临潭县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

临潭县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°
2. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.312 3. 已知向量

,其中
.则“
”是“
”成立的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .既不充分又不必要条件 4. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 5. 在ABC ∆中,2
2
tan sin tan sin A B B A =,那么ABC ∆一定是( )
A .锐角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
6. 如图
,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至
少有两个数位于同行或同列的概率是( )
A .
B .
C .
D . 7. 函数f (x )=x 3﹣3x 2+5的单调减区间是( )
A .(0,2)
B .(0,3)
C .(0,1)
D .(0,5)
8. 圆2
2
2
(2)x y r -+=(0r >)与双曲线2
2
13
y x -=的渐近线相切,则r 的值为( )
A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.
9. 已知集合A={0,m ,m 2﹣3m+2},且2∈A ,则实数m 为( )
A .2
B .3
C .0或3
D .0,2,3均可
10.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为
24316
π
同一球面上,则PA =( )
A .3
B .
72 C
. D .92
【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
11.已知定义在R 上的函数f (x )满足f (x )=
,且f (x )=f (x+2),g (x )=

则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )
A .12
B .11
C .10
D .9
12.已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1 和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .2015
2
B .2015
3
C .20152
3
D .20152
2
二、填空题
13
.当
时,4x
<log a x ,则a 的取值范围 .
14.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被
抽到的概率都为,则总体的个数为 .
15.如图,在矩形ABCD
中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________
16.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 . 17
.已知双曲线
的一条渐近线方程为y=x ,则实数m 等于 .
18.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R x
f x x a a x =+-∈,若曲线122e e 1
x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.
三、解答题
19.(本小题满分13分)
设1
()1f x x
=
+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.
(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫
-⎨⎬-⎩⎭
为等比数列;
(Ⅱ)证明:存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.

20.已知函数f (x )=|x ﹣m|,关于x 的不等式f (x )≤3的解集为[﹣1,5]. (1)求实数m 的值;
(2)已知a ,b ,c ∈R ,且a ﹣2b+2c=m ,求a 2+b 2+c 2
的最小值.
21.如图,在四棱柱中,
底面




(Ⅰ)求证:平面

(Ⅱ)求证:; (Ⅲ)若
,判断直线
与平面
是否垂直?并说明理由.
22.已知抛物线C:x2=2y的焦点为F.
(Ⅰ)设抛物线上任一点P(m,n).求证:以P为切点与抛物线相切的方程是mx=y+n;
(Ⅱ)若过动点M(x0,0)(x0≠0)的直线l与抛物线C相切,试判断直线MF与直线l的位置关系,并予以证明.
23.已知函数,.
(Ⅰ)求函数的最大值;
(Ⅱ)若,求函数的单调递增区间.
24.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)
的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.
(1)求家庭的月储蓄对月收入的回归方程;
(2)判断月收入与月储蓄之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
临潭县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】A
【解析】解:根据余弦定理可知cosA=
∵a 2=b 2+bc+c 2, ∴bc=﹣(b 2+c 2﹣a 2

∴cosA=﹣
∴A=120° 故选A
2. 【答案】A
【解析】解:由题意可知:同学3次测试满足X ∽B (3,0.6),
该同学通过测试的概率为=0.648.
故选:A .
3. 【答案】A
【解析】【知识点】平面向量坐标运算
【试题解析】若,则成立;
反过来,若
,则

所以“”是“”成立的充分而不必要条件。

故答案为:A 4. 【答案】C 【解析】
试题分析:()2222log 2log 2log 1log g x x x x ==+=+,故向上平移个单位. 考点:图象平移.
5. 【答案】D 【解析】
试题分析:在ABC ∆中,2
2
tan sin tan sin A B B A =,化简得
22sin sin sin sin cos cos A B
B A A B
=,解得 sin sin sin cos sin cos cos cos B A
A A
B B A B
=⇒=,即s
i n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或
2
A B π
+=
,所以三角形为等腰三角形或直角三角形,故选D .
考点:三角形形状的判定.
【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2
A B π
+=是试
题的一个难点,属于中档试题. 6. 【答案】
D
【解析】
古典概型及其概率计算公式. 【专题】计算题;概率与统计.
【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得
结论.
【解答】解:从9个数中任取3个数共有C 93
=84种取法,三个数分别位于三行或三列的情况有6种;
∴所求的概率为=
故选D .
【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.
7. 【答案】A
【解析】解:∵f (x )=x 3﹣3x 2
+5,
∴f ′(x )=3x 2
﹣6x ,
令f ′(x )<0,解得:0<x <2, 故选:A .
【点评】本题考察了函数的单调性,导数的应用,是一道基础题.
8. 【答案】C
9. 【答案】B
【解析】解:∵A={0,m ,m 2
﹣3m+2},且2∈A ,
∴m=2或m 2
﹣3m+2=2,
解得m=2或m=0或m=3.
当m=0时,集合A={0,0,2}不成立. 当m=2时,集合A={0,0,2}不成立. 当m=3时,集合A={0,3,2}成立.
故m=3. 故选:B .
【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证.
10.【答案】B
【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O E
P A ,所以OE ⊥底面ABCD ,则O
到四棱锥的所有顶点的距离相等,即O 球心,均为12PC =
=
可得34243316ππ=,解得7
2
PA =,故选B .
11.【答案】B
【解析】解:∵f (x )=f (x+2),∴函数f (x )为周期为2的周期函数, 函数g (x )=,其图象关于点(2,3)对称,如图,函数f (x )的图象也关于点(2,3)
对称,
函数f (x )与g (x )在[﹣3,7]上的交点也关于(2,3)对称, 设A ,B ,C ,D 的横坐标分别为a ,b ,c ,d , 则a+d=4,b+c=4,由图象知另一交点横坐标为3, 故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11, 即函数y=f (x )﹣g (x )在[﹣3,7]上的所有零点之和为11.
故选:B .
【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.
12.【答案】C 【解析】
试题分析:因为函数2
2
()32f x x ax a =+-,()0f x ≤对任意的[]1,1x ∈-都成立,所以()()
10
10f f -≤⎧⎪⎨≤⎪⎩,解得
3a ≥或1a ≤-,又因为(0,3]a ∈,所以3a =,在和两数间插入122015,...a a a 共2015个数,使之与,构成等
比数列,T 122015...a a a =,201521...T a a a =,
两式相乘,根据等比数列的性质得()()
2015
2015
2
1201513T a a ==⨯,
T =20152
3
,故选C.
考点:1、不等式恒成立问题;2、等比数列的性质及倒序相乘的应用.
二、填空题
13.【答案】

【解析】
解:当
时,函数y=4x
的图象如下图所示
若不等式4x <log a x 恒成立,则y=log a x 的图象恒在y=4x
的图象的上方(如图中虚线所示)
∵y=log a x 的图象与y=4x
的图象交于(,2)点时,
a=
故虚线所示的y=log a x 的图象对应的底数a
应满足
<a <1
故答案为:(,1)
14.【答案】 300 .
【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,
所以总体中的个体的个数为15÷=300.
故答案为:300.
【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.
15.【答案】21
2
【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.
因为BE ⊥AC ,AB =3,所以AE =3
2
,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =21
2.
16.【答案】2e 【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率. 17.【答案】 4 .
【解析】解:∵双曲线
的渐近线方程为 y=x , 又已知一条渐近线方程为y=x ,∴
=2,m=4,
故答案为4.
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为
y=x ,是解题
的关键.
18.【答案】1,e
⎛⎤-∞ ⎥⎝

【解析】结合函数的解析式:1
22e e 1x x y +=+可得:()
()
122
221'1
x x x e e y e +-=+, 令y ′=0,解得:x =0,
当x >0时,y ′>0,当x <0,y ′<0,
则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],
结合函数的解析式:()()R lnx
f x x a a x =+-∈可得:()22ln 1'x x f x x
-+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.
假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.
令函数()ln x
f x x a x x =
+-=. 设()ln x g x x =,求导()2
1ln 'x
g x x -=,
当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e
=, 当x →0时,a →-∞, ∴a 的取值范围1,e
⎛⎤-∞ ⎥⎝

.
点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.
(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.
三、解答题
19.【答案】
【解析】解:证明:2
()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴211
2
22
11λλλλ⎧-=⎪⎨-=⎪⎩. ∵1
21111111
121222222221
11111n n n n n n n n n n
a a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)
11120a a λλ-≠-,12

λ≠,
∴数列12n n a a λλ⎧⎫
-⎨
⎬-⎩⎭
为等比数列. (4分)
(Ⅱ)证明:设m =
()f m m =. 由112a =及111n n
a a +=+得223a =,335a =,∴130a a m <<<.
∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *
∈时,2121222n n n n a a m a a -++<<<<.
①当1n =时,命题成立. (9分)
②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>
由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)
由①②知,对一切n N *
∈命题成立,即存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
20.【答案】
【解析】解:(1)|x ﹣m|≤3⇔﹣3≤x ﹣m ≤3⇔m ﹣3≤x ≤m+3
,由题意得,解得m=2;
(2)由(1)可得a ﹣2b+2c=2,
由柯西不等式可得(a 2+b 2+c 2)[12+(﹣2)2+22]≥(a ﹣2b+2c )2
=4,
∴a2+b2+c2≥
当且仅当,即a=,b=﹣,c=时等号成立,
∴a2+b2+c2的最小值为.
【点评】本题主要考查绝对值三角不等式、柯西不等式的应用,属于基础题.
21.【答案】
【解析】【知识点】垂直平行
【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.
因为,平面,平面,
所以平面.
又因为,
所以平面平面.
又因为平面,
所以平面.
(Ⅱ)证明:因为底面,底面,
所以.
又因为,,
所以平面.
又因为底面,
所以.
(Ⅲ)结论:直线与平面不垂直.
证明:假设平面,
由平面,得.
由棱柱中,底面,
可得,,
又因为,
所以平面,
所以.
又因为,
所以平面,
所以.
这与四边形为矩形,且矛盾,
故直线与平面不垂直.
22.【答案】
【解析】证明:(Ⅰ)由抛物线C:x2=2y得,y=x2,则y′=x,
∴在点P(m,n)切线的斜率k=m,
∴切线方程是y﹣n=m(x﹣m),即y﹣n=mx﹣m2,
又点P(m,n)是抛物线上一点,
∴m2=2n,
∴切线方程是mx﹣2n=y﹣n,即mx=y+n …
(Ⅱ)直线MF与直线l位置关系是垂直.
由(Ⅰ)得,设切点为P(m,n),则切线l方程为mx=y+n,
∴切线l的斜率k=m,点M(,0),
又点F(0,),
此时,k MF====…
∴k•k MF=m×()=﹣1,
∴直线MF⊥直线l …
【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题.
23.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合
【试题解析】(Ⅰ)由已知
当,即,时,
(Ⅱ)当时,递增
即,令,且注意到
函数的递增区间为
24.【答案】
【解析】解:(1)由题意,n=10,=x
=8,=y i=2,
i
∴b==0.3,a=2﹣0.3×8=﹣0.4,
∴y=0.3x﹣0.4;
(2)∵b=0.3>0,
∴y与x之间是正相关;
(3)x=7时,y=0.3×7﹣0.4=1.7(千元).。

相关文档
最新文档