE=AC=.
考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数
9.如图13,矩形的对角线,相交于点,关于的对称图形为.
(1)求证:四边形是菱形;
(2)连接,若,.
①求的值;
②若点为线段上一动点(不与点重合),连接,一动点从点出发,以
的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.
【答案】(1)详见解析;(2)①②和走完全程所需时间为
【解析】
试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;
②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.
试题解析:解:(1)证明:四边形是矩形.
与交于点O,且关于对称
四边形是菱形.
(2)①连接,直线分别交于点,交于点
关于的对称图形为
在矩形中,为的中点,且O为AC的中点
为的中位线
同理可得:为的中点,
②过点P作交于点
由运动到所需的时间为3s
由①可得,
点O以的速度从P到A所需的时间等于以从M运动到A
即:
由O运动到P所需的时间就是OP+MA和最小.
如下图,当P运动到,即时,所用时间最短.
在中,设
解得:
和走完全程所需时间为
考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置
10.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.
(1)求证:CD是⊙O的切线;
(2)若AB=6,∠ABE=60°,求AD的长.
【答案】(1)详见解析;(2)9 2
【解析】
【分析】
(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.
【详解】
证明:如图,连接OE,
∵AE平分∠DAC,
∴∠OAE=∠DAE.
∵OA=OE,
∴∠AEO=∠OAE.
∴∠AEO=∠DAE.
∴OE∥AD.
∵DC⊥AC,
∴OE⊥DC.
∴CD是⊙O的切线.
(2)解:∵AB是直径,
∴∠AEB=90°,∠ABE=60°.
∴∠EAB=30°,
在Rt△ABE中,AE=AB·cos30°=6×
3
2
=33
在Rt△ADE中,∠DAE=∠BAE=30°,∴AD=cos30°×AE=3
×33=
9
2
.
【点睛】
本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.
11.如图,在ABC
△中,10
AC BC
==,
3
cos
5
C=,点P是BC边上一动点(不与点,A C 重合),以PA长为半径的P
e与边AB的另一个交点为D,过点D作DE CB
⊥于点E.
()1当P e与边BC相切时,求P e的半径;
()2联结BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围;
()3在()2的条件下,当以PE长为直径的Q
e与P
e相交于AC边上的点G时,求相交所得的公共弦的长.
【答案】(1)
40
9
;(2))
2
5880
010
x x x
y x
-+
=<<;(3)105
-
【解析】
【分析】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=
3
5
,则sinC=
4
5
,sinC=
HP
CP
=
R
10R
-
=
4
5
,即可求解;
(2)PD∥BE,则
EB
PD

BF
PF
,即:2
2
4880
5
x x x y
x y
--+
=,即可求解;
(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:5
求解.
【详解】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,
连接HP ,则HP ⊥BC ,cosC=35,则sinC=35
, sinC=
HP CP =R 10R -=45,解得:R=40
9
; (2)在△ABC 中,AC=BC=10,cosC=
3
5
, 设AP=PD=x ,∠A=∠ABC=β,过点B 作BH ⊥AC ,
则BH=ACsinC=8, 同理可得:
CH=6,HA=4,AB=45,则:tan ∠CAB=2BP=()2
284x +-=2880x x -+, DA=
25x ,则BD=45-25
x ,
如下图所示,
PA=PD ,∴∠PAD=∠CAB=∠CBA=β,
tanβ=2,则cosβ=
5,sinβ=
5

EB=BDcosβ=(45-
25
x)×
5
=4-
2
5
x,
∴PD∥BE,
∴EB
PD

BF
PF
,即:2
2
4880
5
x x x y
x y
--+-
=,
整理得:y=()
2
5x x8x80
0x10
-+
<<;
(3)以EP为直径作圆Q如下图所示,
两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,
∵点Q时弧GD的中点,
∴DG⊥EP,
∵AG是圆P的直径,
∴∠GDA=90°,
∴EP∥BD,
由(2)知,PD∥BC,∴四边形PDBE为平行四边形,
∴AG=EP=BD,
∴5
设圆的半径为r,在△ADG中,
55
AG=2r,
5
5
51
+

则:
5
5
相交所得的公共弦的长为5
【点睛】
本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.
12.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,
CG⊥AB,垂足为D
(1)求证:PC是⊙O的切线;
(2)求证:PA AD PC CD

(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=3
5
,CF=5,求BE
的长.
【答案】(1)见解析;(2)BE=12.
【解析】
【分析】
(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到
∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到
CF=AF,在R t△AFD中,AF=5,sin∠FAD=3
5
,求得FD=3,AD=4,CD=8,在R t△OCD中,
设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为
⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=3
5,得到
BE
AB

3
5
,于是求得
结论.
【详解】
(1)证明:连接OC,
∵PC切⊙O于点C,∴OC⊥PC,
∴∠PCO=90°,
∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,
∴∠ABC+∠OAC=90°,∵OC=OA,
∴∠OCA=∠OAC,
∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,
∵AB⊥CG,
∴弧AC=弧AG,
∴∠ACF=∠ABC,
∵∠PCA=∠ABC,
∴∠ACF=∠CAF,
∴CF=AF,
∵CF=5,
∴AF=5,
∵AE∥PC,
∴∠FAD=∠P,
∵sin∠P=3
5

∴sin∠FAD=3
5

在R t△AFD中,AF=5,sin∠FAD=3
5

∴FD=3,AD=4,∴CD=8,
在R t△OCD中,设OC=r,
∴r2=(r﹣4)2+82,
∴r=10,
∴AB=2r=20,
∵AB为⊙O的直径,
∴∠AEB=90°,在R t△ABE中,
∵sin∠EAD=3
5,∴
3
5
BE
AB

∵AB=20,
∴BE=12.
【点睛】
本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接
OC构造直角三角形.。

相关文档
最新文档