通州区第一中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通州区第一中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.设有直线m、n和平面α、β,下列四个命题中,正确的是()
A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥β
C.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α
2.命题“∀x∈R,2x2+1>0”的否定是()
A.∀x∈R,2x2+1≤0 B.
C.D.
3.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的()
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知直线l1经过A(﹣3,4),B(﹣8,﹣1)两点,直线l2的倾斜角为135°,那么l1与l2()A.垂直 B.平行 C.重合 D.相交但不垂直
5.已知函数f(x)=x3+mx2+(2m+3)x(m∈R)存在两个极值点x1,x2,直线l经过点A(x1,x12),B
(x2,x22),记圆(x+1)2+y2=上的点到直线l的最短距离为g(m),则g(m)的取值范围是()
A.[0,2] B.[0,3] C.[0,)D.[0,)
6.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()
A.y=sinx B.y=1g2x C.y=lnx D.y=﹣x3
【考点】函数单调性的判断与证明;函数奇偶性的判断.
【专题】函数的性质及应用.
【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.
7.已知命题p:“∀x∈R,e x>0”,命题q:“∃x0∈R,x0﹣2>x02”,则()
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题
8.平面α与平面β平行的条件可以是()
A.α内有无穷多条直线与β平行
B.直线a∥α,a∥β
C .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥α
D .α内的任何直线都与β平行
9. “方程
+
=1表示椭圆”是“﹣3<m <5”的( )条件.
A .必要不充分
B .充要
C .充分不必要
D .不充分不必要
10.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )
A .20,2
B .24,4
C .25,2
D .25,4 11.给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )
A .0
B .1
C .2
D .3
12.若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()2
2
210x y -++= B .()()2
2
214x y -++= C .()()2
2
218x y -++= D .()()2
2
2116x y -++=
二、填空题
13.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 .
14.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)
15.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,
3=AC ,32===BD CD BC ,则球O 的表面积为 .
16.若“x <a ”是“x 2﹣2x ﹣3≥0”的充分不必要条件,则a 的取值范围为 .
17.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.
18.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积12
S c =, 则边c 的最小值为_______.
【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.
三、解答题
19.如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D 、E 分别是AC 、AB 上的点,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图
2.
(Ⅰ)求证:平面A 1BC ⊥平面A 1DC ;
(Ⅱ)若CD=2,求BD 与平面A 1BC 所成角的正弦值; (Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.
20.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;
(Ⅱ)设B=90°,且a=,求△ABC的面积.
21.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;
(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.
22.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.
23.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.
(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.
24.设集合{}
()(
){
}
2
2
2
|320,|2150A x x x B x x a x a =-+==+-+-=.
(1)若{}2A B =,求实数的值;
(2)A B A =,求实数的取值范围.1111]
通州区第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;
C不对,由面面垂直的性质定理知,m必须垂直交线;
故选:D.
2.【答案】C
【解析】解:∵命题∀x∈R,2x2+1>0是全称命题,
∴根据全称命题的否定是特称命题得命题的否定是:
“”,.
故选:C.
【点评】本题主要考查含有量词的命题的否定,要求掌握特称命题的否定是全称命题,全称命题的否定是特称命题,比较基础.
3.【答案】A
【解析】解:由“|x﹣2|<1”得1<x<3,
由x2+x﹣2>0得x>1或x<﹣2,
即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,
故选:A.
4.【答案】A
【解析】解:由题意可得直线l1的斜率k1==1,
又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,
显然满足k1•k2=﹣1,∴l1与l2垂直
故选A
5.【答案】C
【解析】解:函数f(x)=x3+mx2+(2m+3)x的导数为f′(x)=x2+2mx+2m+3,
由题意可得,判别式△>0,即有4m2﹣4(2m+3)>0,
解得m>3或m<﹣1,
又x1+x2=﹣2m,x1x2=2m+3,
直线l经过点A(x1,x12),B(x2,x22),
即有斜率k==x1+x2=﹣2m,
则有直线AB:y﹣x12=﹣2m(x﹣x1),
即为2mx+y﹣2mx1﹣x12=0,
圆(x+1)2+y2=的圆心为(﹣1,0),半径r为.
则g(m)=d﹣r=﹣,
由于f′(x1)=x12+2mx1+2m+3=0,
则g(m)=﹣,
又m>3或m<﹣1,即有m2>1.
则g(m)<﹣=,
则有0≤g(m)<.
故选C.
【点评】本题考查导数的运用:求极值,同时考查二次方程韦达定理的运用,直线方程的求法和点到直线的距离公式的运用,以及圆上的点到直线的距离的最值的求法,属于中档题.
6.【答案】B
【解析】解:根据y=sinx图象知该函数在(0,+∞)不具有单调性;
y=lg2x=xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B正确;
根据y=lnx的图象,该函数非奇非偶;
根据单调性定义知y=﹣x3在(0,+∞)上单调递减.
故选B.
【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.
7.【答案】C
【解析】解:命题p:“∀x∈R,e x>0”,是真命题,
命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,
即:+<0,显然是假命题,
∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,
故选:C.
【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.
8.【答案】D
【解析】解:当α内有无穷多条直线与β平行时,a与β可能平行,也可能相交,故不选A.
当直线a∥α,a∥β时,a与β可能平行,也可能相交,故不选B.
当直线a⊂α,直线b⊂β,且a∥β时,直线a 和直线b可能平行,也可能是异面直线,故不选C.
当α内的任何直线都与β平行时,由两个平面平行的定义可得,这两个平面平行,
故选D.
【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况.
9.【答案】C
【解析】解:若方程+=1表示椭圆,则满足,即,
即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,
当m=1时,满足﹣3<m<5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.
故“方程+=1表示椭圆”是“﹣3<m<5”的充分不必要条件.
故选:C.
【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.
10.【答案】C
【解析】
考点:茎叶图,频率分布直方图.
11.【答案】B
【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B.
考点:几何体的结构特征.
12.【答案】B
【解析】
考点:圆的方程.1111]
二、填空题
13.【答案】(﹣1,﹣).
【解析】解:∵S n =7n+,当且仅当n=8时S n取得最大值,
∴,即,解得:,
综上:d的取值范围为(﹣1,﹣).
【点评】本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.
14.【答案】15
【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),
∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,
根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种
故答案为:15.
【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.
15.【答案】
16π
【解析】如图所示,∵222AB AC BC +=,∴CAB ∠为直角,即过△ABC 的小圆面的圆心为BC 的中点O ',ABC △和DBC △所在的平面互相垂直,则球心O 在过DBC △的圆面上,即DBC △的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为2R =,球的表面积为24π16πS R ==
16.【答案】 a ≤﹣1 .
【解析】解:由x 2
﹣2x ﹣3≥0得x ≥3或x ≤﹣1,
若“x <a ”是“x 2
﹣2x ﹣3≥0”的充分不必要条件,
则a ≤﹣1, 故答案为:a ≤﹣1.
【点评】本题主要考查充分条件和必要条件的应用,根据条件求出不等式的等价是解决本题的关键.
17.【答案】 4
【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,
故后排有三个,故此几何体共有4个木块组成. 故答案为:4.
18.【答案】1
三、解答题
19.【答案】
【解析】
【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.
(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.
(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=
(0<x<6),即可得出.
【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,
∴在图2中,DE⊥A1D,DE⊥DC,
又∵A1D∩DC=D,∴DE⊥平面A1DC,
∵DE∥BC,∴BC⊥平面A1DC,
∵BC⊂平面A1BC,∴平面A1BC⊥平面A1DC.
(Ⅱ)解:如图建立空间直角坐标系:A1(0,0,4)B(3,2,0),C(0,2,0),D(0,0,0),
E(2,0,0).
则,,
设平面A1BC的法向量为
则,解得,即
则BE与平面所成角的正弦值为
(Ⅲ)解:设CD=x(0<x<6),则A1D=6﹣x,在(2)的坐标系下有:A1(0,0,6﹣x),B(3,x,0),
∴==(0<x<6),
即当x=3时,A1B长度达到最小值,最小值为.
20.【答案】
【解析】解:(I)∵sin2B=2sinAsinC,
由正弦定理可得:>0,
代入可得(bk)2=2ak•ck,
∴b2=2ac,
∵a=b,∴a=2c,
由余弦定理可得:cosB===.
(II)由(I)可得:b2=2ac,
∵B=90°,且a=,
∴a2
+c2=b2=2ac,解得a=c=.
∴S△ABC==1.
21.【答案】
【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.
又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,
∠EBM直线BE与平面ABB1A1所成的角.
设正方体的棱长为2,则EM=AD=2,BE=,
于是在Rt△BEM中,
即直线BE与平面ABB1A1所成的角的正弦值为.
(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,
事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,
因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,
因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E 共面,所以BG⊂平面A1BE
因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且
FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.
【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.
22.【答案】
【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},
∴∁U B={x|x≥4},
又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},
∴A∩(∁U B)={x|4≤x≤5};
(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,
∴a的范围为a≤﹣1.
【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.
23.【答案】
【解析】(本题满分为12分)
解:(1)∵由题意得,sinA=sin (B+C ), ∴sinBcosC+sinCcosB ﹣sinCcosB ﹣sinBsinC=0,…(2分)
即sinB (cosC ﹣sinC )=0,
∵sinB ≠0, ∴tanC=
,故C=
.…(6分) (2)∵ab ×=
, ∴ab=4,①
又c=2,…(8分)
∴a 2+b 2
﹣2ab ×=4,
∴a 2+b 2=8.②
∴由①②,解得a=2,b=2.…(12分)
【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.
24.【答案】(1)1a =或5a =-;(2)3a >. 【解析】
(2){}{}1,2,1,2A A B == .
①()()
22
,2150B x a x a =∅+-+-=无实根,0∆<, 解得3a >; ② B 中只含有一个元素,()()
22
2150x a x a +-+-=仅有一个实根,
{}{}0,3,2,2,1,2a B A B ∆===-=-故舍去;
③B 中只含有两个元素,使 ()()
22
2150x a x a +-+-= 两个实根为和,
需要满足()2
212121=a 5
a ⎧+=--⎪⎨
⨯-⎪⎩方程组无根,故舍去, 综上所述3a >]
考点:集合的运算及其应用.。