郑州市2013年九年级数学第一次质量预测

合集下载

2013年重点中学中考数学质量预测试题及答案201351

2013年重点中学中考数学质量预测试题及答案201351

2013年重点中学中考数学质量预测试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分. 一、选择题(共6小题,每小题3分,满分18分) 1.2013的倒数是A.2013-B.2013C.20131 D. 20131- 2.小刚同学把一个含有450角的直角三角板放在如图所示的两条平行线m n ,上, 测得︒=∠110α,则β∠的度数是A .750B .650C . 550D . 4503.下列运算错误..的是 A.6332a a a =+ B.936a a a =÷- C.633a a a =⋅D.6328)2(a a -=-4. 不等式组⎩⎨⎧->->+23,732x x 的解集是A. 2>xB. 5<xC. 52<<xD.无解5. 如图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6. 如图,将矩形ABCD 对折,得折痕PQ ,再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C ′处,点D 落在D ′处,其中M 是BC 的中点.连接AC ′,BC ′,则图中共有等腰三角形的个数是 A .1 B.2 C.3 D.4二、填空题(共8小题,每小题3分,满分24分) 7. 化简:)12(2--a a = .8.在百度中输入“上饶”,搜到有关“上饶”的结果约为52700000个,这个数据用科学计数法表示为 .(结果保留2个有效数字)9.一次函数)0(<+=kb b kx y 图象一定经过第 象限.10.在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O 的半径长为 .11.已知一元一次方程0342=+-x kx 有实数根,则k 的取值范围是 .A BDP CD M NE CQ F第6题A .B . C. D .第10 题 第14题 12. 已知3,2=-=b a ab ,则=+-32232ab b a b a .13. 如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(粗线部分)外轮廓线的周长是 .14.小红在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为4、8、6,则原直角三角形纸片的斜边长是 .三、解答题(共2小题,每小题5分,共10分) 15. 计算:︒++-+--60tan 2)31(41221216.解方程:441222--=+-x x x四、解答题(共2小题,每小题6分,共12分)17.在平行四边形ABCD 中,点E 是DC 上一点,且CE=BC , AB=8,BC=5.(1)作AF 平分∠BAD 交DC 于F (尺规作图,保留作图痕迹); (2)在(1)的条件下求EF 的长度。

2013年九年级第一次模拟考试数学试卷及答案201339

2013年九年级第一次模拟考试数学试卷及答案201339

………………………………………………装…………订…………线………………………………………………2013年九年级第一次模拟考试数学试卷本试卷满分为120分,考试时间为120分钟.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.9-的相反数是 ( )A .19-B .19C .9-D .92.首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元,将60 110 000 000用科学记数法表示应为( ) A .96.01110⨯ B .960.1110⨯ C .106.01110⨯D .110.601110⨯3.已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )A .30°B .35°C .40°D .45°4.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1( )A .5B .6C .7D .85.如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段12 l 1l 2BE ,EC 的长度分别为 ( )A .2和3B .3和2C .4和1D .1和46.我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为( ) A .2,28B .3,29C .2,27D .3,28 7.化简xxx x -+-112的结果是( )A .x +1B .x -1 C .—x D . x8.如图是一个用相同的小立方块搭成的几何体的三视图,则 组成这个几何体的小立方块的个数是 ( )A .2B .3C .4D .59.如图,已知正方形ABCD 的对角线长为2,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长 为( )A . 8B . 4C . 8D . 610.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +>; ④930a b c ++<.其中,正确结论的个数是 ()A .1B .2C .3D .4二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)11.已知(m ⎛=⨯- ⎝⎭,则m 的范围是 . 12.如图,在第1个△ABA 1中,∠B =20°,AB=A 1B ,在A 1B上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;……,按此做法进行下去,第n 个三角形的以A n 为顶点的内角的度数为 .13.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .14.已知点A (m ,0)是抛物线221y x x =--与x 轴的一个交点,则代数式2242013m m -+的值是 .15.如图,已知∠ABC =90°,AB =πr ,BC =πr2,半径为r 的⊙O 从点A 出发,沿A →B →C方向滚动到点C 时停止,则圆心O 运动的路程是.16.如图,在等腰梯形ABCD 中,AD ∥BC ,BC =4AD =AB CD EA 1A 2A 3A 4A n∠B =45°,直角三角板含45°角的顶点E 在边 BC 上移动,一直角边始终经过点A ,斜边与CD 交于 点F ,若△ABE 为等腰三角形,则CF 的长等于 .三、解答题(本大题共10个小题;共82分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分4分)计算:02112sin30( 3.14)()2π---︒+-+.18.(本小题满分4分)如图,在边长为1的小正方形组成的网格中,△AOB 的三个顶点均在格点上,点A 、B 的坐标分别为(3,2)、(1,3).△AOB 绕点O 逆时针旋转90º后得到△A 1OB 1. (1)点A 关于O 点中心对称的点的坐标为 ; (2)点A 1的坐标为 ;(3)在旋转过程中,点B 经过的路径为 1BB ,那么 1BB 的长为 .19.(本小题满分8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.20.(本小题满分8分)6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频数分布直方图如下:(1)直接写出a的值,并补全频数分布直方图;(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?(3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为80分的至少有多少人?21.(本小题满分8分)为配合“书香进校园”活动的开展,学校决定为各班级添置图书柜.原计划用4000元购买若干个书柜,由于市场价格变化,每个单价上涨20元,实际购买时多花了400元.求书柜原来的单价是多少元?22.(本小题满分9分)如图,△ABC 是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB 、BC 、CA 跑步(小路的宽度不计).观测得到点B 在点A 的南偏东30°方向上,点C 在点A 的南偏东60°的方向上,点B 在点C 的北偏西75°方向上,AC 间距离为400米.1.414 1.732≈≈)23.(本小题满分9分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数ky =x(k ≠0)在第一象限内的图象经过点D 、E ,且tan ∠BOA =12. (1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.北24.(本小题满分10分)(1)如图1,在矩形ABCD 中,AB=2BC ,M 是AB 的中点.直接写出∠BMD 与∠ADM 的倍数关系;(2)如图2,若四边形ABCD 是平行四边形, AB=2BC ,M 是AB 的中点,过C 作CE ⊥AD 与AD 所在直线交于点E .若∠A 为锐角,则∠BME 与∠AEM 有怎样的倍数关系,并证明你的结论.M D BA CE ADC25.(本小题满分10分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为等腰直角三角形,直角边长(单位:cm)在10~60之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的直角边长成正比例,在营销过程中得到了下面表格中的数据.(1)求一张薄板的出厂价与直角边长之间满足的函数关系式;(2)已知出厂一张直角边长为20cm的薄板,获得的利润是80元(利润=出厂价-成本价).①求一张薄板的利润与直角边长之间满足的函数关系式;②当直角边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线2(0)y ax bx c a=++≠的顶点坐标是24() 24b ac ba a--,薄板的直角边长(cm)20 50 出厂价(元/张)100 22026.(本小题满分12分)如图,已知A (5,0),B (3,0),点C 在y 轴的正半轴上,45CBO ︒∠=,CD AB ∥,90CDA = ∠.点P 从点Q (8,0)出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为秒.(1)求点D 的坐标;(2)当∠CPB =120°时,求的值;(3)以点P 为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求的值.数学模拟参考答案一一、选择题1D 2C 3B 4B 5B 6B 7D 8C 9C10D二、填空题 11.5<m <6;12.0180()2n -;13.15;14.2015;15.2πr ;16.25,2或432- 三、解答题 17、解:原式=11214=52-⨯++.………………………4分 18、解:(1)(﹣3,﹣2). ………………………1分(2) (﹣2,3). ………………………2分(3. ………………………4分19、解:(1)10,50. ………………………4分 (2)画树状图:………6分从上图可以看出,共有12种等可能结果,其中大于或等于30元共有8种可能结果,因此, P (不低于30元)=82123=. ………………………8分 20、2.解:(1)a =0.28. ………………………1分补全频数分布直方图如下: ………………………3分 (2)成绩优秀的学生约为:1000×3228100+=600(人).……5分 (3)被抽查的学生中得分为80分的至少有11人. …………8分 21、解:设书柜原来的单价是x 元, …………1分 由题意得:40004400x x 20=+,解得:x =200. ………6分 经检验:x =200是原分式方程的解.答:书柜原来的单价是200元. …………8分22、解:延长AB 至D 点,作CD ⊥AD 于D .根据题意得∠BAC =30°,∠BCA =15°, ∴∠DBC =∠DCB =45°. …………2分 在Rt △ADC 中,∵AC =400米,∠BAC =30°,∴CD =BD =200米. …………4分 ∴BCAD∴AB =AD -BD =(200)米. …………7分∴三角形ABC 的周长为400+200≈829(米).∴小金沿三角形绿化区的周边小路跑一圈共跑了829米.………9分 23、解:(1)∵点E (4,n )在边AB 上,∴OA =4,在Rt △AOB 中,∵tan ∠BOA =12,∴AB =OA ×tan ∠BOA =4×12=2. …………2分 (2)由(1),可得点B 的坐标为(4,2),∵点D 为OB 的中点,∴点D (2,1). ∵点D 在反比例函数ky=x(k ≠0)的图象上, ∴21k =,解得k =2.∴反比例函数解析式为2y=x.……4分 又∵点E (4,n )在反比例函数图象上,∴21n==42.……6分(3)如图,设点F (a ,2),∵反比例函数的图象与矩形的边BC 交于点F ,∴22=a,解得a =1.∴CF =1.连接FG ,设OG =t ,则OG =FG =t ,CG =2﹣t ,在Rt △CGF 中,GF 2=CF 2+CG 2,即t 2=(2﹣t )2+12,解得t =54,∴OG =t =54.…………9分24、 (1)∠BMD= 3 ∠ADM ………………3分 (2)联结CM ,取CE 的中点F ,联结MF ,交DC 于N ,四边形ABCD 是平行四边形,∴A E ∥BC,∴四边形ABCE 是梯形.………………7分∵M 是AB 的中点,∴MF ∥AE ∥BC ,∴∠AEM=∠1,∠2=∠4,∵AB=2BC ,∴BM=BC ,∴∠3=∠4.∵CE ⊥AE ,∴MF ⊥EC ,又∵F 是EC 的中点,∴ME=MC ,∴∠1=∠2.∴∠1=∠2=∠3.∴∠BME =3∠AEM . ………………10分25、解:依题意,设等腰直角三角形薄板的直角边长为x , 则221mx y =成本价,n kx y +=出厂价(10<x <60 ) ,则y y y =-利润出厂价成本价 ………………3分 (1)在n kx y +=出厂价(10<x <60 )中,20=x 时,100=y ;50=x 时,220=yFAMBCED4321∴⎩⎨⎧=+=+2205010020n k n k ,∴⎩⎨⎧==204n k ,∴204+=x y 出厂价(10<x <60 );………………5分(2)221204mx x y y y -+=-=成本出厂价利润,且20=x 时,80=y , ∴802021202042=⋅-+⨯m 解得:101=m ,∴2042012++-=x x y 利润; ………………7分(3)在2042012++-=x x y 利润中,由参考公式,40)201(24=-⨯-=x ,且(10<40<60 ),所以,出厂一张直角边长为40cm 的薄板获得的利润最大,最大利润是10020404402012=+⨯+⨯-=最大利润y (元). ………………10分 26、解:(1)如图,CBO ︒ ∠=45,∴△CBO 是等腰直角三角形,故3COBO ==,∴(0,3)C ,又∵A(5,0),CD AB ∥,90CDA =∠,∴D(5,3); ………………3分 (2)∵∠CPB=120°,∴∠PCO=30°,在RtPCO ∆中,t an OP OC =⋅∠,∴38-=-=OP OQ t ; ………………5分(3) 以点P 为圆心,PC 为半径的P ⊙随点P 的运动而变化,P ⊙与四边形ABCD 的边相切,有三种情况:①P ⊙与BC 边相切时,C 是切点,如图1, 此时,PCBC ⊥,CBO ︒ ∠=45,∴△PBC 为等腰直角三角形, ∴3===OC OB PO , ∴11=+=OQ PO PQ ,∴111==PQt; ………………7分 ②P ⊙与DC 边相切时,C 是切点,如图2,此时,PC OC 与重合, ∴8=PQ ,∴81==PQt ;…………9分 ③P ⊙与AD 边相切时,A 是切点,如图3,此时,PA PC =,设x OP =,则在Rt POC ∆中,由勾股定理得:222OC OP PC=-,9)5(22=--x x ,∴6.1=x ,∴4.66.18=-=-=OP OQ PQ ,4.61==PQt . 综上所述,满足条件的值共有三个,即,11,或8,或6.4.………………12分。

九年级第一次质量预测数学 参考答案

九年级第一次质量预测数学 参考答案

年九年级第一次质量预测数学 参考答案一、选择题1.A 2.C 3.D 4.B 5.D 6.C . 二、填空题7.64a ;8.AB =BC 或AC ⊥BD 等(答案不唯一);9.858+-=x y ;10.36;11.3-<x 或0>x ;12.(其它答案正确也给分);13.32; 14.4; 15.(6,0).三、解答题 16.原式2)2(3)2)(2(23+⋅--+⋅--=x x x x x x x ……………(4分) .2+=x x……………(6分) 将1-=x 代入上式,原式=1211-=+--.……………(8分)17.(1)∵△AEF 是等腰直角三角形,∴∴EAF =∴EFA =45°,EA =EF . ……………(2分) 又∴∴BAD =90°,∴EFD +∴EFA =180°, ∴∴EAB =∴EFD =135°. …………(4分) 又∴AD =2AB ,FD =21AD , ∴AB =FD .∴∴EAB ≌△EFD . ……………(6分) (2)连接BD .∵∠AEF =90°,∴△EFD 可由∴EAB 绕点E 逆时针旋转90°得到,∴EB =ED ,且∠BED =90°.∴△BED 也是等腰直角三角形.∴BD =DE 2. ……………(8分)∵四边形ABCD 是矩形, ∴AC =BD . ∴DEAC=2. ……………(9分) x x 9020120=+(其它方法对应给分)18.解:(1)450-36-55-130-49=180(万人),条形统计图补充如图所示;………(3分)(2) 十年前该市常住人口中高中学历人数为).(40%)3%17%32%381(400万人=----⨯…………(5分)∴%5.37%100404055=⨯-. ∴该市常住人口中高中学历人数增长的百分比是37. 5%.……………………(7分)(3)P =36245025=.……………………(9分)19.∵点E 是CD 的中点,∴ 12CE CD ==12. …………(1分) 在Rt∴BCE 中, tan∴BEC =CEBC.∴BC =CE ·tan56°≈12×32=18.………………(3分)在Rt∴ADE 中, tan∴AED =DEAD.∴AD =DE ·tan67°≈12×73=28.………………(4分)易证四边形BCDF 为矩形,故FD= BC. ………(6分)∴AF =AD -FD =AD -BC =28-18=10.………………(7分) ∴AB =2624102222=+=+BF AF .答:A 、B 间的距离约是26米.………………(9分)(其它方法对应给分)20.(1)-2,…………(2分) -1,-1; ………(4分)(2) BD ∥AE ,且AE BD 21=.………………(6分) 证明:∵将x =2代入y =-x -1,得y =-3.∴C (-3,2). ………………(7分)某市现在常住人口学历状况条形统计图∵CD ∥x 轴,∴C 、D 、E 的纵坐标都等于2.把y =2分别代入双曲线y =和y =,得D (-1,2),E (1,2).由C 、D 、E 三点坐标得D 是CE 的中点, 同理:B 是AC 的中点, ∴BD ∥AE ,且AE BD 21=. ………………(9分) (其它方法对应给分)21. (1) 成立.…………(1分) 证明如下:如图,过点P 分别作AB 、AD 的垂线,垂足分别为G 、H ,………(3分) 则∴GPH =90°,PG =PH ,∴PGE=∠PHF =90°, ∵∴EPF =90°,∴∴1=∴2.……………(5分) ∴△PGE ≌△PHF ,∴PE =PF .……………(7分) (2) mnPF PE =. ……………(10分)22.解:(1)不能. ……………(1分)(如图).易得M (0,5),B (2,0),C (1,0),D (32,0)……(2分) 设抛物线的解析式为2y ax k =+, 抛物线过点M 和点B ,则5k =,54a =-. 即抛物线解析式为2554y x =-+.……………(4分) 当x =1时,y =154;当x =32时,y =3516.……………(6分)即P (1,154),Q (32,3516)在抛物线上.当竖直摆放5个圆柱形桶时,桶高=310×5=32.∵32<154且32<3516, ∴网球不能落入桶内. ……………(7分)2x-2x G H 21PCFE A BD(2)设竖直摆放圆柱形桶m 个时网球可以落入桶内,由题意,得,3516≤310m ≤154. 解得,7724≤m ≤1122. ……………(8分)∵m 为整数,∴m 的值为8,9,10,11,12.∴当竖直摆放圆柱形桶8,9,10,11, 12个时,网球可以落入桶内.………(10分)23.(1)△PFQ 是等腰直角三角形;……………(2分)(2)当20<<x 时,四边形PQCD 是一般梯形;……………(4分)当42<≤x 时,四边形PQCD 是平行四边形;……………(6分) 当64<<x 时,四边形PQCD 是等腰梯形;……………(8分)(3)⎪⎪⎩⎪⎪⎨⎧<<-<≤<<=).64()6(21);42(2);20(2122x x x x x S ……………(11分)(范围未取到2,不扣分)。

河南省郑州市2013-2014学年九年级数学第一次月考试题

河南省郑州市2013-2014学年九年级数学第一次月考试题

2014年九年级第一次质量预测 数学 参考答案一、选择题(每小题3分,共24分)1. B2.D3.C4. A5. D6.C7. B8.C二、填空题(每小题3分,共21分)9.4 10. -3 11. 52 12.21 13.15 14.332 15. )0,1625)(0,4)(0,5.2)(0,5.2(- 三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式=== …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b ≠0都可根据计算给分)………8分17. (9分)(1)抽样调查; 0.325; 130; 400;……………………4分 (2)如图:;…………………………7分 (3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分…………………6分 理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE ∽△CDE.根据 ,即可算出AB 的高. …………………9分 (说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.)19.(9分)(1)左平移1个单位 ,25; …………………………4分(2)y 411++=x ,…………………………6分 21)1)(1(1ab a a a a ab -∙-++⨯b1211)1)(1(ab a a a a ab -∙+-+÷DE BE CD AB =A B CD E朋友路径为先向左平移1个单位,再向上平移4个单位. 相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt△APC 中,∵tan∠A =PC AC ,∴AC =5tan 67.512PC x =︒.…………2分 在Rt△PCB 中,∵tan∠B =PC BC ,∴BC =4tan 36.93x x =︒.…………4分 ∵AC +BC =AB =63,∴54215123x x +=⨯ 63,解得x = 36.…………6分 ∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里). ∴巡逻船A 与落水人P 的距离为39海里.………………9分21. (10分)解:(1)480000400402++-=x x y …………………………………4分(2) 投资46.9万元能完成工程任务. …………………………………5分 依题意,可得到2025x ≤≤.…………………………7分240400480000469000x x -++=, ∴2102750x x --=.5x ∴==±(负值舍去).522.32x ∴=+. ∴投资46.9万元能完成工程任务,工程方案如下:方案一:一块矩形绿地的长为23m ,宽为13m ;方案二:一块矩形绿地的长为24m ,宽为14m ;方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H .∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .又∵AE =EF ,∠EHF =∠EBA =90º, ∴△EHF ≌△ABE . …………4分∴FH =BE ,EH =AB =BC ,∴CH =BE =FH.∵∠FHC =90º,∴∠FCH =45º. tan ∠FCH =1. …6分(2)作FH ⊥MN 于H . 由已知可得∠EAG =∠BAD =∠AEF =90º.结合(1)易得∠FEH =∠BAE =∠DAG .又∵G 在射线CD 上,∠GDA =∠EHF =∠EBA =90º,∴△EFH ≌△AGD ,△EFH ∽△AEB . ……8分∴EH =AD =BC =n ,∴CH =BE.∴EH AB =FH BE =FH CH. ∴在Rt △FEH 中,tan ∠FCN =FH CH =EH AB =mn . ∴当点E 沿射线CN 运动时,tan ∠FCN =mn .……10分 M B E A C D F G N H N M B C A E D FG H23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1),∴设抛物线的函数关系式为1)2(2-+=x a y .将C (0,3)代入上式,得1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x x y .……………………4分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x , 32-=x .∵点A 在点B 的左边, ∴B(-1,0), A (-3,0).∴P 1(-1,0). …………………………………………5分 ②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC = 90, ∴∠OAD 2= 45.当∠D 2AP 2= 90时, ∠OAP 2= 45, ∴AO 平分∠D 2AP 2 . 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分 设直线AC 的函数关系式为b kx y +=.将A (-3,0), C (0,3)代入上式得 ⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分∵D 2在3+=x y 上, P 2在342++=x x y 上,∴设D 2(x ,3+x ), P 2(x ,342++x x ).∴(3+x )+(342++x x )=0. 0652=++x x , ∴21-=x , 32-=x (舍).∴当x =-2时, 342++=x x y=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分 F 1(-22-,1), F 2(-22+,1). …………………………………11分 (理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于点F . 当AP =FE 时,四边形P AFE 是平行四边形. ∵P (-2,-1), ∴可令F (x ,1).∴1342=++x x .解之得: 221--=x , 222+-=x . ∴F 点存在有两点,F 1(-22-,1), F 2(-22+,1). )。

河南省郑州市2013年中考数学预测试卷3讲解

河南省郑州市2013年中考数学预测试卷3讲解

郑州市2013年初中毕业暨高中招生模拟考试数 学 试 卷参考公式:抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(—a b 2,a b ac 442 ),对称轴公式为x =—ab2.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号内. 1.在—5,—2,0,3这四个数中,最大的数是( ) A .—5B .—2C .0D .32.计算(—x 3y )2的结果是( ) A .—x 6y 2B .x 5y 2C .x 6y 2D .—x 5y 23.如图,AB ∥CD ,AC =AB ,∠A =100°,则∠BCD 的度数等于( ) A .40° B .50°C .45°D .30°4.下列调查中,适宜采用全面调查(普查)方式的是( ) A .对“天宫一号”飞船的零部件进行检查 B .对我市中小学生视力情况进行调查 C .对一天内离开我市的人流量进行调查 D .对我市市民塑料制品使用情况进行调查5.若等腰三角形的两边长分别为2和4,则这个等腰三角形的周长为( ) A .10B .8C .10或8D .无法确定 6.若x =1是一元二次方程x 2—3x +m =3的一个根,则m 的值为( ) A .5 B .—1C .1D .—57.如图,△ABC 内接于⊙O ,若∠ACB =60°,则∠OAB 的度数等于( ) A .20°B .25°C .30°D .35°8.观察139713……,268426……等数字,它们都是由如下方式得到的:将第1位数字乘以3,若积为一位数,则将其写在第2位上;若积为两位数,则将其个位数字写在第2位上,对第2位数字再进行如ABCD3题图7题图数学试卷 第1页(共10页)上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.若第1位数字是3,仍按上述操作得到一个多位数,则这个多位数第2012位数字是( ) A .3B .9C .7D .19.小明同学为响应我市“阳光体育运动”的号召,与同学一起登山.他们在早上8:00出发,在9:00到达半山腰,休息30分钟后加快速度继续登山,在10:00到达山顶.下面能反映他们距山顶的距离y (米)与时间x (分钟)的函数关系的大致图象是( )10.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a ≠0) 的图象与x 轴相交于点A (—2,0)和点B ,与y 轴相交于点C (0,4),且S △ABC =12,则该抛物线的对称轴是直线( )A .x =21B .x =1C .x =23D .x =2二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上. 11.地球的表面积约为5.1亿平方千米,其中海洋约占70%,则海洋的面积用科学记数法可表示为 平方千米. 12.如图,直线AB 、CD 相交于点O ,AC ∥BD .若BO =2AO ,AC =5,则BD 的长度为 .14.如图,点A 、B 在⊙O 上,且AB =BO .∠ABO 的平分线与AO 相交于点C ,若AC =3,则⊙O 的周长为 .(结果保留π) 15.有六张正面分别标有数字—2,—1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b ,则函数y =ax 2+bx +2的图象过点(2,3)的概率为 . 16.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,且纯净水、果汁、蔬菜汁的成本价格比为1:2:2.由于市场原因,果汁、蔬菜汁的成本价格上涨15%,而纯净水的成本价格下降20%,但该饮料的总成本仍与从前一样,那么该饮料中果汁和蔬菜汁的总质量与纯净水的质量之比为 .A .B .C .D .ACDBO12题图14题图 10题图三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:(14++-x x x )1442++-÷x x x ,其中x =—1.19.如图,△ADE 的顶点D 在△ABC 的BC 边上,且∠ABD =∠ADB ,∠BAD =∠CAE ,AC =AE .求证:BC =DE .22.如图,在平面直角坐标系xOy 中,一次函数y =kx +b(k ≠0)的图象与反比例函数y =xm(m ≠0)的图象 相交于第一、三象限内的A 、B 两点,与x 轴相交于 点C ,连结AO ,过点A 作AD ⊥x 轴于点D ,且OA=OC =5,cos ∠AOD =53.(1)求该反比例函数和一次函数的解析式; (2)若点E 在x 轴上(异于点O ),且S △BCO =S △BCE求点E 的坐标.ABCE19题图22题图23.香港的“公屋制度”解决了30%以上,约200万人口的居住问题.内地对公租房建设也多有讨论,但尚未有一个城市真正大规模尝试.重庆市建设公共租赁住房,意在重点解决“夹心层”的住房问题,力争城市保障性住房的“全覆盖”.某班对学生以“公租房知识知多少”为主题进行了调查,该班的数学兴趣小组将本组的调查情况绘制成如下两幅不完整的统计图:(其中“A ”表示“非常了解”,“B ”表示“了解”,“C ”表示“比较了解”,“D ”表示“不了解”)(1)根据上图,计算出该组的总人数,并将该条形统计图补充完整; (2)若该班共有50人,试估计该班对公租房非常了解的人数;(3)该数学兴趣小组决定从本组“非常了解”的同学中人选两名代表本班参加学校的公租房知识抢答竞赛.若该组“非常了解”的同学中有1名女生,请用画树状图的方法,求出所选两名同学恰好是一男一女的概率.24.如图,正方形ABCD 的对角线相交于点O .点E 是线段DO 上一点,连结CE .点F 是∠OCE 的平分线上一点,且BF ⊥CF 与CO 相交于点M .点G 是线段CE 上一点,且CO =CG . (1)若OF =4,求FG 的长; (2)求证:BF =OG +CF .人数“公租房知识知多少”调查结果扇形统计图“公租房知识知多少”调查结果条形统计图23题图D24题图25.“相约红色郑州,共享绿色园博”,位于郑州市东部新区的国际园林博览会是一个集自然景观和人文景观为一体的大型城市生态公园.自2011年11月19日开园以来,某商家在园博园内出售纪念品“山娃”玩偶.十周以来,该纪念品深受游人喜爱,其销售量不断增加,销售量y(件)与周数x(1≤x≤10,且x取整数)之间所满足的函数关系如下表所示:为回馈顾客,该商家将此纪念品的价格不断下调,其销售单价z(元)与周数x(1≤x≤10,且x取整数)之间成一次函数关系,且第一周的销售单价为68元,第二周的销售单价为66元.另外,已知该纪念品每件的成本为30元.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x 之间的函数关系式;根据题意,直接写出z与x之间满足的一次函数关系式;(2)求前十周哪一周的销售利润最大,并求出此最大利润;(3)从十一周开始,其他商家陆续入驻园博园,因此该商店的销售情况不如从前.该纪念品的销售量比十周下降a%(0<a<10),于是该商家将此纪念品的销售单价在十周的基础上提高1.4a%.另外,随着园博园管理措施的逐步完善,该商家需每周交纳200元的各种费用.这样,十一周的销售利润恰好与十周持平.请参考以下数据,估算出a的整数值.(参考数据:222=484,232=529,242=576,252=625)4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度26.如图,在Rt△ABC中,AB=AC=2匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连结AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN 的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.C26题图26题备用图数学试卷第9页(共10页)郑州市2013年初中毕业暨高中招生模拟考试数学试卷参考答案及评分意见一、选择题:二、填空题: 11.3.57×108; 12.10; 13.(x +y +2)(x +y —2);14.12π;15.61;16.2:3.三、解答题:17.解:原式=3+1—3+1+1.………………………………………………………………………………(5分) =3.……………………………………………………………………………………………(6分) 18.解:由①:3(5x —1)<2(7x —4).…………………………………………………………………(1分) 15x —3<14x —8.………………………………………………………………………(2分)x <—5.…………………………………………………………………………(4分)由②:x >—6.……………………………………………………………………………………(5分) ∴原不等式组的解集为—6<x <—5.……………………………………………………………(6分)19.证明:∵∠ABD =∠ADB ,∴AB =AD .………………………………………………………………………………………(1分) ∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC ,即∠BAC =∠DAE .……………………………………(3分) 又∵AC =AE ,∴△ABC ≌△ADE .……………………………………………………………………………(5分) ∴BC =DE .………………………………………………………………………………………(6分)20.解:∵AD 是△ABC 中BC 边上的高,∴AD ⊥BC ,数学试卷参考答案及评分意见 第1页(共8页)∴∠ADB =∠ADC =90°.…………………………………………………………………………(1分) 在R t △ACD 中:∵tan C =CD AD =2AD=tan45°=1, ∴AD =2.……………………………………………………………………………………………(3分) 在Rt △ABD 中:∵tan B =BD AD =BD2=tan30°=33,∴BD =32.………………………………………………………………………………………(5分) ∴BC =BD +CD =32+2,即BC 的长为32+2.……………………………………………………………………………(6分)四、解答题:21.解:原式=(1412++-++x x x x x )÷1)2(2+-x x .…………………………………………………………(2分) =22)2(114-+⋅+-x x x x .…………………………………………………………………………(5分)=2)2()2)(2(--+x x x .……………………………………………………………………………(7分) =22-+x x .………………………………………………………………………………………(8分) 当x =—1时,原式=2121--+-.……………………………………………………………………(9分)=31-.…………………………………………………………………………(10分)22.解:(1)∵AD ⊥x 轴,∴∠ADO =90°.在Rt △AOD 中,∵cos ∠AOD =AO DO =5DO =53∴DO =3.………………………………(2分)∴AD =22DO AO -=4. ∵点A 在第一象限内,∴点A 的坐标是(3,4). …………(3分)将点A (3,4)代入y =x m (m ≠0),3m=4,m =12.∴该反比例函数的解析式为y =x 12.………………………………………………………(4分)∵OC =5,且点C 在x 轴负半轴上,22题答图 数学试卷参考答案及评分意见 第2页(共8页)∴点C 的坐标是(—5,0).………………………………………………………………(5分) 将点A (3,4)和点C (—5,0)代入y =kx +b (k ≠0),⎩⎨⎧=+-=+0543b k b k 解得⎪⎪⎩⎪⎪⎨⎧==2521b k ∴该一次函数的解析式为y =21x +25.………………………………………………………(7分) (2)过点B 作BH ⊥x 轴于点H .∵S △BCO =S △BCE , ∴21×OC ×BH =21×CE ×BH , ∴OC =CE =5.…………………………………………………………………………………(8分) ∴OE =OC +CE =5+5=10.……………………………………………………………………(9分) 又∵点E 在x 轴负半轴上,∴点E 的坐标是(—10,0).……………………………………………………………(10分)23.解:(1)该组的总人数=2÷20%=10(人).…………………………………………………………(1分)补图如下:…………………………………………………………………………………………………(3分) (2)50×30%=15(人).…………………………………………………………………………(4分)∴估计该班对公租房非常了解的人数约为15人.…………………………………………(5分) (3)将这一名女生用A 表示,另两名男生用B 1,B 2表示,由题意得树状图:23题答图“公租房知识知多少”调查结果条形统计图数学试卷参考答案及评分意见 第3页(共8页)…………………………………………………………………………………………………(8分) 共有6种情况,每种情况可能性相等,所选两名同学恰好是一男一女有4种情况.…(9分) ∴P (所选两名同学恰好是一男一女)=64=32.…………………………………………(10分) 24.(1)解:∵CF 平分∠OCE ,∴∠OCF =∠ECF .……………………………………………………………………………(1分) 又∵OC =CG ,CF =CF ,∴△OCF ≌△GCF .…………………………………………………………………………(3分) ∴FG =OF =4,即FG 的长为4.……………………………………………………………………………(4分)(2)证明:在BF 上截取BH =CF ,连结OH .………………………………………………………(5分)∵正方形ABCD 已知, ∴AC ⊥BD ,∠DBC =45°, ∴∠BOC =90°,∴∠OCB =180°—∠BOC —∠DBC =45°. ∴∠OCB =∠DBC .∴OB =OC .…………………………………………………………………………………(6分) ∵BF ⊥CF , ∴∠BFC =90°.∵∠OBH =180°—∠BOC —∠OMB =90°—∠OMB , ∠OCF =180°—∠BFC —∠FMC =90°—∠FMC , 且∠OMB =∠FMC ,开始A B 1 B 2B 1 B 2 A B 2 A B 1(A ,B 1) (A ,B 2)(B 1,A ) (B 1,B 2)(B 2,A ) (B 2,B 1)第一位 第二位结果D24题答图数学试卷参考答案及评分意见 第4页(共8页)∴∠OBH =∠OCF .………………………………………………………………………(7分) ∴△OBH ≌△OCF .∴OH =OF ,∠BOH =∠COF .……………………………………………………………(8分) ∵∠BOH +∠HOM =∠BOC =90°, ∴∠COF +∠HOM =90°,即∠HOF =90°. ∴∠OHF =∠OFH =21(180°—∠HOF )=45°. ∴∠OFC =∠OFH +∠BFC =135°. ∵△OCF ≌△GCF , ∴∠GFC =∠OFC =135°,∴∠OFG =360°—∠GFC —∠OFC =90°. ∴∠FGO =∠FOG =21(180°—∠OFG )=45°. ∴∠GOF =∠OFH ,∠HOF =∠OFG . ∴OG ∥FH ,OH ∥FG , ∴四边形OHFG 是平行四边形.∴OG =FH .…………………………………………………………………………………(9分) ∵BF =FH +BH ,∴BF =OG +CF .…………………………………………………………………………(10分)五、解答题:25.解:(1)y =10x +100(1≤x ≤10,且x 取整数).………………………………………………………(1分)z =—2x +70(1≤x ≤10,且x 取整数).………………………………………………………(2分) (2)设前十周内第x 周的销售利润为W (元),由题意知:W =y (z —30).………………………………………………………………………………(3分) =(10x +100)(—2x +70—30).=—20x 2+200x +4000.………………………………………………………………………(4分) =—20(x —5)2+4500.……………………………………………………………………(5分) ∵—20<0,数学试卷参考答案及评分意见 第5页(共8页)∴抛物线开口向下,有最大值. ∴当x =5时,W 取得最大值4500.∴前十周内第五周的销售利润最大,为4500元.…………………………………………(6分) (3)十周的销售量由表知为200件.十周的销售单价=—2×10+70=50(元).十周的销售利润=200×(50—30)=4000(元).…………………………………………(7分) 由题意,得200(1—a %)[50(1+1.4a %)—30]—200=4000.………………………(8分) 设t =a %,原方程可整理为:70t 2—50t +1=0.………………………………………………(9分) 解得t =7055525±. ∵232=529,242=576,而555更接近576,∴t ≈702425±, ∴t 1≈0.7或t 2≈0.014,∴a 1≈70或a 2≈1. ∵0<a <10,∴a 1≈70舍去.∴a =1.∴a 的整数值为1.…………………………………………………………………………(10分)26.解:(1)当0<t ≤4时,S =41t 2.………………………………………………………………………(1分) 当4<t ≤316时,S =—43t 2+8t —16.…………………………………………………………(2分)当316<t <8时,S =43t 2—12t +48.…………………………………………………………(3分)(2)存在,理由如下:当点D 在线段AB 上时, ∵AB =AC , ∴∠B =∠C =21(180°—∠BAC )=45°. ∵PD ⊥BC , ∴∠BPD =90°, ∴∠BDP =45°. ∴PD =BP =t , ∴QD =PD =t , ∴PQ =QD +PD =2t .CP H 26题答图①数学试卷参考答案及评分意见 第6页(共8页)过点A 作AH ⊥BC 于点H . ∵AB =AC , ∴BH =CH =21BC =4,AH =BH =4. ∴PH =BH —BP =4—t .在R t △APH 中,AP =328222+-=+t t PH AH .……………………………………(4分) (ⅰ)若AP =PQ ,则有3282+-t t =2t .解得:t 1=3474-,t 2=3474--(不合题意,舍去).…………………………(5分) (ⅱ)若AQ =PQ ,过点Q 作QG ⊥AP 于点G .∵∠BPQ =∠BHA =90°, ∴PQ ∥AH . ∴∠APQ =∠P AH . ∵QG ⊥AP , ∴∠PGQ =90°, ∴∠PGQ =∠AHP =90°, ∴△PGQ ∽△AHP . ∴AP PQ AH PG =,即328242+-=t t t PG , ∴PG =32882+-t t t .若AQ =PQ ,由于QG ⊥AP ,则有AG =PG ,即PG =21AP , 即32882+-t t t =213282+-t t .解得:t 1=12—74,t 2=12+74(不合题意,舍去).……………………………(6分) (ⅲ)若AP =AQ ,过点A 作AT ⊥PQ 于点T .易知四边形AHPT 是矩形,故PT =AH =4. 若AP =AQ ,由于AT ⊥PQ ,则有QT =PT ,即PT =21PQ , 即4=21×2t .解得t =4.数学试卷参考答案及评分意见 第7页(共8页)当t =4时,A 、P 、Q 三点共线,△APQ 不存在,故t =4舍去.综上所述,存在这样的t ,使得△APQ 成为等腰三角形,即t 1=3474 秒或t 2=(12—74)秒.………………………………………………………………………………………………(7分)(3)四边形PMAN 的面积不发生变化.…………………………………………………………(8分)理由如下:∵等腰直角三角形PQE 已知, ∴∠EPQ =45°.∵等腰直角三角形PQF 已知, ∴∠FPQ =45°.∴∠EPF =∠EPQ +∠FPQ =45°+45°=90°. ……………………………………(9分) 连结AP . ∵此时t =4秒, ∴BP =4×1=4=21BC , ∴点P 为BC 的中点. ∵△ABC 是等腰直角三角形, ∴AP ⊥BC ,AP =21BC =CP =BP =4,∠BAP =∠CAP =21∠BAC =45°. ∴∠APC =90°,∠C =45°. ∴∠C =∠BAP =45°.∵∠APC =∠CPN +∠APN =90°, ∠EPF =∠APM +∠APN =90°,∴∠CPN =∠APM .…………………………………………………………………………(10分) ∴△CPN ≌△APM .∴S △CPN =S △APM .………………………………………………………………………………(11分) ∴S 四边形PMAN =S △APM +S △APN =S △CPN +S △APN =S △ACP =21×CP ×AP =21×4×4=8. ∴四边形PMAN 的面积不发生变化,此定值为8.………………………………………(12分)ABC PFQEMN26题答图②数学试卷参考答案及评分意见 第8页(共8页)。

郑州市2013年九年级数学一模测试及参考答案

郑州市2013年九年级数学一模测试及参考答案

郑州市2013年九年级第一次质量预测数学一、选择题〔每题3分,共24分〕1.下面的数中,与−3的和为0的是〔〕A.3 B.−3 C.13D.132.如图是由七个相同的小正方体摆成的几何体,则这个几何体的俯视图是〔〕A.B.C.D.3.以下图形中,既是轴对称图形又是中心对称图形的是〔〕A.三角形B.平行四边形C.梯形D.圆4.下面的计算正确的选项是〔〕A.6a−5a=1 B.−(a−b)=−a+b C.a+2a2=3a3 D.2(a+b)=2a+b5.已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.假设∠ECF=55°,则∠ABD的度数为〔〕A.55°B.100°C.110°D.125°FDECBA九年级六个班的同学某天“义务指路”总人次折线统计图第5题图第6题图6.某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,以下说法正确的选项是〔〕A.极差是40 B.众数是58 C.中位数是51.5 D.平均数是607.如图,△ABC内接于⊙O,连接OA,OB,∠OBA=40°,则∠C的度数是〔〕A.60°B.50°C.45°D.40°OCB A第7题图 第8题图8. 如图,把图中的△ABC 经过一定的变换得到△A ′B ′C ′,如果图中△ABC 上的点P 的坐标为(a ,b ),那么它的对应点P ′的坐标为〔 〕A .(a −2,b )B .(a +2,b )C .(−a −2,−b )D .(a +2,−b ) 二、填空题〔每题3分,共21分〕9. 计算013+=3⎛⎫-- ⎪⎝⎭____________.10. 2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省〔部分〕共30个地市,总面积28.9万平方公里,总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为____________人. 11. 已知关于x 的一元二次方程20ax x b +-=的一根为-1,则a -b 的值是_________. 12. 现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是________. 13. 我们可以用钢珠来测量零件上小圆孔的宽口.假设钢珠的直径是10mm ,测得钢珠顶端离零件外表的距离为8mm ,如下图,则这个小圆孔的宽口AB 的长度为________mm .ECDBA第13题图 第14题图 第15题图14. 在Rt △ABC 中,∠C =30°,DE 垂直平分斜边BC ,交AC 于点D ,E 点是垂足,连接BD ,假设BC =8,则AD 的长是_________.15. 如图,在平面直角坐标系中,正方形ABCD 顶点A 的坐标为〔0,2〕,B 点在x轴上,对角线AC ,BD 交于点M ,OM =C 的坐标为___________.三、解答题〔本大题共8个小题,共75分〕16. 〔此题8分〕阅读某同学解分式方程的具体过程,答复后面问题.解方程213xx x +=-.解:原方程可化为:222222(3)(3)263236=6x x x x x x x x x x x x x -+=--+=--+-=∴-....①②③④检验:当6x =-时,各分母均不为0, ∴6x =-是原方程的解.⑤请答复:〔1〕第①步变形的依据是___________________;〔2〕从第____步开始出现了错误,这一步错误的原因是_________________________; 〔3〕原方程的解为________________.17. 〔此题9分〕某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课,学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答以下问题:40%25%羽毛球体操人数〔1〕该校学生报名总人数有多少人?〔2〕从图中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之多少?〔3〕请将两个统计图补充完整.18. 〔此题9分〕如图,函数y =kx 与y=m/x 的图象在第一象限内交于点A .在求点A 坐标时,小明由于看错了k ,解得A (1,3);小华由于看错了m ,解得A (1,1/3)。

郑州市九年级第一次质量预测 数学试卷及答案

郑州市九年级第一次质量预测 数学试卷及答案

数学九年级第一次质量预测卷一、选择题(每小题3分,共18分) 1.计算:|-3|=( )A .3B .-3C .13D .13-2.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组是( )A .41x x ⎧⎨≤-⎩>B .41x x ⎧⎨≥-⎩<C .41x x ⎧⎨-⎩>>D .41x x ≤⎧⎨-⎩>3.有19位同学参加“校园吉尼斯”比赛,所得的分数互不相同,按规则取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的( )A .方差B .平均数C .中位数D .众数4.已知关于x 的方程260x kx --=的一个根为x =3,则实数k 的值为( ) A .1 B .-1 C .2 D .-25.一个正方体的每个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“流”字相对的字是( )A .卫B .生C .讲D .防流甲防生卫讲第5题 第6题6.如图所示,有一根高为2.1m 的木柱,它的底面周长为40cm ,在准备元旦联欢晚会时,为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( )A .B .350cmC .D .300cm 二、填空题(每小题3分,共27分)7.4的算术平方根是 .8.如图,AB ∥CD ,AC ⊥BC ,垂足为C ,∠BAC =67°,则∠BCD = 度.C BA第8题图第10题图9.2009年10月8日晚,河南安阳的一位彩民创造了中国彩票史之最,因为他中了3.59亿元巨奖,如果扣除20%的税收后,他仍然能够得到约元(保留三个有效数字,结果用科学记数法表示).10.如图所示的程序计算,若开始输入x的值为48,我们发现第一次得到的结果为24,第2次得到的结果为12,……,请你探索第2010次得到的结果为.11.如图,圆O的弦AB=6,M是AB上任意一点,且OM的最小值为4,则圆O的半径为.F DCEBA第11题图第12题图12.如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是.13.小明和小东用掷A、B两枚六面体骰子的方法来确定点P(x,y)的位置.他们规定:小东掷得的点数为x,小明掷得的点数为y.那么,他们各掷一次所确定的点P在双曲线18yx上的概率为.14.如图,圆O是△ABC的内切圆,切点分别是D、E、F,已知∠A=80°,∠C=60°,则∠DFE 的度数是度.15.如图,在x 轴上有五个点,它们的横坐标依次为2,4,6,8,10.分别过这些点作x 轴的垂线与三条直线y =ax ,y =(a +1)x ,y =(a +2)x 相交,其中a >0,则图中阴影部分的面积是 .三、解答题(本大题8个小题,共75分)16.(8分)解方程:22011xx x +=+-17.(9分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0). (1)画出△ABC 关于x 轴对称的△111A B C ;(2)画出将△ABC 绕原点O 按逆时针方向旋转90°所得的△222A B C ; (3)△111A B C 和△222A B C 成轴对称吗?若成轴对称,画出所有的对称轴; (4)△111A B C 和△222A B C 成中心对称吗?若成中心对称,写出对称中心的坐标.18.(9分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)样本中D级学生人数占全班学生人数的百分比是;(3)求扇形统计图中A级所在的扇形的圆心角的度数;(4)若该校九年级有800名学生,请你估计这次体育测试中达到A级和B级的学生人数的和.19.(9分)甲、乙两车同时从A地出发,以各自的速度匀速向B地行使.甲车先到达B地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度每小时60千米,下图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象.(1)请将图中()内填上正确的值,并求出甲车从A到B行使速度;(2)求从甲车返回到与乙车相遇过程中y与x之间的函数关系式,并写出自变量x的取值范围;(3)求出甲车返回时行使的速度及A,B两地的距离.20.(9分)如图所示,山坡上有一棵与水平垂直的大树AB,一场大风过后,大树被刮倾斜后从点C处折断倒在山坡上,树的顶部D恰好接触到坡面AE上.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)∠CAE的度数;(2)求这棵大树折断前的高度.(结果精确到个位,参考数据:=1.4=1.7,=2.4)60°38°23°BCDEFA21.(9分)如图,已知在正方形ABCD中,E,F分别是AB,BC上的点,若有AE +CF=EF,请你猜想∠EDF的度数,并说明理由.FED CBA22.(10分)随着人民生活水平的提高,再加上政府减征汽车购置费的影响,2009年我市家庭轿车的拥有量快速增加.据统计,某小区2007年底拥有家庭轿车64辆,2009年底家庭轿车的拥有量达到100辆.(1)若该小区2007年底到2010年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?(2)为了缓和停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为:市内车位5000元/个,露天车位1000元/个.考虑到实际因素,计划露天车位的数量不少于市内车位的2倍,但不超过市内车位的2.5倍,求该小区最多可建造两种车位各多少个?试写出所有可能的方案.23.(12分)如图所示,在平面直角坐标系中,抛物线23(0)y ax bx a =++≠经过点A (-1,0)、B (3,0),其顶点为D ,连接BD ,点P 是线段BD 上的一个动点(不与B 、D 重合),过点P 作y 轴的垂线,垂足为E ,连接BE . (1)求抛物线的解析式,并写出顶点D 的坐标;(2)如果点P 的坐标为(x ,y ),△PBE 的面积为S ,求S 与x 的函数关系式,写出自变量的取值范围,并求出S 的最大值;(3)在(2)的条件下,当S 取得最大值时,过点P 作x 轴的垂线,垂足为F ,连接EF ,在这条抛物线上是否存在点Q ,使得直线EF 为线段PQ 的垂直平分线?若存在,请求出点Q 的坐标;若不存在,请说明理由.九年级数学第一次质量预测卷 数学 参考答案及评分标准一、选择题(每小题3分,共18分)16.解:原方程可化为:01122=--+x x x .即:2(x -1)-x =0.---------------------------------4分 x =2.---------------------------------6分∴经检验x =2是原方程的根.---------------------------------8分17.(1)如图;------------------------------------2分(2)如图;-------------------------------------4分 (3)成轴对称,对称轴如图;------------7分 (4)成中心对称,对称中心坐标11()22,.----9分18.(1)条形图补充正确;(图略)……2分 (2)4﹪;…………………4分(3)360°×20%=72°;…………………6分(4)800×(20%+48%)=544人.…………………8分估计这次体育测试中达到A 级和B 级的学生人数的和约为544人.……9分 19.解:(1)( )内填60. ……………………………………1分设甲车从A 到B 的行驶速度为x 千米∕时,依题意得: 3x -180=120, x =100.所以甲车从A 到B 的行驶速度:100千米∕时.……………2分 (2)设y kx b =+,把(4,60)、(4.4,0)代入上式得:⎩⎨⎧+=+=.4.40,460b k b k 解得:⎩⎨⎧=-=.660,150b k 150660y x ∴=-+.………………………………………5分自变量x 的取值范围是:4 4.4x ≤≤. …………6分 (3)设甲车返回行驶速度为v 千米/时,由0.4(60)60v ⨯+=得90(/)v =千米时. ………8分A B 、两地的距离是:3100300⨯=(千米).………9分 20.解:(1)延长BA 交EF 于点G .在Rt AGE △中,23E ∠=°, ∴67GAE ∠=°. 又∵38BAC ∠=°,∴180673875CAE ∠=--=°°°°.……3分 (2)过点A 作AH CD ⊥,垂足为点H .在Rt ADH △中,604ADC AD ∠==°,,cos DHADC AD ∠=,∴2DH =. sin AHADC AD∠=,∴AH =.……6分 在Rt ACH △中,180756045C ∠=--=°°°°,∴AC =,CH AH ==∴210AB AC CD =+=≈(米). 答:这棵大树折断前高约10米. ………9分H GAFED C B23°38°60°21.∠EDF 的度数为45°.………………1分解:延长BC 到G ,使CG=AE ,连接DG .………2分∵正方形ABCD 中,∠A=∠DCG =90°,AD=CD , 又∵AE=GC ,∴Rt △AED ≌Rt △CGD .…………4分 ∴∠ADE=∠CDG ,DE=DG .∵AE +CF =CG +CF =FG =EF ,又∵DF 是公共边, ∴△EFD ≌△GFD.……………………………7分 ∴∠EDF=∠FDG .又∵∠ADC=∠EDF+∠FDC+∠ADE=90°, ∴∠EDF+∠FDC+∠CDG=90°,∴∠EDF=21∠EDG=45°.………………………9分22.解:(1)设家庭轿车拥有量的年平均增长率为x ,则:()2641100x +=,………………………2分 解得:11254x ==%,294x =-(不合题意,舍去),()100125%125∴+=. ……………………4分答:该小区到2009年底家庭轿车将达到125辆.…………5分 (2)设该小区可建室内车位a 个,露天车位b 个,则:0.50.1152 2.5a b a b a +=⎧⎨⎩①≤≤②………………………7分 由①得:b =150-5a 代入②得:20a 150≤≤7,20≤a ≤2173. a 是正整数,a ∴=20或21,当20a =时50b =,当21a =时45b =.∴方案一:建室内车位20个,露天车位50个;方案二:室内车位21个,露天车位45个.………………10分 23.解:(1)设(1)(3)y a x x =+-,把(03)C ,代入,得1a =-, ∴抛物线的解析式为:223y x x =-++.顶点D 的坐标为(14),.-------------------------------------------------------------3分GA BC DEF(2)设直线BD 解析式为:y kx b =+(0k ≠),把B 、D 两点坐标分别代入,得3+=0,+=4.k b k b ⎧⎨⎩ 解得=2k -,=6b .∴直线BD 的解析式为=2+6y x -.111(26)222S PE OE xy x x =⋅==-+, ∴22393()(13)24S x x x x =-+=--+<<∴当32x =时,S 取得最大值,最大值为94.-----------------------------------8分(3)在抛物线上不存在点Q 使得直线EF 为线段PQ 的垂直平分线.--------9分当S 取得最大值,32x =,3y =,∴332P ⎛⎫⎪⎝⎭,.∴此时点E 和点C 重合. ∴四边形PEOF 是矩形.且PC =1.5,PF =3.∴CF设点P 关于直线EF 的对称点为P '(即假设存在的点Q ),连接P E P F ''、.连接PP ',交CF 于点H ,则H 为P P '的中点,作P 'N 垂直于PC 交PC 的延长线于点N , 由于CF ⊥P P ',∠HPC =∠CFP . ∴552cos cos =∠=∠CFP HPC .55sin 'sin =∠=∠CFP PN P . ∴556cos 22'=∠⋅==HPC PC PH PP .∴12'cos '555PN PP P PN =⋅∠==. 5655556'sin ''=⨯=∠⋅=PN P PP N P .∴10923512=-=-=PC PN CN .∴59563' .109''=-=-=-=N P PF y x P P .∴P '坐标99105⎛⎫- ⎪⎝⎭,.把P '坐标99105⎛⎫- ⎪⎝⎭,代入抛物线解析式,不成立,所以点P '(点Q )不在抛物线上.即:在抛物线上不存在点Q使得直线EF为线段PQ的垂直平分线.-12分11。

2013年一摸数学参考答案及评分标准

2013年一摸数学参考答案及评分标准

2013年初中学业水平模拟测试 九年级数学参考答案及评分标准一、选择题(共8个小题,每小题3分,共24分)三、作图题(本题满分4分)作图正确3分,结论正确1分 …………4分四、解答题(本题满分74分,共有9道小题) 16. (本小题满分8分,每小题4分) 解:(1)21+a …………4分 解:(2)2,1=-=y x …………4分 17. (本小题满分6分)解:⑴此次共调查了200名同学; ………………………2分⑵ 图略,扇形统计图中骑自行车方式到校的圆心角的度数为108°; …………4分 ⑶估计至少需要安排11辆班车.. ……………6分 18. (本小题满分6分) 解:(1)P (获得50元购书券) =203; ......................2分(2) 5.1655.74205202035020180=++=⨯+⨯+⨯......................4分∵16.5元>15元,∴转转盘对顾客更合算. ......................8分19. (本小题满分6分) 解:设改造m 所A 类学校⎩⎨⎧≥-+≤-+70)6(1510400)6(7050m m m m …………3分 解得:1≤m ≤4 …………4分 所以共有4种方案:一、改造1所A 类,5所B 类学校 二、改造2所A 类,4所B 类学校 三、改造3所A 类,3所B 类学校四、改造4所A 类,2所B 类学校 …………6分 20. (本小题满分8分)(1)C 处到海岸线OA 的距离大约是146米。

……………5分 (2)该轮渡航行的速度约为108米/分钟。

……………8分 21. (本小题满分8分)证明:⑴∵四边形ABCD 是平行四边形, ∴AB ∥CD,AB=CD . ∴∠ABF=∠ECF.∵F 是中点,∴BF=CF .在△ABF 和△ECF 中,∵∠ABF=∠ECF ,∠AFB=∠EFC ,BF=CF ,∴⊿ABF ≌⊿ECF . ……………………4分 (2)∵AB=EC ,AB ∥EC , ∴四边形ABEC 是平行四边形. ∴AF=EF , BF=CF .∵四边形ABCD 是平行四边形, ∴∠ABC=∠D , 又∵∠AFC=2∠D ,∴∠AFC=2∠ABC .∵∠AFC=∠ABF+∠BAF , ∴∠ABF=∠BAF . ∴FA=FB .∴FA=FE=FB=FC,∴AE=BC .∴口ABEC 是矩形. ……………………8分 22. (本小题满分10分)解:由图可猜想y 与x 是一次函数关系, ………………………2分 设这个一次函数为(0)y kx b k =+≠,∵这个一次函数的图象经过(15,550)、(20,500)这两点,∴5002040030k b k b =+⎧∴⎨=+⎩,解得10700k b =-⎧⎨=⎩,∴函数关系式是10700y x =-+. ………………………………4分 代入验证(25,450)、(30,400)都满足此解析式 …………………5分 (2)设工艺厂试销该纪念品每天获得的利润是W 元,依题意得:B D E22(10)(10700)10800700010(40)+9000W x x x x x =--+=-+-=--,………………………………8分(3)销售单价x 满足32≤x ≤35时,工艺厂试销该纪念品每天获得的利润不低于8360元. ………………………………10分 23. (本小题满分10分)(3)27; …………1分 (4) 6,21,378 ; …………4分 问题解决:8)1(,2)1(33++n n n n …………7分 结论应用:n=4 …………10 24. (本小题满分12分) 解:(1)t=4 s , ………3分 (2)∵在□ABCD 中, ∠ABC=∠D=60°,而DP=3t ∴在Rt △PMD 中,t PM t DM 233,23==∴28392332321t t t S PMD =⨯⨯=∆ 过点Q 作QE ⊥DA 的延长线于点E ,则在Rt △QAE 中,QA=20-2t, ∠QAE=60° ∴t QE 3310-= ∵AM=t MD AD 2330-=-= ∴31502345433)3310()2330(212+-=-⨯-⨯=∆t t t t S QAM 过点C 作CF ⊥AB 于点F, 则在Rt △CBF 中,BC=30, ∠B=60° ∴CF=315∵四边形AQPD 是梯形 ∴t t t S AQPD 32153150315)3220(21+=⨯+-⨯=梯形 ∴t t t t t t S S S S MAQPMD AQPD PQM 3303815)31503245343(83932153150222+-=+---+=--=∆∆∆梯形 ………6分(3)当t=6时,面积最大,最大面积为32225………9分 (4)t=320………12分。

河南省郑州市2013届高三第一次质量预测数学试题文

河南省郑州市2013届高三第一次质量预测数学试题文

河南省郑州市2013年高中毕业年级第一次质量预测文科数学第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、若集合},2,1,0{x A =,A B A x B =⋃=},,1{2,则满足条件的实数x 的个数有 A .个 B 2个 C .3个 D 4个2、若复数i z -=2,则zz 10+等于 A. i -2 B. i +2 C. i 24+ D. i 36+3、设数列{n a }的前n 项和2n n S =-1,则43S a 的值为 A 、154 B 、152 C 、74 D 、724、执行如图所示的程序框图,若输入2=x ,则输出y 的值为 A .5 B. 9 C.14 D.415、直线1+=kx y 与曲线b ax x y ++=3相切于点)3,1(A ,则b a +2的值等于A. 2 B .1- C .D . 2-6、图中阴影部分的面积S 是h 的函数(H h ≤≤0),则该函数的大致图象是7、一数学兴趣小组利用几何概型的相关知识做实验计算圆周率,他们向一个边长为1米的正方形区域均匀撒豆,测得正方形区域有豆5120颗,正方形内节圆区域有豆4009颗,则他们所没得圆周率为(保留两位有效数字)A 、3.13B 、3.14C 、3.15 D 、3.168. 已知双曲线)0,0(12222>>=-b a b x a y 的离心率为3,则双曲线的渐近线方程为 A.x y 22±= B.x y 2±= C.x y 2±= D.x y 21±=9、《莱因德纸草书》(Rhind Papyrus )是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分5份给5个人,使每人所得成等差数列,且使较大的三份之和的17是较小的两份之和,问最小的1份为10、过抛物线y 2=8x 的焦点F 作倾斜角为135°的直线交抛物线于A ,B 两点,则弦AB 的长为A 、4B 、8C 、12D 、1611.在三棱锥BCD A -中,侧棱AD AC AB ,,两两垂直,ADB ACD ABC ∆∆∆,,的面积分别为26,23,22,则该三棱锥外接球的表面积为 A.π2 B.π6 C. π64 D.π2412. 设函数x x x f cos sin )(+=,把)(x f 的图象按向量)0)(0,(>=m m a 平移后的图象 恰好为函数)('x f y =的图象,则m 的最小值为A.4πB .3πC.2πD.32π 第II 卷本卷包括必考题和选考题两部分。

2013年郑州市第一次质量预测-文科数学答案

2013年郑州市第一次质量预测-文科数学答案

3
,
-
3k 4k2 +
3)
,―――――8

uuur uuur uuur uuuur uuur uuuur uuur uuur uuuur 由 QP × MP = PQ × MQ 可得 PQ × (MQ + MP) = 2PQ × MN = 0 ,
即 PQ
^
MN
,所以 kMN
=
0
+
3k 4k2 +
3
m
-
4k 2 4k 2 +
3
=
-
1 k
,――――10

整理得 m
=
k2 4k 2 + 3
=
1
4
+
3 k2
Î (0,
14 )

所以在线段
OF2
上存在点
M
(m,0)
符合题意,其中
m
Î
(0,
1 4
)
.――――12

21.解:⑴当 a
= 1时,
f (x) = ln(1 +
x)
-
1
x -
x

f
¢(
x)
=
1
1 +
当 a > 0 时,函数 f (x) 的增区间为 (-1, x1),(x2,+¥) ,减区间为 (x1,1), (1, x2 ) ,
其中
x1
=
a
+
2
-
a2 2
+
8a
, x2
=
a
+
2
+
a2 2

九年级第一次质量预测数学备考讲义及答案

九年级第一次质量预测数学备考讲义及答案

九年级第一次质量预测数学备考一、选择题1.-2013的倒数是()A.12013B.12013-C.2013 D.-20132.已知24328a ba b+=⎧⎨+=⎩,则a b+等于()A.3B.83C.2D.1【常考题型】①若分式12xx-+的值为0,则( )A. x=-2B. x=0C. x=1或x=-2D. x=1②3是关于x的方程250x x c-+=的一个根,则这个方程的另一个根是()A.-2B.2C.-5D.63.从《中华人民共和国2011年国民经济和社会发展统计报告》中获悉,前年我国国内生产总值达397983亿元.请你以亿元为单位用科学记数法表示前年我国的国内生产总值为(结果保留两个有效数字)()A.3.9×1013B.4.0×1013C.3.9×105D.4.0×1054.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他是否获奖,只需知道这11名学生决赛得分的()A.中位数B.平均数C.众数D.方差【常考题型】①我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别是()A.2,28 B.3,29 C.2,29 D.3,28②下列调查方式,你认为最合适的是( )A.日光灯管厂要检测一批灯管的使用寿命,采用普查方式B.了解郑州市每天的流动人口数,采用抽样调查方式C.了解郑州市居民日平均用水量,采用普查方式D.旅客上飞机前的安检,采用抽样调查方式③为了了解郑州市2012年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指()A.150 B.被抽取的150名考生C.被抽取的150名考生的中考数学成绩D.郑州市2012年中考数学成绩5.如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕点O顺时针旋转105°至OA B C'''的位置,则点B'的坐标为()A.B.(C.(2,-2) D.(-2,2)第①题图【常考题型】①如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+②如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为()A.4B.8C.16D.6.如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.【常考题型】① 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为( )A .5B .6C .7D .8442俯视图左视图主视图第①题图 第②题图② 一个几何体的三视图如图所示,其中主视图和左视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ) A .2π B .12π C .4π D .8π7. 将不等式组841163x x x x+<-⎧⎨≤-⎩的解集在数轴上表示出来,正确的是( )D .C .B .A .8. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不成立的是( )A .CM =DMB .⌒CB=⌒BD C .∠ACD =∠ADCD .OM =MB二、 填空题9. 2的平方根是________.10. 如图,直线l ∥m ,将含有45C上,若∠1=25°,则∠2的度数为 . 11. 已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系是 .主视图左视图21l mBCA【常考题型】① 在同一平面直角坐标系内,将函数1422++=x x y 的图象沿x 轴方向向右平移2个单位长度后再沿y 轴向下平移1个单位长度,得到图象的顶点坐标是 . ② 在正比例函数y =-3mx 中,函数y 的值随x 的值的增大而增大,则P (m ,5)在第象限.12. 郑州小商品城博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是 . 【常考题型】① 有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解的概率为______. 13. 如图,点A 在反比例函数y =xk第一象限的图象上,AB 垂直y 轴于点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为________.FADEFC B第13题图 第14题图 第15题图14. 如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A =120°,则图中阴影部分的面积是 .15. 如图,正方形ABCD 与正三角形AEF 的顶点A 重合,将△AEF 绕顶点A 旋转,在旋转过程中,当BE =DF 时,∠BAE 的大小可以是 . 【常考题型】① 如图,O 是正方形ABCD 的对角线BD 上一点,⊙O 与边AB ,BC 都相切,点E ,F 分别在AD ,DC 上,现将△DEF 沿着EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE =2,则正方形ABCD 的边长是 .QP CA第①题图第②题图②如图,在△ABC中,∠ABC=90°,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.三、解答题16.先化简22444()2x xxx x x-+÷--,然后从x<<为x的值代入求值.17.如图,点A,F,C,D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.FD BCA18.省教育厅决定在全省中小学开展以“关注校车、关爱学生”为主题的交通安全教育宣传周活动.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.其他14%骑自行车 20%步行m乘公交车40%行车交车(1)m= %,这次共抽取名学生进行调查,并补全条形图;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生约有多少名?19.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示.慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示.根据图象进行以下研究.解读信息(1)甲、乙两地之间的距离为_________km.(2)线段AB的解析式为_______________,线段OC的解析式为_________________.问题解决(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数的图象.20.如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(结果精确到0.1)(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B,C,A,G,H在同一个平面内,点C,A,G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?F21.某电子商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数解析式;(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不得高于32元.如果厂商要获得每月不低于350万元的利润,那么制造这种产品每月的最低制造成本需要多少万元?22. 在四边形ABCD 中,对角线AC ,BD 相交于点O ,设锐角∠DOC =α,将△DOC绕点O 按逆时针方向旋转得到△D′OC′(0°<旋转角<90°),连接AC′,BD′,AC′ 与BD ′ 相交于点M .(1)当四边形ABCD 是矩形时,如图1,请猜想AC′ 与BD ′ 的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(2)当四边形ABCD 是平行四边形时,如图2,已知AC =kBD ,请猜想此时AC′ 与BD ′ 的数量关系以及∠AMB 与α的大小关系,并证明你的猜想;(3)当四边形ABCD 是等腰梯形时,如图3,AD ∥BC ,此时(I )中AC′ 与BD ′ 的数量关系是否成立?∠AMB 与α的大小关系是否成立?不必证明,直接写出结论.图1D'C'OMDCBA图2D'C'OM DCBA图3D'C'OM DC BA23.如图,矩形OABC中,A(6,0)、C(0,D(0,l过点D且与x轴平行,点P,Q分别是l和x轴正半轴上的动点,满足∠PQO=60°.(1)①点B的坐标是;②∠CAO= 度;③当点Q与点A重合时,点P的坐标为.(直接写出答案)(2)设点P的横坐标为x,△OPQ与矩形OABC重叠部分的面积为S,试求S与x 的函数关系式和相应的自变量x的取值范围.【参考答案】一、选择题 1. B2. A ① D ② B3. D4. A ① B ② B ③ C5. A ① D ② C6. A ① C ② C7. C8. D二、填空题 9. 2± 10. 20°11. 321y y y >> ① (1,-2) ②二 12. 107 ①41 13. 316 14.315. 15°或165° ①22+ ②3≤x ≤4三、解答题 16. 原式=21+x 当x =1时,原式=31;当x =-1时,原式=1. 17. (1)证明略;(2)AF =57.18. (1)26;50;(2)乘公交车;(3)300名. 19. (1)450;(2))(304501501≤≤+-=x x y ;)(60752≤≤=x x y ;(3)⎪⎩⎪⎨⎧≤<≤<-≤≤+-=)()()(63753245022520450225x x x x x x y ,图象略.20. (1)11.0;(2)45.6. 21. (1)180013622-+-=x x z ;(2)销售单价定位25元或43元时,月利润为350万元;销售单价定位34元11时,月利润最大,最大为512万元.(3)648万元.22. (1)AC ′=BD ′,α=∠AMB ;(2)AC ′=kBD ′,α=∠AMB ;(3)AC ′=BD ′成立,α=∠AMB 不成立.23. (1)①(6);②30;③(3 (2)当0≤x ≤3时,34334+=x S ; 当3<x ≤5时,233313232-+-=x x S ; 当5<x ≤9时,312332+-=x S ; 当x >9时,xS 354=.。

郑州数学九年级第一次质量预测探究

郑州数学九年级第一次质量预测探究

【报告摘要】历年郑州初三年级的全市第一次质量预测(一模考试)考查范围涉及初中三年全部内容,考试时间100分钟,总分120分。

重点考察几何证明,解直角三角形,反比例函数,一元二次方程,概率统计等内容,另外分式,二次函数均会涉及。

本次分析报告主要从各年级内容所占分值,各年份变考点化对比、难易点分布、2014年题目预测四个部分给出结论。

(另,帖子最下方可下载2011——2013年一模数学的题目及答案)一、一模数学各年级考点所占分值比例郑州市的一模考试会涉及到初中三年六册书的内容,各年级内容所占的分值比例如下(满2013年郑州一模数学■初一■初二■初三上■初三下分120分)2012年郑州一模数学■初一・初二■初三上・初三下2011年郑州一模数学结论:从上面的三幅统计图中可看出1、初二年级的内容在一模考试中占据重要的地位,占总分的三成左右。

初二年级的四边形,一次函数,分式,勾股定理等内容考察频繁。

|2、九年级上册的内容每年考察都占近四成,是模考中的绝对重点,其中几何证明,一元二次方程应用题,反比例函数,概率统计都是必出的解答题。

3、最近的两年(及2012年和2013年)中初三下学期的考察比例有明显的上升,解直角三角形必出解答题,二次函数在最后两道解答题中出现。

201120122013旋转、折蠢6312几何证明283619解直角三角形999圆r 366分式888反比例函数16129—元二次方程18313二次函数01611概率占统计151515■初一■初二-初三上・初三下2011-2013一模数学考点对照图年一模出题情况不难看出1.2012年中考数学的题型发生改变,最具借鉴意义且对 2014年最具 指导作用的一模试卷当属2013年无疑,需要重点研究。

2. 圆的考察仍会以选择填空的形式出现,主要考察圆中三大基本定理。

3. 每年都有一个反比函数的解答题出现,通常结合一次函数进行出题,难度中等。

4. 概率与统计、分式、解直角三角形的考察非常固定分别为 15分、8分、9分,难度较低、题型固定,往年此部分真题是最佳复习题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年九年级第一次质量预测
数学 参考答案
一、选择题(每小题3分,共24分)
二、填空题(每小题3分,共21分)
三、解答题(共75分)
16.(1) 等式的基本性质……………………………………2分 (2) ③;移项未变号……………………………………6分 (3) 5
6=
x ……………………………………………………8分
17.解:(1)由两个统计图可知该校报名总人数是
16016040040%
0.4
==(人)
.…………3分 (2)选羽毛球的人数是40025%100⨯=(人). 因为选排球的人数是100人,所以
100
25%400=,
因为选篮球的人数是40人,所以40
10%400
=,
即选排球、篮球的人数占报名的总人数分别是25%和10% .……………………7分
(3)补图. ………………9分
羽毛球 25%
体操40%
25% 排球
10%
蓝球 人数
18.解:(1)把x =1,y =3代入x
m y =
,m =1×3=3,∴x
y 3=.…………………………2分
把x =1,y =
3
1代入kx y =,k =
3
1;∴x y 3
1=.…………………………………………4分
由x
x 33
1=
,解得:x =±3,∵点A 在第一象限,∴x =3.
当x =3时,133
1=⨯=
y ,
∴点A 的坐标(3, 1).……………………………………………………………………7分 (2)-3<x <0或x >3. ……………………………………………………………………9分
19.解:(1) 30°;…………………………………………………………………………3分 (2)由题意知:菱形的边AD =AB′,∴∠ADB′ =∠AB′D , ∵∠CAC′ = 30°,∴∠ADB′ =∠AB′D =75°. 由于菱形的对角线AC=AC′,∴DC′=B ′C . 在△ACC′ 中,可得∠ACC′ =∠AC′C = 75°.
∴∠ADB′ =∠AC′C = 75°,∴B′D ∥CC′.………………………………………………7分 由于直线DC′、CB′ 交于点A ,所以DC′ 与CB′ 不平行.
所以四边形B ′CC ′D 是梯形.……………………………………………………………8分 ∵DC′=B ′C ,
∴四边形B ′CC ′D 是等腰梯形.……………………………………………………………9分
20.解:在Rt △ACM 中,tan ∠CAM= tan 45°=AC
CM =1,∴AC=CM=12, …………………2分
∴BC=AC-AB=12-4=8,
在Rt △BCN 中,tan ∠CBN = tan 60°=
BC
CN =3.
∴CN =3B C =38.…………………………………………………………………………6分 ∴MN =38-12.………………………………………………………………………………8分 答:钓鱼岛东西两端点MN 之间的距离为(38-12)海里.…………………………9分
21.解:(1)由题意,得:70010)60(10100+-=-⨯+=x x y .
答:y 与x 之间的函数关系式是70010+-=x y .………………………………2分 (2)由题意,得:)70010)(40(+--=x x w
280001100102
-+-=x x .
答:w 与x 之间的函数关系式是280001100102
-+-=x x w .……………………5分
(3)由题意,得:⎩
⎨⎧≥≥+-56110
70010x x
解得5956≤≤x .……………………………………………………………………7分
280001100102-+-=x x w ,2250)55(102
+--=x w .
对称轴为55)
10(21100=-⨯-=x ,
又0a <,5956≤≤x 在对称轴右侧,w 随x 增大而减小. ∴当56=x 时,2240)7005610(40-56=+⨯-=
)(最大w . 答:这段时间商场最多获利2240元.………………………………………………10分
22.(1)BD =2CE ;………………………………………………………………2分 (2)结论BD =2CE 仍然成立.……………………………………3分 证明:延长CE 、AB 交于点G . ∵∠1=∠2,∠1=∠3,∠2=∠4,
∴∠3=∠4.
又∵∠CEB =∠GEB =90°,BE =BE . ∴△CBE ≌△GBE.
∴CE =GE , ∴CG =2CE .………………………………………………5分 ∵∠D +∠DCG =∠G +∠DCG =90°. ∴∠D =∠G , ∴sin ∠D = sin ∠G . ∴
CG
AC BD
AB =.
∵AB =AC , ∴BD =CG =2CE.………………………………………………………………8分 (说明:也可以证明△DAB ∽△GAC ).
(3)2n .……………………………………………………………………………………10分
23.解:(1)由题意得⎪⎪⎩
⎪⎪⎨⎧
=++=+-.
2525416,02
5b a b a 解得:⎪⎩⎪⎨⎧=-=.2,21b a
∴.2
522
12
+
+-
=x x y ……………………………………………………3分
(2)设直线AB 为:b kx y +=,则有⎪⎩⎪⎨⎧=+=+-.254,0b k b k 解得⎪⎪⎩
⎪⎪⎨

==.
21,2
1b k ∴.2
12
1+
=
x y 则:D (m ,2522
12
+
+-m m ),C (m ,
2121+
m ),
CD =(2
522
12
++-m m )-(
2
12
1+
m )=22
32
12
++
-m m .
∴CD m CD m S ⋅-+⋅+=)4(2
1)1(2
1
=52
1⨯×CD =
52
1⨯×(22
32
12
++
-m m )
=54
154
52
++
-m m .……………………………………………5分
∵04
5<-
∴当2
3=m 时,S 有最大值.
当2
3=m 时,4
52
12
32
12
12
1=+⨯=
+m .
∴点C (
4
5
,23).………………………………………………………………………………7分 (3)满足条件的点Q 有四个位置,其坐标分别为(-2,2
1-),(1,1),(3,2),(5, 3).
…………11分。

相关文档
最新文档