玉龙纳西族自治县第二中学2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玉龙纳西族自治县第二中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )=+6x ﹣1的极值点,则log 2
(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2
B .3
C .4
D .5
2. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15
C .10,10,30
D .10,20,20
3. P 是双曲线
=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2
的内切圆圆心的横坐标为( )
A .a
B .b
C .c
D .a+b ﹣c
4. 已知{}n a 是等比数列,251
24
a a ==,,则公比q =( ) A .12-
B .-2
C .2
D .12
5. 若函数2
()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( )
A .(]
[),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞
6. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:
乙校:
则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,9
7. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )
A .7
B .6
C .5
D .4
8. 已知点P 是双曲线C :22
221(0,0)x y a b a b
-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且
12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率
是( )
A.5
B.2 D.2
【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 9. 在中,、、分别为角
、
、
所对的边,若
,则此三角形的形状一定是
( ) A .等腰直角 B .等腰或直角 C .等腰
D .直角
10.如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,
),则f (x )的图象的一个对
称中心是( )
A .(﹣,0)
B .(﹣,0)
C .(,0)
D .(,0)
11.已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )
A .﹣3
B .3
C .
D .±3
12.以下四个命题中,真命题的是( ) A .2
,2x R x x ∃∈≤-
B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<
C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数
D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件
【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.
二、填空题
13.数据﹣2,﹣1,0,1,2的方差是 .
14.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )
<0的实数m 的取值范围是 .
15.已知面积为
的△ABC 中,∠A=
若点D 为BC 边上的一点,且满足
=
,则当AD 取最小时,
BD 的长为 .
16.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .
17.如图,在矩形ABCD 中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________
18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .
三、解答题
19.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.
20.(本小题满分13分)
在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2
ABD π
∠=
,AD =22AB DC ==,F
为PA 的中点.
(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;
(Ⅱ)若PA PB PD ===P BDF -的体积.
21.【启东中学2018届高三上学期第一次月考(10月)】设1a >,函数()()
21x
f x x e a =+-.
(1)证明
在(上仅有一个零点;
(2)若曲线在点
处的切线与轴平行,且在点
处的切线与直线
平行,(O 是坐标原点),
证明
:1m ≤
22.由四个不同的数字1,2,4,x 组成无重复数字的三位数. (1)若x=5,其中能被5整除的共有多少个?
A
B
C
D
P
F
(2)若x=9,其中能被3整除的共有多少个?
(3)若x=0,其中的偶数共有多少个?
(4)若所有这些三位数的各位数字之和是252,求x.
23.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.
(1)求数列{a n}的通项公式;
(2)令b n=n(a n+1),求数列{b n}的前n项和T n.
24.设函数f(x)=lnx﹣ax2﹣bx.
(1)当a=2,b=1时,求函数f(x)的单调区间;
(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求
实数a的取值范围;
(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.
玉龙纳西族自治县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】C
【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,
∵a2014,a2016是函数f(x)=+6x﹣1的极值点,
∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.
数列{a n}中,满足a n+2=2a n+1﹣a n,
可知{a n}为等差数列,
∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,
从而log2(a2000+a2012+a2018+a2030)=log216=4.
故选:C.
【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.
2.【答案】B
【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为
800×=20,600×=15,600×=15,
故选B.
【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.
3.【答案】A
【解析】解:如图设切点分别为M,N,Q,
则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.
由双曲线的定义,PF1﹣PF2=2a.
由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,
∵F1Q+F2Q=F1F2=2c,
∴F2Q=c﹣a,OQ=a,Q横坐标为a.
故选A.
【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.
4. 【答案】D 【解析】
试题分析:∵在等比数列}{a n 中,41,2a 52==a ,2
1,81q 253
=∴==∴q a a . 考点:等比数列的性质. 5. 【答案】A 【解析】
试题分析:根据()2
48f x x kx =--可知,函数图象为开口向上的抛物线,对称轴为8
k
x =
,所以若函数()f x 在区间[]5,8上为单调函数,则应满足:
58k ≤或88
k
≥,所以40k ≤或64k ≥。
故选A 。
考点:二次函数的图象及性质(单调性)。
6. 【答案】B
【解析】 1从甲校抽取110× 1 200
1 200+1 000
=60人,
从乙校抽取110× 1 000
1 200+1 000
=50人,故x =10,y =7.
7. 【答案】D
【解析】解:由题意,S k+2﹣S k =
,
即3×2k =48,2k
=16,
∴k=4. 故选:D .
【点评】本题考查等比数列的通项公式,考查了等比数列的前n 项和,是基础题.
8.【答案】A.
【解析】
9.【答案】B
【解析】
因为,所以由余弦定理得,
即,所以或,
即此三角形为等腰三角形或直角三角形,故选B
答案:B
10.【答案】B
【解析】解:由函数图象可知:A=2,由于图象过点(0,),
可得:2sinφ=,即sinφ=,由于|φ|<,
解得:φ=,
即有:f(x)=2sin(2x+).
由2x+=kπ,k∈Z可解得:x=,k∈Z,
故f(x)的图象的对称中心是:(,0),k∈Z
当k=0时,f(x)的图象的对称中心是:(,0),
故选:B.
【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.
11.【答案】B
【解析】解:角θ的终边经过点P(4,m),且sinθ=,
可得,(m>0)
解得m=3.
故选:B.
【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.
12.【答案】D
二、填空题
13.【答案】2.
【解析】解:∵数据﹣2,﹣1,0,1,2,
∴=,
∴S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2,
故答案为2;
【点评】本题考查方差的定义与意义:一般地设n个数据,x
,x2,…x n的平均数,是一道基础题;
1
14.【答案】[﹣,].
【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,
∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),
即,即,得﹣≤m≤,
故答案为:[﹣,]
【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.
15.【答案】.
【解析】解:AD取最小时即AD⊥BC时,根据题意建立如图的平面直角坐标系,
根据题意,设A(0,y),C(﹣2x,0),B(x,0)(其中x>0),
则=(﹣2x,﹣y),=(x,﹣y),
∵△ABC的面积为,
∴⇒=18,
∵=cos=9,
∴﹣2x2+y2=9,
∵AD⊥BC,
∴S=••=⇒xy=3,
由得:x=,
故答案为:.
【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.
16.【答案】
.
【解析】解:∵△AOB 是直角三角形(O 是坐标原点),
∴圆心到直线ax+by=1的距离d=,
即d=
=
,
整理得a 2+2b 2
=2,
则点P (a ,b )与点Q (1,0)之间距离d==≥,
∴点P (a ,b )与点(1,0)之间距离的最小值为.
故答案为:
.
【点评】本题主要考查直线和圆的位置公式的应用以及两点间的距离公式,考查学生的计算能力.
17.【答案】21
2
【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.
因为BE ⊥AC ,AB =3,所以AE =3
2
,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2
-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =21
2.
18.【答案】
4
【解析】
考
点:正弦定理.
【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.
三、解答题
19.【答案】
【解析】解:由题意可设抛物线的方程y 2
=2px (p ≠0),直线与抛物线交与A (x 1,y 1),B (x 2,y 2)
联立方程可得,4x 2
+(4﹣2p )x+1=0
则
,,y 1﹣y 2=2(x 1﹣x 2)
=
=
=
=
解得p=6或p=﹣2
∴抛物线的方程为y 2=12x 或y 2
=﹣4x
【点评】本题主要考查了抛物线的标准方程.解题的关键是对抛物线基本性质和标准方程的熟练应用
20.【答案】(本小题满分13分)
解:(Ⅰ)当E 为PB 的中点时,//CE 平面PAD . (1分) 连结EF 、EC ,那么//EF AB ,1
2
EF AB =. ∵//DC AB ,1
2
DC AB =
,∴//EF DC ,EF DC =,∴//EC FD . (3分)
又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分) (Ⅱ)设O 为AD 的中点,连结OP 、OB ,∵PA PD =,∴OP AD ⊥, 在直角三角形ABD 中,1
2
OB AD OA =
=, 又∵PA PB =,∴PAO PBO ∆≅∆,∴POA POB ∠=∠,∴OP OB ⊥,
∴OP ⊥平面ABD . (10分)
2PO ===
,2BD ==
∴三棱锥P BDF -的体积1112
222233
P BDF P ABD V V --==⨯⨯⨯=. (13分)
21.【答案】(1)f x ()在∞+∞(﹣,)上有且只有一个零点(2)证明见解析 【解析】试题分析:
试题解析:
(1)()()
()2
2211x
x f x e
x x e x +='=++,()0f x ∴'≥,
()(
)2
1x
f x x e
a ∴=+-在(),-∞+∞上为增函数.
1a >,()010f a ∴=-<,
又
(
)
1f
a a =-=-,
10,1a
->∴>,即0f
>,
由零点存在性定理可知,()f x 在(
),-∞+∞上为增函数,且()00f f
⋅<,
A
B C
D
P
O
E F
()
f x ∴在(上仅有一个零点。
(2)()()2
1x
f x e x ='+,设点()00,P x y ,则()()0
2
001x f x e
x '=+,
()y f x =在点P 处的切线与x 轴平行,()()0
2
0010x
f x e x ∴+'==,01x ∴=-,
21,P a e ⎛⎫
∴-- ⎪⎝⎭
,2OP k a e ∴=-,
点M 处切线与直线OP 平行,
∴点M 处切线的斜率()()2
21m k f m e m a e
=+'==-
,
又题目需证明1m ≤
,即()3
21m a e +≤-,
则只需证明()3211m m e m +≤+,即1m
m e +≤。
令()()1m
g m e m =-+,则()1m
g m e '=-,
易知,当(),0m ∈-∞时,()0g m '<,单调递减, 当()0,m ∈+∞时,()0g m '>,单调递增,
()()min 00g m g ∴==,即()()10m g m e m =-+≥,
1m m e ∴+≤,
1m ∴≤,得证。
22.【答案】
【解析】
【专题】计算题;排列组合.
【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;
(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;
(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;
(4)分析易得x=0时不能满足题意,进而讨论x ≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x ),解可得x 的值.
【解答】解:(1)若x=5,则四个数字为1,2,4,5; 又由要求的三位数能被5整除,则5必须在末尾,
在1、2、4三个数字中任选2个,放在前2位,有A 32
=6种情况,
即能被5整除的三位数共有6个;
(2)若x=9,则四个数字为1,2,4,9;
又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,
取出的三个数字为1、2、9时,有A33=6种情况,
取出的三个数字为2、4、9时,有A33=6种情况,
则此时一共有6+6=12个能被3整除的三位数;
(3)若x=0,则四个数字为1,2,4,0;
又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,
当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,
当末位是2或4时,有A21×A21×A21=8种情况,
此时三位偶数一共有6+8=14个,
(4)若x=0,可以组成C31×C31×C21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,
则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,
故x=0不成立;
当x≠0时,可以组成无重复三位数共有C41×C31×C21=4×3×2=24种,共用了24×3=72个数字,
则每个数字用了=18次,
则有252=18×(1+2+4+x),解可得x=7.
【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x为0与否两种情况讨论.
23.【答案】解:(1)∵a n+1=2a n+1,
∴a n+1+1=2(a n+1),
又∵a1=1,
∴数列{a n+1}是首项、公比均为2的等比数列,
∴a n+1=2n,
∴a n=﹣1+2n;6分
(2)由(1)可知b n=n(a n+1)=n•2n=n•2n﹣1,
∴T n=1•20+2•2+…+n•2n﹣1,
2T n=1•2+2•22…+(n﹣1)•2n﹣1+n•2n,
错位相减得:﹣T n=1+2+22…+2n﹣1﹣n•2n
=﹣n•2n
=﹣1﹣(n﹣1)•2n,
于是T n =1+(n ﹣1)•2n .
则所求和为12n
n 6分
24.【答案】
【解析】解:(1)依题意,知f (x )的定义域为(0,+∞).… 当a=2,b=1时,f (x )=lnx ﹣x 2
﹣x ,
f ′(x )=﹣2x ﹣1=﹣.
令f ′(x )=0,解得x=.…
当0<x <时,f ′(x )>0,此时f (x )单调递增;
当x >时,f ′(x )<0,此时f (x )单调递减.
所以函数f (x )的单调增区间(0,),函数f (x )的单调减区间(,+∞).…
(2)F (x )=lnx+,x ∈[2,3],
所以k=F ′(x 0)=
≤,在x 0∈[2,3]上恒成立,…
所以a ≥(﹣x 02
+x 0)max ,x 0∈[2,3]…
当x 0=2时,﹣x 02
+x 0取得最大值0.所以a ≥0.…
(3)当a=0,b=﹣1时,f (x )=lnx+x ,
因为方程f (x )=mx 在区间[1,e 2
]内有唯一实数解,
所以lnx+x=mx 有唯一实数解.
∴m=1+
,…
设g (x )=1+
,则g ′(x )=
.…
令g ′(x )>0,得0<x <e ; g ′(x )<0,得x >e ,
∴g (x )在区间[1,e]上是增函数,在区间[e ,e 2
]上是减函数,…1 0分
∴g (1)=1,g (e 2)=1+
=1+,g (e )=1+,…
所以m=1+,或1≤m <1+.…。