2020-2021备战中考数学压轴题之圆与相似(备战中考题型整理,突破提升)附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021备战中考数学压轴题之圆与相似(备战中考题型整理,突破提升)附答案
一、相似
1.如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB延长线于点E,垂足为点F.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径R=5,tanC= ,求EF的长.
【答案】(1)解:DE是⊙O的切线,理由如下:如图,连接OD,BD,
∵AB是⊙O的直径,∴∠ADB=∠90°,∴BD⊥AC.
∵AB=BC,∴AD=DC.∵OC=OB,∴OD∥BA,∵DE⊥BC,∴DE⊥OD,∴直线DE是⊙O的切线.
(2)解:过D作DH⊥BC于H,∵⊙O的半径R=5,tanC= ,∴BC=10,设BD=k,CD=2k,∴BC= k=10,∴k=2 ,∴BD=2 ,CD=4 ,∴DH= =4,∴OH= =3,∵DE⊥OD,DH⊥OE,∴OD2=OH•OE,∴OE= ,∴BE= ,∵DE⊥AB,
∴BF∥OD,∴△BFE∽△ODE,∴,即,∴BF=2,∴EF= =

【解析】【分析】(1)DE是⊙O的切线,理由如下:如图,连接OD,BD,根据直径所对的圆周角的直角得出∠ADB=∠90°,根据等腰三角形的三线合一得出AD=DC,连接三角形两边中点的线段是三角形的中位线,又三角形的中位线平行于第三边,得出OD∥BA,又DE⊥BC,根据平行线的性质得出DE⊥OD,从而得出结论:直线DE是⊙O的切线;
(2)过D作DH⊥BC于H,根据正切函数的定义,由tanC=,可以设BD=k,CD=2k,根据勾股定理表示出BC,再根据BC=10,列出方程,求解得出k的值,进而得出CD,BD的长,根据面积法即可算出DH的长,再根据勾股定理算出OH的长,然后判断出△ODH与△ODE 相似,根据相似三角形对应边成比例即可得出OD2=OH•OE,根据等积式算出OE,的长,从而根据线段的和差算出BE的长,再判断出△BFE∽△ODE,根据相似三角形对应边成比例
得出,根据比例式即可算出BF,最后根据勾股定理算出FE的长。

2.如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=ax2+ x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
【答案】(1)解:∵A(0,4),∴c=4,,把点C坐标(8,0)代入解析式,得:a=-
,∴二次函数表达式为;
(2)解:令y=0,则解得,x1=8,x2="-2" ,∴点B的坐标为(-2,0),由已知可得,在Rt△AOB中,AB----2=BO2+AO2=22+42=20,在Rt△AOC中AC----2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB----2+ AC----2=20+80=102=BC2,∴△ABC是直角三角形;
(3)解:由勾股定理先求出AC,AC= ,①在x轴负半轴,当AC=AN 时,NO=CO=8,∴此时N(-8,0);②在x轴负半轴,当AC=NC时,NC=AC= ,∵CO=8,∴NO= -8,∴此时N(8- ,0);③在x轴正半轴,当AN=CN时,设CN=x,则AN=x,ON=8-x,在Rt△AON中,+ = ,解得:x=5,∴ON=3,∴此时N(3,0);④在x轴正半轴,当AC=NC时,AC=NC= ,∴ON= +8,∴此时N(+8,0);综上所述:满足条件的N点坐标是(-8,0)、(8- ,0)、(3,0)、(8+ ,0);
(4)解:设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,
∴MD∥OA,∴△BMD∽△BAO,,∵MN∥AC,∴,∴,∵OA=4,BC=10,BN=n+2,∴MD= (n+2),∵S△AMN= S△ABN- S△BMN=
=- +5,∵- <0,∴n=3时,S有最大值,∴当△AMN面积最大时,N点坐标为(3,0).
【解析】【分析】(1)用待定系数法可求二次函数的解析式;
(2)因为抛物线交x轴于B、C两点,令y=0,解关于x的一元二次方程可得点B的坐标,然后计算AB、BC、AC的长,用勾股定理的逆定理即可判断;
(3)由(2)可知AC的长,由题意可知有4种情况:①在x轴负半轴,当AC=AN时;
②②在x轴负半轴,当AC=NC时;③在x轴正半轴,当AN=CN时;④在x轴正半轴,当AC=NC时;结合已知条件易求解;
(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,由平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似可得△BMD∽△BAO,于是有比
例式,根据平行线分线段成比例定理可得,所以,将已知线段代
入比例式可将MD用含n的代数式表示出来,根据三角形的构成可得S△AMN= S△ABN- S△BMN=
⋅ BN⋅OA−BN⋅MD,将BN、MD代入可得关于n的二次函数,配成顶点式根据二次函数的性质即可求解。

3.已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.
(1)求抛物线的表达式;
(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,求tan∠CPA的值;
(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB.若存在,求出点E的坐标;若不存在,请说明理由.
【答案】(1)解:∵抛物线与x轴交于点A(1,0),B(5,0),∴ ,
解得
∴抛物线的解析式为
(2)解:∵ A(1,0),B(5,0),
∴ OA=1,AB=4.
∵ AC=AB且点C在点A的左侧,
∴ AC=4 .
∴ CB=CA+AB=8.
∵线段CP是线段CA、CB的比例中项,
∴ .
∴ CP= .
又∵∠PCB是公共角,
∴△CPA∽△CBP .
∴∠CPA= ∠CBP.
过P作PH⊥x轴于H.
∵ OC=OD=3,∠DOC=90°,
∴∠DCO=45°.∴∠PCH=45°
∴ PH=CH=CP =4,
∴ H(-7,0),BH=12,
∴ P(-7,-4),
∴,
tan∠CPA= .
(3)解:∵抛物线的顶点是M(3,-4),
又∵ P(-7,-4),
∴ PM∥x轴 .
当点E在M左侧,则∠BAM=∠AME.
∵∠AEM=∠AMB,
∴△AEM∽△BMA.
∴ ,
∴ .
∴ ME=5,∴ E(-2,-4).
过点A作AN⊥PM于点N,则N(1,-4).
当点E在M右侧时,记为点,
∵∠A N=∠AEN,
∴点与E 关于直线AN对称,则(4,-4).综上所述,E的坐标为(-2,-4)或(4,-4).
【解析】【分析】(1)用待定系数法即可求解。

即;由题意把A(1,0),B(5,0),代入解析式可得关于a、b的方程组,a + b + 5 = 0 ,25 a + 5 b + 5 = 0 ,解得a=1、b=-6,所以抛物线的解析式为 y =− 6 x + 5;
(2)过P作PH⊥x轴于H.由题意可得OA=1,AB=4.而AC=AB且点C在点A的左侧,所以
AC=4 ,则CB=CA+AB=8,已知线段CP是线段CA、CB的比例中项,所以,解得CP=
4,因为∠PCB是公共角,所以根据相似三角形的判定可得△CPA∽△CBP ,所以∠CPA= ∠CBP;因为OC=OD=3,∠DOC=90°,∠DCO=45°.所以∠PCH=45°,在直角三角形PCH中,PH=CH=CP sin 45 ∘=4,所以H(-7,0),BH=12,则P(-7,-4),在直角三角形PBH
中,tan ∠ CBP ==tan∠CPA;
(3)将(1)中的解析式配成顶点式得y=-4,所以抛物线的顶点是M(3,-4),而P点的纵坐标也为-4,所以PM∥x轴.分两种情况讨论:当点E在M左侧,则∠BAM=∠AME,而∠AEM=∠AMB,根据相似三角形的判定可得△AEM∽△BMA,所以可
得比例式,即,解得ME=5,所以E(-2,-4);当点E在M右侧时,记为点E ′ ,过点A作AN⊥PM于点N,则N(1,-4),因为∠A E ′ N=∠AEN,所以根据轴对称的意义可得点E ′ 与E 关于直线AN对称,则(4,-4).
4.如图,Rt△AOB在平面直角坐标系中,已知:B(0,),点A在x轴的正半轴上,OA=3,∠BAD=30°,将△AOB沿AB翻折,点O到点C的位置,连接CB并延长交x轴于点D.
(1)求点D的坐标;
(2)动点P从点D出发,以每秒2个单位的速度沿x轴的正方向运动,当△PAB为直角三角形时,求t的值;
(3)在(2)的条件下,当△PAB为以∠PBA为直角的直角三角形时,在y轴上是否存在一点Q使△PBQ为等腰三角形?如果存在,请直接写出Q点的坐标;如果不存在,请说明理由.
【答案】(1)解:∵B(0,),
∴OB= .
∵OA= OB,
∴OA=3,
∴AC=3.
∵∠BAD=30°,
∴∠OAC=60°.
∵∠ACD=90°,
∴∠ODB=30°,
∴ = ,
∴OD=3,
∴D(﹣3,0);
(2)解:∵OA=3,OD=3,∴A(3,0),AD=6,
∴AB=2 ,当∠PBA=90°时.
∵PD=2t,
∴OP=3﹣2t.
∵△OBA∽△OPB,
∴OB2=OP•OA,
∴3﹣2t= =1,解得t=1,当∠APB=90°时,则P与O重合,∴t= ;
(3)解:存在.
①当BP为腰的等腰三角形.
∵OP=1,∴BP= =2,
∴Q1(0, +2),Q3(0. ﹣2);
②当PQ2=Q2B时,设PQ2=Q2B=a,
在Rt△OPQ2中,12+(﹣x)2=x2,解得x= ,
∴Q2(0,);
③当PB=PQ4时,Q4(0,﹣)
综上所述:满足条件的点Q的坐标为Q1(0, +2),Q2(0,),Q3(0. ﹣2),Q4(0,﹣).
【解析】【分析】(1)根据已知得出OA、OB的值以及∠DAC的度数,进而求得∠ADC,即可求得D的坐标;(2)根据直角三角形的判定,分两种情况讨论求得;(3)求得PB 的长,分四种情形讨论即可解决问题.
5.如图,在矩形ABCD中,,,点E是BC边上的点,,连接AE,交于点F.
(1)求证:≌;
(2)连接CF,求的值;
(3)连接AC交DF于点G,求的值.
【答案】(1)证明:∵四边形ABCD是矩形,
∴∠BAD=∠ADC=∠B=90°,AB=CD=4,
∵DF⊥AE,
∴∠AFD=90°,
∴∠BAE+∠EAD=∠EAD+∠ADF=90°,
∴∠BAE=∠ADF,
在Rt△ABE中,
∵AB=4,BE=3,
∴AE=5,
在△ABE和≌△DFA中,

∴△ABE≌△DFA(AAS).
(2)解:连结DE交CF于点H,
∵△ABE≌△DFA,
∴DF=DC=4,AF=BE=3,
∴CE=EF=2,
∴DE⊥CF,
∴∠DCF+∠HDC=∠DEC+∠HDC=90°,
∴∠DCF=∠DEC,
在Rt△DCE中,
∵CD=4,CE=2,
∴DE=2 ,
∴sin∠DCF=sin∠DEC= .
(3)过点C作CK⊥AE交AE的延长线于点K,
∵DF⊥AE,
∴CK∥DF,
∴,
在Rt△CEK中,
∴EK=CE·cos∠CEK=CE·cos∠AEB=2× = ,
∴FK=FE+EK=2+ = ,
∴ = = .
【解析】【分析】(1)由矩形的性质,垂直的性质,同角的余角相等可得∠BAE=∠ADF,
在Rt△ABE中,根据勾股定理可得AE=5,由全等三角形的判定AAS可得△ABE≌△DFA.(2)连结DE交CF于点H,由(1)中全等三角形的性质可知DF=DC=4,AF=BE=3,由同角的余角相等得∠DCF=∠DEC,在Rt△DCE中,根据勾股定理可得DE=2 ,根据锐角三角函数定义可得答案.(3)过点C作CK⊥AE交AE的延长线于点K,由平行线的推论知
CK∥DF,根据平行线所截线段成比例可得,在Rt△CEK中,根据锐角三角函数定义可得EK= ,从而求出FK,代入数值即可得出答案.
6.如图,在矩形ABCD中,AB=4,BC=3,点P是边AB上的一动点,连结DP.
(1)若将△DAP沿DP折叠,点A落在矩形的对角线上点A′处,试求AP的长;
(2)点P运动到某一时刻,过点P作直线PE交BC于点E,将△DAP与△PBE分别沿DP 与PE折叠,点A与点B分别落在点A′,B′处,若P,A′,B′三点恰好在同一直线上,且A′B′=2,试求此时AP的长;
(3)当点P运动到边AB的中点处时,过点P作直线PG交BC于点G,将△DAP与△PBG 分别沿DP与PG折叠,点A与点B重合于点F处,连结CF,请求出CF的长.
【答案】(1)解:①当点A落在对角线BD上时,设AP=PA′=x,
在Rt△ADB中,∵AB=4,AD=3,∴BD==5,
∵AB=DA′=3,∴BA′=2,
在Rt△BPA′中,(4﹣x)2=x2+22,解得x=,
∴AP= .
②当点A落在对角线AC上时,
由翻折性质可知:PD⊥AC,则有△DAP∽△ABC,∴=,∴AP=== .
∴AP的长为或
(2)解:①如图3中,设AP=x,则PB=4﹣x,
根据折叠的性质可知:PA=PA′=x,PB=PB′=4﹣x,∵A′B′=2,∴4﹣x﹣x=2,∴x=1,∴PA=1;
②如图4中,
设AP=x,则PB=4﹣x,
根据折叠的性质可知:PA=PA′=x,PB=PB′=4﹣x,∵A′B′=2,∴x﹣(4﹣x)=2,
∴x=3,∴PA=3;
综上所述,PA的长为1或3
(3)解:如图5中,作FH⊥CD由H.
由翻折的性质可知;AD=DF=3.BG=BF,G、F、D共线,
设BG=FG=x,在Rt△GCD中,(x+3)2=42+(3﹣x)2,
解得x=,∴DG=DF+FG=,CG=BC﹣BG=,
∵FH∥CG,∴==,∴==,
∴FH=,DH=,∴CH=4﹣=,
在Rt△CFH中,CF==
【解析】【分析】(1)分两种情形:①当点A落在对角线BD上时,设AP=PA′=x,构建方程即可解决问题;②当点A落在对角线AC上时,利用相似三角形的性质构建方程即可解决问题;(2)分两种情形分别求解即可解决问题;(3)如图5中,作FH⊥CD由H.想办法求出FH、CH即可解决问题
7.已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,以AD为对角线作正方形AEDF,DE 交AB于点M,DF交AC于点N,连结EF,EF分别交AB、AD、AC于点G、点O、点H.
(1)求证:EG=HF;
(2)当∠BAC=60°时,求的值;
(3)设 ,△AEH和四边形EDNH的面积分别为S1和S2,求的最大值. 【答案】(1)解:在正方形AEDF中,OE=OF,EF⊥AD,
∵AD⊥BC,
∴EF∥BC,
∴∠AGH=∠B,∠AHG=∠C,
而AB=AC,
∴∠B=∠C,
∴∠AGH=∠AHG,
∴AG=AH,
∴OG=OH,
∴OE-OG=OF-OH,
∴EG=FH
(2)解:当∠BAC=60°时,△ABC为正三角形,
∵AD⊥EF,
∴∠OAH=30°,
∴,
设OH=a,则OA=OE=OF= a,
∴EH=()a,HF=()a,
∵AE∥FN,
∴△AEH∽△NFH,
∴,
∵EF∥BC,
∴△AOH∽△ADC,
∴,
∴CD=2a,
易证△HNF∽△CND,
∴,

(3)解:设EH=2m,则FH=2km,OA= EF=(k+1)m,
∴S1=(k+1)m2,
由(2)得,△AEH∽△NFH,
∴S△HNF=k2S1=k2(k+1)m2,
而S△EDF=OA2=(k+1)2m2,
∴S2=S△EDF - S△HNF =(k+1)2m2 -k2(k+1)m2=(-k2+k+1)(k+1)m2,
∴ =-k2+k+1,
∴当k= 时,最大= .
【解析】【分析】(1)根据等腰三角形的判定与性质,正方形的性质易证△AGH为等腰三角形,通过“三线合一”可得OG=OH,即可得证;(2)由等边三角形的性质可设OH=a,则OA=OE=OF= a,则EH=()a,HF=()a,
根据相似三角形判定易证△AEH∽△NFH,△AOH∽△ADC,△HNF∽△CND,然后通过相似
三角形的对应边成比整理即可得解;(3)设EH=2m,则FH=2km,OA= EF=(k+1)m,分别得到S1、S△HNF和S△EDF关于k,m的表达式,再根据S2=S△EDF - S△HNF得到S2的表达
式,进而得到关于k的表达式,通过配方法即可得解.
8.如图,已知抛物线过点A 和B ,过点A 作直线AC//x轴,交y轴与点C。

(1)求抛物线的解析式;
(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;
(3)抛物线上是否存在点Q,使得 ?若存在,求出点Q的坐标;若不存在,请说明理由。

【答案】(1)解:∵点A、B在抛物线上,
∴,
解得:
∴抛物线解析式为:y= x2 - x.
(2)当P在直线AD上方时,
设P坐标为(x,),则有AD=x-,
PD=,
当△OCA∽△ADP时,,
即,
整理得:3x2-9x+18=2x-6,即3x2-11x+24=0,
解得:x=,
即x=或x=(舍去),
此时P();
当△OCA∽△PDA时,,即,
整理得:,即x2-
解得:,即x=4或(舍去),
此时P(4,6);
当点P(0,0)时,也满足△OCA∽△PDA;
当P在直线AD下方时,同理可得,P的坐标为(),
综上,P的坐标为()或(4,6)或()或(0,0)(3)解:∵A ,
∴AC= ,OC=3,
∴OA=2 ,
∴ = ·OC·AC= ·OA·h= ,
∴h= ,
又∵ = ,
∴△AOQ边OA上的高=3h= ,
过O作OM⊥OA,截取OM= ,过点M作MN∥OA交y轴于点N ,过M作HM⊥x轴,(如图),
∵AC= ,OA=2 ,
∴∠AOC==30°,
又∵MN∥OA,
∴∠MNO=∠AOC=30°,OM⊥MN,
∴ON=2OM=9,∠NOM=60°,
即N(0,9),
∴∠MOB=30°,
∴MH= OM= ,
∴OH= = ,
∴M(,),
设直线MN解析式为:y=kx+b,
∴,

∴直线MN解析式为:y=- x+9,
∴,
∴x - x-18=0,
(x-3 )(x+2 )=0,
∴x =3 ,x =-2 ,
∴或,
∴Q点坐标(3 ,0)或(-2 ,15),
∴抛物线上是否存在点Q,使得 .
【解析】【分析】(1)将A、B两点坐标代入抛物线解析式得到一个二元一次方程方程组,解之即可得抛物线解析式.
(2)设P坐标为(x,),表示出AD与PD,由相似分两种情况得比例求出x 的值,即可确定出P坐标。

(3)根据点A坐标得AC= ,OC=3,由勾股定理得OA=2 ,根据三角形面积公式可得△AOC边OA上的高h= ,又 = 得△AOQ边OA上的高为;过O作
OM⊥OA,截取OM= ,过点M作MN∥OA交y轴于点N ,过M作HM⊥x轴,(如图),根据直角三角形中,30度所对的直角边等于斜边的一半,从而求出N(0,9),在
Rt△MOH中,根据直角三角形性质和勾股定理得M(,);用待定系数法求出直线MN解析式,再讲直线MN和抛物线解析式联立即可得Q点坐标.
二、圆的综合
9.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tan A=1
2
,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
【答案】(1)答案见解析;(2)AB=3BE;(3)3.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x,进而得出OE=1+2x,最后用勾股定理
即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,
∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,
∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BD
AE DE AD
==.∵Rt△ABD
中,tan A=BD
AD
=
1
2
,∴
DE BE
AE DE
==
1
2

∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;
(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3
2
x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(3
2
x)2+(2x)2=(1+2x)2,∴x=﹣
2
9
(舍)或x=2,
∴圆O的半径为3.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
10.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.
(1)求证:AE=BF;
(2)连接EF,求证:∠FEB=∠GDA;
(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.
【答案】(1)(2)见解析;(3)9
【解析】
分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边
上的中线等于斜边的一半,得到AD=DC=BD=1
2
AC,进而确定出∠A=∠FBD,再利用同角的
余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;
(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.
详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.
∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=1
2
AC,∠CBD=∠C=45°,
∴∠A=∠FBD.
∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.
∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,
A FBD
AD BD
EDA FDB
∠=∠


=

⎪∠=∠


∴△AED≌△BFD(ASA),∴AE=BF;
(2)连接EF,BG.
∵△AED≌△BFD,∴DE=DF.
∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.
∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.
∵∠GBA=∠GDA,∴∠FEB=∠GDA;
(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:
EF 2=EB 2+BF 2.
∵EB =4,BF =2,∴EF =2242+=25.
∵△DEF 为等腰直角三角形,∠EDF =90°,∴cos ∠DEF =DE
EF
. ∵EF =25,∴DE =25×
2
2
=10. ∵∠G =∠A ,∠GEB =∠AED ,∴△GEB ∽△AED ,∴GE AE =EB
ED
,即GE •ED =AE •EB ,∴
10•GE =8,即GE =
4105,则GD =GE +ED =910
5
. ∴1191011092252
S GD DF GD DE =⨯⨯
=⨯⨯=⨯⨯=.
点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.
11.如图,A 是以BC 为直径的⊙O 上一点,AD ⊥BC 于点D ,过点B 作⊙O 的切线,与CA 的延长线相交于点E ,G 是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF =EF :
(2)求证:PA 是⊙O 的切线;
(3)若FG =BF ,且⊙O 的半径长为32,求BD 的长度.
【答案】(1)证明见解析;(2) 证明见解析;(3)2 【解析】
分析:(1)利用平行线截三角形得相似三角形,得△BFC ∽△DGC 且△FEC ∽△GAC ,得到
对应线段成比例,再结合已知条件可得BF=EF;
(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;
(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.
详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,
∴EB⊥BC.
又∵AD⊥BC,
∴AD∥BE.
∴△BFC∽△DGC,△FEC∽△GAC,
∴BF
DG
=
CF
CG

EF
AG
=
CF
CG

∴BF
DG
=
EF
AG

∵G是AD的中点,
∴DG=AG,
∴BF=EF;
(2)连接AO,AB.
∵BC是圆O的直径,
∴∠BAC=90°,
由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,
又∵OA=OB,
∴∠ABO=∠BAO,
∵BE是圆O的切线,
∴∠EBO=90°,
∴∠FBA+∠ABO=90°,
∴∠FAB+∠BAO=90°,
即∠FAO=90°,
∴PA⊥OA,
∴PA是圆O的切线;
(3)过点F作FH⊥AD于点H,
∵BD ⊥AD ,FH ⊥AD ,
∴FH ∥BC ,
由(2),知∠FBA =∠BAF ,
∴BF =AF .
∵BF =FG ,
∴AF =FG ,
∴△AFG 是等腰三角形.
∵FH ⊥AD ,
∴AH =GH ,
∵DG =AG ,
∴DG =2HG . 即12
HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,
∴四边形BDHF 是矩形,
∴BD =FH ,
∵FH ∥BC
∴△HFG ∽△DCG , ∴
12FH HG CD DG ==, 即
12BD CD =, ∴23 2.15≈, ∵O 的半径长为2,
∴BC 2,
∴BD =13
BC =2. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.
12.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上
的动点,连接AE ,DE .
(1)当点E 是弧BC 的中点时,求△ADE 的面积;
(2)若3tan 2
AED ∠= ,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.
【答案】(1)62ADE S =2)1655
AE =3)23m =,22m =71m =.
【解析】
【分析】
(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;
(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故
AF AD EF BD
=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值.
【详解】
解:(1)如图,作EH ⊥AB ,连接OE ,EB ,
设DH =a ,则HB =2﹣a ,OH =2+a , ∵点E 是弧BC 中点,
∴∠COE =∠EOH =45°,
∴EH =OH =2+a ,
在Rt △AEB 中,EH 2=AH•BH , (2+a )2=(6+a )(2﹣a ), 解得a =222±,
∴a =222,
EH=22
S △ADE =1
622
AD EH =n n
(2)如图,作DF ⊥AE ,垂足为F ,连接BE
设EF =2x ,DF =3x
∵DF ∥BE

AF AD EF BD
= ∴622
AF x ==3 ∴AF =6x 在Rt △AFD 中,AF 2+DF 2=AD 2
(6x )2+(3x )2=(6)2
解得x =255
AE =8x =
1655 (3)当点D 为等腰直角三角形直角顶点时,如图
设DH =a
由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH ,
∴∠DFO=∠EDH
∴△ODF ≌△HED
∴OD =EH =2
在Rt △ABE 中,EH 2=AH•BH
(2)2=(6+a )•(2﹣a )
解得a =±232
m =23当点E 为等腰直角三角形直角顶点时,如图
同理得△EFG≌△DEH
设DH=a,则GE=a,EH=FG=2+a
在Rt△ABE中,EH2=AH•BH
(2+a)2=(6+a)(2﹣a)
解得a=222
±-
∴m=22
当点F为等腰直角三角形直角顶点时,如图
同理得△EFM≌△FDO
设OF=a,则ME=a,MF=OD=2
∴EH=a+2
在Rt△ABE中,EH2=AH•BH
(a+2)2=(4+a)•(4﹣a)
-
解得a=±71
m=71
-
【点睛】
此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.
13.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.
(1)求证:DF为⊙O的切线;
(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.
【答案】(1)详见解析;(2)32π.
【解析】
【分析】
(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;
(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,OB=BD=23,根据勾股定理求出PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.
【详解】
证明:(1)连结OD,
∵AD平分∠BAC交⊙O于D,
∴∠BAD=∠CAD,
∴»»
BD CD
=,
∴OD⊥BC,
∵BC∥DF,
∴OD⊥DF,
∴DF为⊙O的切线;
(2)连结OB,连结OD交BC于P,作BH⊥DF于H,
∵∠BAC=60°,AD平分∠BAC,
∴∠BAD=30°,
∴∠BOD=2∠BAD=60°,
∴△OBD为等边三角形,
∴∠ODB=60°,3,
∴∠BDF=30°,
∵BC∥DF,
∴∠DBP=30°,
在Rt△DBP中,PD=1
2
3,3,
在Rt△DEP中,∵37∴22
(7)(3)
=2,
∵OP⊥BC,
∴BP=CP=3,
∴CE=3﹣2=1,
∵∠DBE=∠CAE ,∠BED=∠AEC , ∴△
BDE ∽△ACE ,
∴AE :BE=CE :DE ,即AE :5=1:7 ,
∴AE=
577
∵BE ∥DF , ∴△ABE ∽△AFD ,
∴BE AE DF AD
= ,即57
57125DF = , 解得DF=12,
在Rt △BDH 中,BH=12
BD=3, ∴阴影部分的面积=△BDF 的面积﹣弓形BD 的面积=△BDF 的面积﹣(扇形BOD 的面积﹣
△BOD 的面积)=22160(23)3123(23)2π⨯⨯⨯--⨯ =93﹣2π. 【点睛】
考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.
14.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .
(1)求证:BC 是⊙O 的切线;
(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)
【答案】(1)证明见解析 (2)
233
π【解析】
【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;
(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.
【详解】
(1)连接OD .
∵OA=OD,∴∠OAD=∠ODA.
∵∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.
(2)连接OE,OE交AD于K.
∵¶¶
AE DE
=,∴OE⊥AD.
∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE,∴AO=AE=OE,∴△AOE
是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE
2
6023
360
π⋅⋅
=-⨯22
2
3
3
π
=-.
【点睛】
本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.
15.在直角坐标系中,O为坐标原点,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>2),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)求证:△OBC≌△ABD
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时,直线EF∥直线BO;这时⊙F和直线BO的位置关系如何?请给予说明.
【答案】(1)见解析;(2)直线AE的位置不变,AE的解析式为:33
y x
=-
(3)C点运动到(4,0)处时,直线EF∥直线BO;此时直线BO与⊙F相切,理由见解析.【解析】
【分析】
(1)由等边三角形的性质可得到OB=AB,BC=BD,∠OBA=∠DBC,等号两边都加上
∠ABC,得到∠OBC=∠ABD,根据“SAS”得到△OBC≌△ABD.(2)先由三角形全等,得到
∠BAD=∠BOC=60°,由等边△BCD ,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE 中,由OA 的长,根据tan60°的定义求出OE 的长,确定出点E 的坐标,设出直线AE 的方程,把点A 和E 的坐标代入即可确定出解析式.(3)由EA ∥OB ,EF ∥OB ,根据过直线外一点作已知直线的平行线有且只有一条,得到EF 与EA 重合,所以F 为BC 与AE 的交点,又F 为BC 的中点,得到A 为OC 中点,由A 的坐标即可求出C 的坐标;相切理由是由F 为等边三角形BC 边的中点,根据“三线合一”得到DF 与BC 垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.
【详解】
(1)证明:∵△OAB 和△BCD 都为等边三角形,
∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,
∴∠OBA+∠ABC=∠DBC+∠ABC ,
即∠OBC=∠ABD ,
在△OBC 和△ABD 中,
OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩
, ∴△OBC ≌△ABD.
(2)随着C 点的变化,直线AE 的位置不变,
∵△OBC ≌△ABD ,
∴∠BAD=∠BOC=60°,
又∵∠BAO=60°,
∴∠DAC=60°,
∴∠OAE=60°,又OA=2,
在Rt △AOE 中,tan60°=
OE OA
, 则
∴点E 坐标为(0,
设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:
02k b b =+⎧⎪⎨-=⎪⎩

解得,k b ⎧=⎪⎨=-⎪⎩, ∴直线AE
的解析式为:y =-
(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下: ∵∠BOA=∠DAC=60°,EA ∥OB ,又EF ∥OB ,
则EF 与EA 所在的直线重合,
∴点F 为DE 与BC 的交点,
又F为BC中点,
∴A为OC中点,又AO=2,则OC=4,
∴当C的坐标为(4,0)时,EF∥OB,
这时直线BO与⊙F相切,理由如下:
∵△BCD为等边三角形,F为BC中点,
∴DF⊥BC,又EF∥OB,
∴FB⊥OB,
∴直线BO与⊙F相切,
【点睛】
本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.
16.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.
求证:(1)AD是⊙B的切线;
(2)AD=AQ;
(3)BC2=CF×EG.
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】
【分析】
()1连接BD,由DC AB
⊥,C为AB的中点,由线段垂直平分线的性质,可得=,再根据正方形的性质,可得90
AD BD
∠=o;
ADB
()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得
122.52
G CDG BDG BCD ∠=∠=∠=
∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.
【详解】
证明:()1连接BD ,
Q 四边形BCDE 是正方形,
45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,
C Q 为AB 的中点,
CD ∴是线段AB 的垂直平分线,
AD BD ∴=,
45DAB DBA ∴∠=∠=o ,
90ADB ∴∠=o ,
即BD AD ⊥,
BD Q 为半径,
AD ∴是B e 的切线;
()2BD BG =Q ,
BDG G ∴∠=∠,
//CD BE Q ,
CDG G ∴∠=∠,
122.52
G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o ,
ADQ AQD ∴∠=∠,
AD AQ ∴=;
()3连接DF ,
在BDF V 中,BD BF =,
BFD BDF ∴∠=∠,
又45DBF ∠=o Q ,
67.5BFD BDF ∴∠=∠=o ,
22.5GDB ∠=o Q ,
在Rt DEF V 与Rt GCD V 中,
67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,
Rt DCF ∴V ∽Rt GED V ,
CF CD ED EG
∴=, 又CD DE BC ==Q ,
2BC CF EG ∴=⋅.
【点睛】
本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.。

相关文档
最新文档