绥滨县一中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绥滨县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1.

,则等于( )
A

B

C

D

2. 已知函数(5)2()e 22()2x
f x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩
,则(2016)f -=( )
A .2
e B .e C .1 D .
1
e
【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力. 3. 将y=cos (2x+φ)的图象沿x
轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )
A

B
.﹣
C
.﹣
D

4. 在ABC ∆中,2
2
2
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,
]6π
B .[,)6ππ C. (0,]3π D .[,)3
π
π
5. 函数f (x )=x 3﹣3x 2+5的单调减区间是( )
A .(0,2)
B .(0,3)
C .(0,1)
D .(0,5)
6. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28
B .76
C .123
D .199
7. 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A
. B .(4+π
) C
. D

8. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6
B .3
C .
3
8
D .
3
4 第Ⅱ卷(非选择题,共100分)
9. 若,
,且
,则λ与μ的值分别为( )
A .
B .5,2
C .
D .﹣5,﹣2
10.下列四个命题中的真命题是( )
A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示
B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示
C .不经过原点的直线都可以用方程
1x y
a b
+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示
11.已知函数f (x )的图象如图,则它的一个可能的解析式为( )
A .y=2
B .y=log 3(x+1)
C .y=4﹣
D .y=
12.数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =
,若在数列{c n }
中c 8>c n (n ∈N *
,n ≠8),则实数p 的取值范围是( )
A .(11,25)
B .(12,16]
C .(12,17)
D .[16,17)
二、填空题
13.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .
14.给出下列命题:
①存在实数α,使
②函数是偶函数
③是函数的一条对称轴方程
④若α、β是第一象限的角,且α<β,则sinα<sinβ
其中正确命题的序号是.
15.若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则m的取值范围是.
16.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.
17.已知△ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(c﹣b)sinC,且bc=4,则△ABC 的面积为.
18.如果椭圆+=1弦被点A(1,1)平分,那么这条弦所在的直线方程是.
三、解答题
19.设定义在(0,+∞)上的函数f(x)=,g(x)=,其中n∈N*
(Ⅰ)求函数f(x)的最大值及函数g(x)的单调区间;
(Ⅱ)若存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,求n的最大值.(参考数据:ln4≈1.386,ln5≈1.609)
20.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;
(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.
21.本小题满分12分 已知数列{}n a 中,123,5a a ==,其前n 项和n S 满足)3(22112≥+=+---n S S S n n n n . Ⅰ求数列{}n a 的通项公式n a ; Ⅱ 若22256
log ()1
n n b a =-N *n ∈,设数列{}n b 的前n 的和为n S ,当n 为何值时,n S 有最大值,并求最大值.
22.已知过点P (0,2)的直线l 与抛物线C :y 2=4x 交于A 、B 两点,O 为坐标原点. (1)若以AB 为直径的圆经过原点O ,求直线l 的方程;
(2)若线段AB 的中垂线交x 轴于点Q ,求△POQ 面积的取值范围.
23.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.
(1)若不等式1()21(0)2
f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;
(2)若不等式()2|23|2
y
y a
f x x ≤+
++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.
24.计算:
(1)8+(﹣)0﹣;(2)lg25+lg2﹣log29×log32.
绥滨县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B
【解析】解:∵,


∴(﹣1,2)=m (1,1)+n (1,﹣1)=(m+n ,m ﹣n )
∴m+n=﹣1,m ﹣n=2,
∴m=,n=﹣,

故选B .
【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.
2. 【答案】B 【解析】(2016)(2016)(54031)(1)f f f f e -==⨯+==,故选B .
3. 【答案】D
【解析】解:将y=cos (2x+φ)的图象沿x 轴向右平移
个单位后,得到一个奇函数y=cos=cos (2x+φ﹣
)的图象,
∴φ﹣
=k π+
,即 φ=k π+
,k ∈Z ,则φ的一个可能值为

故选:D .
4. 【答案】C 【



考点:三角形中正余弦定理的运用.
5. 【答案】A
【解析】解:∵f (x )=x 3﹣3x 2
+5,
∴f ′(x )=3x 2
﹣6x ,
令f ′(x )<0,解得:0<x <2,
故选:A .
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
6. 【答案】C
【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.
继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a 10+b 10
=123,.
故选C .
7. 【答案】 D
【解析】解:由三视图知,几何体是一个组合体, 是由半个圆锥和一个四棱锥组合成的几何体, 圆柱的底面直径和母线长都是2, 四棱锥的底面是一个边长是2的正方形,
四棱锥的高与圆锥的高相同,高是=

∴几何体的体积是=

故选D .
【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.
8. 【答案】A
解析:抛物线C :y x 82 的焦点为F (0,2),准线为l :y=﹣2,
设P (a ,﹣2),B (m ,),则
=(﹣a ,4),
=(m ,
﹣2),

,∴2m=﹣a ,4=
﹣4,∴m 2=32,由抛物线的定义可得|QF|=
+2=4+2=6.故选A .
9. 【答案】A
【解析】解:由
,得.
又,,
∴,解得.
故选:A.
【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.
10.【答案】B
【解析】
考点:直线方程的形式.
【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 11.【答案】C
【解析】解:由图可得,y=4为函数图象的渐近线,
函数y=2,y=log3(x+1),y=的值域均含4,
即y=4不是它们的渐近线,
函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),
故y=4为函数图象的渐近线,
故选:C
【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.
12.【答案】C
【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,
∵a n=﹣n+p,∴{a n}是递减数列,
∵b n=2n﹣5,∴{b n}是递增数列,
∵c8>c n(n≠8),∴c8是c n的最大者,
则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,
∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,
当n=7时,27﹣5<﹣7+p,∴p>11,
n=9,10,11,…时,2n﹣5>﹣n+p总成立,
当n=9时,29﹣5>﹣9+p,成立,∴p<25,
而c8=a8或c8=b8,
若a8≤b8,即23≥p﹣8,∴p≤16,
则c8=a8=p﹣8,
∴p﹣8>b7=27﹣5,∴p>12,
故12<p≤16,
若a8>b8,即p﹣8>28﹣5,∴p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p﹣9,
∴p<17,
故16<p<17,
综上,12<p<17.
故选:C.
二、填空题
13.【答案】.
【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,
8个三棱锥的体积为:=.
剩下的凸多面体的体积是1﹣=.
故答案为:.
【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.
14.【答案】②③.
【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,
②函数=cosx是偶函数,故②正确,
③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数
的一条对称轴方程,故③正确,
④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,
故答案为:②③.
【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.15.【答案】m>1.
【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题,
则命题“∀x∈R,x2﹣2x+m>0”是真命题,
即判别式△=4﹣4m<0,
解得m>1,
故答案为:m>1
16.【答案】:.
【解析】解:∵•=cosα﹣sinα=,
∴1﹣sin2α=,得sin2α=,
∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,
∴cos2α==,
∵α为锐角,sin(α+)>0,
∴sin(α+)
====

故答案为:.
17.【答案】.
【解析】解:∵asinA=bsinB+(c﹣b)sinC,
∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,
∴由余弦定理可得b2=a2+c2﹣2accosB,
∴cosA===,A=60°.可得:sinA=,
∵bc=4,
∴S△ABC=bcsinA==.
故答案为:
【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.
18.【答案】x+4y﹣5=0.
【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),
由中点坐标公式知x1+x2=2,y1+y2=2,
把P(x1,y1),Q(x2,y2)代入x2+4y2=36,
得,
①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,
∴k==﹣,
∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),
即为x+4y﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.
故答案为:x+4y﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
三、解答题
19.【答案】
【解析】解:(Ⅰ)函数f(x)在区间(0,+∞)上不是单调函数.证明如下,

令f′(x)=0,解得.
x f x f x
所以函数f(x)在区间上为单调递增,区间上为单调递减.
所以函数f(x)在区间(0,+∞)上的最大值为f()==.
g′(x)=,令g′(x)=0,解得x=n.
x g′x g x
(Ⅱ)由(Ⅰ)知g(x)的最小值为g(n)=,
∵存在直线l:y=c(c∈R),使得曲线y=f(x)与曲线y=g(x)分别位于直线l的两侧,
∴≥,
即e n+1≥n n﹣1,即n+1≥(n﹣1)lnn,
当n=1时,成立,
当n≥2时,≥lnn,即≥0,
设h(n)=,n≥2,
则h(n)是减函数,∴继续验证,
当n=2时,3﹣ln2>0,
当n=3时,2﹣ln3>0,
当n=4时, ,
当n=5时,﹣ln5<﹣1.6<0, 则n 的最大值是4.
【点评】本题考查了导数的综合应用及恒成立问题,同时考查了函数的最值的求法,属于难题.
20.【答案】
【解析】解:(Ⅰ)设点P (x ,y )在矩阵M 对应的变换作用下所得的点为P ′(x ′,y ′),
则即=

∴M=

又det (M )=﹣3,
∴M ﹣1
=

(Ⅱ)设点A (x ,y )在矩阵M 对应的变换作用下所得的点为A ′(x ′,y ′),

=M ﹣1
=

即,
∴代入4x+y ﹣1=0,得

即变换后的曲线方程为x+2y+1=0.
【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.
21.【答案】
【解析】Ⅰ由题意知()321211≥+-=-----n S S S S n n n n n , 即()3211≥+=--n a a n n n
22311)(......)()(a a a a a a a a n n n n n +-++-+-=--
()3122122...2252...22221221≥+=++++++=++++=----n n n n n n
检验知n =1, 2时,结论也成立,故a n =2n +1.
Ⅱ由
8
82
222
2
2
2562
log()log log282
12
n
n
n
n
b n
a
-
====-
-
N*
n∈
法一: 当13
n≤≤时,820
n
b n
=->;当4
n=时,820
n
b n
=
-=;当5
n≥时,820
n
b n
=-<
故4
3=
=n
n或时,
n
S达最大值,12
4
3
=
=S
S.
法二:可利用等差数列的求和公式求解
22.【答案】
【解析】解:(1)设直线AB的方程为y=kx+2(k≠0),
设A(x1,y1),B(x2,y2),
由,得k2x2+(4k﹣4)x+4=0,
则由△=(4k﹣4)2﹣16k2=﹣32k+16>0,得k<,
=,,
所以y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=,
因为以AB为直径的圆经过原点O,
所以∠AOB=90°,
即,
所以,
解得k=﹣,
即所求直线l的方程为y=﹣.
(2)设线段AB的中点坐标为(x0,y0),
则由(1)得,,
所以线段AB的中垂线方程为,
令y=0,得==,
又由(1)知k<,且k≠0,得或,
所以,
所以=,
所以△POQ 面积的取值范围为(2,+∞).
【点评】本题考查直线l 的方程的求法和求△POQ 面积的取值范围.考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
23.【答案】
【解析】(1)由题意,知不等式|2|21(0)x m m ≤+>解集为(][),22,-∞-+∞.
由|2|21x m ≤+,得11
22
m x m --
≤≤+,……………………2分 所以,由122m +=,解得3
2
m =.……………………4分
(2)不等式()2|23|2y y a f x x ≤+++等价于|21||23|22
y
y a x x --+≤+,
由题意知max (|21||23|)22
y
y a x x --+≤+.……………………6分
24.【答案】 【解析】解:(1)8+(﹣)0﹣
=2﹣1+1﹣(3﹣e ) =e ﹣.
(2)lg25+lg2﹣log 29×log 32 =
=
=1﹣2=﹣1.…(6分)
【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.。

相关文档
最新文档