等差数列练习题(有答案)doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知等差数列{}n a 的前n 项和为n S ,且2
n S n =.定义数列{}n b 如下:
()*1
m m b m m
+∈N 是使不等式(
)
*
n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b ++++=( )
A .25
B .50
C .75
D .100 2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )
A .8
B .10
C .12
D .14
3.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
82
5
两 B .
845
两 C .
865
两 D .
885
两 4.设数列{}n a 的前n 项和2
1n S n =+. 则8a 的值为( ).
A .65
B .16
C .15
D .14
5.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S
B .5S
C . 6S
D . 7S
6.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24
B .36
C .48
D .64
7.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则
129
10
a a a a ++⋅⋅⋅+=( ) A .
278
B .
52
C .3
D .4
8.已知等差数列{}n a 中,前n 项和2
15n S n n =-,则使n S 有最小值的n 是( )
A .7
B .8
C .7或8
D .9
9.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200
B .100
C .90
D .80
10.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10
B .9
C .8
D .7
11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+
B .2
()4f x x =
C .3()4x
f x ⎛⎫= ⎪⎝⎭
D .4()log f x x =
12.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物
不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103
B .107
C .109
D .105 13.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9
9
S a =( ) A .9
B .5
C .1
D .
59
14.若数列{}n a 满足121
()2
n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020
D .2021
15.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18
B .19
C .20
D .21
16.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15
B .30
C .3
D .64
17.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
18.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( ) A .10
B
C .64
D .4
19.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-= ⎪⎪⎝⎭⎝⎭
,数列{}n b 满足
1111n n n
b a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1
B .2
C .3
D .4
20.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
12S
S =( ) A .
17
7
B .
83 C .
143
D .
103
二、多选题
21.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值
D .613S S =
22.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫
-=+ ⎪⎝⎭
,*n N ∈.若对于任意的[]1,2t ∈,不等式
()22212n
a t a t a a n
<--++-+恒成立,则实数a 可能为( ) A .-4
B .-2
C .0
D .2
23.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
24.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =
C .95S S >
D .67n S S S 与均为的最大值
25.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)
B .数列{}n a -是等差数列
C .数列1n a ⎧⎫
⎨⎬⎩⎭
是等差数列
D .1n a +是n a 与2n a +的等差中项
26.下列命题正确的是( )
A .给出数列的有限项就可以唯一确定这个数列的通项公式
B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列
C .若a ,b ,c 成等差数列,则111,,a b c
可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列 27.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )
A .2
n S n =
B .2
23n S n n =-
C .21n a n =-
D .35n a n =-
28.在下列四个式子确定数列{}n a 是等差数列的条件是( )
A .n a kn b =+(k ,b 为常数,*n N ∈);
B .2n n a a d +-=(d 为常数,
*n N ∈);
C .(
)
*
2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2
1
n S n n =++(*n N ∈).
29.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( )
A .100a =
B .当9n =或10时,n S 取最大值
C .911a a <
D .613S S =
30.已知数列{}n a 是递增的等差数列,5105a a +=,
6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )
A .320n a n =-
B .325n a n =-+
C .当4n =时,n T 取最小值
D .当6n =时,n T 取最小值
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.B 【分析】
先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到2121
2
k k b --=,结合等差数列的求和公式,即可求解. 【详解】
由题意,等差数列{}n a 的前n 项和为n S ,且2
n S n =,可得21n a n =-,
因为n a m ≥,即21n m -≥,解得12
m n +≥
, 当21m k =-,(*
k N ∈)时,
1
m m b k m
+=,即()()11212m m m mk m b m m +===++, 即2121
2
k k b --=
, 从而()135191
13519502
b b b b ++++=
++++=.
故选:B. 2.C 【分析】
利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,
S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=,
所以62612a =⨯=. 故选:C 3.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
8106
100
a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式. 4.C 【分析】
利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】
由2
1n S n =+得,12a =,()2
111n S n -=-+,
所以()2
21121n n n a S S n n n -=-=--=-,
所以2,1
21,2
n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.
故选:C. 【点睛】
本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 5.B 【分析】
根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】
依题意55647560
0000
a a a a a a a d >⎧>⎧⎪
⇒<⎨
⎨+=+<⎩⎪<⎩
,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 6.B 【分析】
利用等差数列的性质进行化简,由此求得9S 的值. 【详解】
由等差数列的性质,可得345675520a a a a a a ++++==,则54a =
19592993622
a a a
S +=
⨯=⨯= 故选:B 7.A 【分析】
根据数列{}n a 是等差数列,且1109a a a +=,求出首项和公差的关系,代入式子求解. 【详解】
因为1109a a a +=, 所以11298a d a d +=+, 即1a d =-,
所以
()1129510101992727
88
49a a a a a d a a d d a d ++⋅⋅⋅+====++. 故选:A 8.C 【分析】
215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.
【详解】
2
2152251524n S n n n ⎛⎫=-=--
⎪⎝
⎭,
∴数列{}n S 的图象是分布在抛物线2
1522524y x ⎛⎫=--
⎪⎝
⎭上的横坐标为正整数的离散的
点.
又抛物线开口向上,以15
2x =
为对称轴,且1515|
7822
-=-|,
所以当7,8n =时,n S 有最小值. 故选:C 9.C 【分析】
先求得1a ,然后求得10S . 【详解】
依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 10.A 【分析】
利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】
在等差数列{}n a 中,设公差为d ,由
467811a a a =⎧⇒⎨
+=⎩4448
12311
a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 11.D 【分析】
把点列代入函数解析式,根据{x n }是等比数列,可知
1
n n
x x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】
对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1
n n
x x +为常数,
因此1n n y y +-=()
2222
14441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于C ,函数3()4x
f x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1
n n
x x +为常数,
因此1n n y y +-=133()()44n n x x
+-=3
3
()()144n q
x
⎡⎤
-⎢⎥⎣⎦
,这是一个与n 有关的数,故{y n }不是等
差数列;
对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x
,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=11
444
4log log log log n n n n
x x x x q ++-==为常数,故{y n }是等差数列;
故选:D . 【点睛】 方法点睛:
判断数列是不是等差数列的方法:定义法,等差中项法. 12.B 【分析】
根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】
根据题意可知正整数能被21整除余2,
21+2n a n ∴=, 5215+2107a ∴=⨯=.
故选:B. 13.B 【分析】
由已知条件,结合等差数列通项公式得1a d =,即可求9
9
S a . 【详解】
4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,
∴1999()
452
a a S d ⨯+=
=,99a d =,且0d ≠, ∴9
9
5S a =. 故选:B 14.B 【分析】
根据递推关系式求出数列的通项公式即可求解. 【详解】 由121
()2n n a a n N *++=
∈,则11()2
n n a a n N *+=+∈,
即112
n n a a +-=
, 所以数列{}n a 是以1为首项,
1
2
为公差的等差数列, 所以()()11111122
n n a a n d n +=+-=+-⨯=, 所以2021a =20211
10112
+=. 故选:B 15.B 【分析】
由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得
10a .
【详解】
()122n n a a n --=≥,且11a =,
∴数列{}n a 是以1为首项,以2为公差的等差数列,
通项公式为()12121n a n n =+-=-,
10210119a ∴=⨯-=,
故选:B. 16.A 【分析】
设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,
12111a a d =+,即可求解.
【详解】
设等差数列{}n a 的公差为d ,
则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174
174d a ⎧=⎪⎪⎨⎪=-⎪⎩

所以12117760
111115444
a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 17.C 【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列,
则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C 18.D 【分析】
利用等差中项法可知,数列{}
3n a 为等差数列,根据11a =,22a =可求得数列{}
3
n a 的公
差,可求得3
10a 的值,进而可求得10a 的值. 【详解】
对*n N ∀∈都有3
3
3
122n n n a a a ++=+,由等差中项法可知,数列{}
3
n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33
217d a a =-=,
所以,33
101919764a a d =+=+⨯=,因此,104a .
故选:D. 19.B 【分析】 由题意可得
2
2
1114n n
a a +-
=,运用等差数列的通项公式可得2143n n a =-
,求得1
4n b =,然后利用裂项相消求和法可求得结果
【详解】
解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-= ⎪⎪⎝⎭⎝⎭
,得221114n n
a a +-=, 所以数列21n a ⎧⎫
⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,
所以21
14(1)43n
n n a =+-=-,
因为0n a >
,所以n a =

所以
1111n n n
b a a +=+=
所以1
4
n b =
=,
所以201220T b b b =++⋅⋅⋅+
11
1339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】
关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得
2
2
1114n n a a +-
=,从而数列21n a ⎧⎫⎨⎬⎩⎭
是以4为公差,以1
为首项的等差数列,进而可求n a =
,1
4
n b =
=,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题 20.D 【分析】
由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】
已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且9
3
6S S =,化简解得633S S =.

()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而
126103
S S =. 故选:D 【点睛】 思路点睛:
(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且
9
3
6S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.
二、多选题
21.ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,
∴()11187
5282
a a d a d ⨯++=+
,解得19a d =-, 故10190a a d =+=,故A 正确;
∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119
2
22
n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,
故C 错误; 由于61656392S a d d ⨯=+=-,1311312
13392
S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】
思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 22.AB 【分析】 由题意可得
11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n
=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为
()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.
【详解】
111
n n n a a n n
++-
=,11111(1)1n n a a n n n n n n +∴-==-+++,

11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111
122
a a -=-, 上述式子累加可得:111n a a n n -=-,1
22n a n n
∴=-<,
()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,
整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,
对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故A 正确;
对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦
,包含[]1,2,故B 正确;
对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦
,不包含[]1,2,故C 错误;
对D ,当2a =时,不等式()()2120t t -+≤,解集12,2
⎡⎤-⎢⎥⎣

,不包含[]1,2,故D 错误,
故选:AB. 【点睛】
本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 23.ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题. 24.ABD 【分析】
由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项. 【详解】
因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,
788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确;
()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型. 25.ABD 【分析】
由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】
A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;
B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么
()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;
C.
1111
11n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭
不是等差数列,故C 不正确;
D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确. 故选:ABD 【点睛】
本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型. 26.BCD 【分析】
根据等差数列的性质即可判断选项的正误. 【详解】
A 选项:给出数列的有限项不一定可以确定通项公式;
B 选项:由等差数列性质知0d >,{}n a 必是递增数列;
C 选项:1a b c ===时,
111
1a b c
===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以
11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;
故选:BCD 【点睛】
本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题. 27.AC 【分析】
利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S . 【详解】
等差数列{}n a 的前n 项和为n S .39S =,47a =,
∴31413239237
S a d a a d ⨯⎧
=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,
1(1)221n a n n ∴+-⨯=-=.
()21212
n n n S n +-=
=
故选:AC . 【点睛】
本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题. 28.AC 【分析】
直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】
A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;
C 选项中()
*
2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差
数列,故正确;
D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2
n S An Bn =+,所以{}n a 不
为等差数列.故错误. 故选:AC 【点睛】
本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 29.AD 【分析】
由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】
解:1385a a S +=,111110875108,90,02
d
a a d a a d a ⨯++=+
+==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.
9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.
61656+
5415392
d
S a d d d ⨯==-+=-, 131131213+
11778392
d
S a d d d ⨯==-+=-,故D 正确. 故选:AD
【点睛】
考查等差数列的有关量的计算以及性质,基础题. 30.AC 【分析】
由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】
解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,
又6914a a =-,联立解得62a =-,97a =, 则967(2)
3963
a a d ---=
==-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.
故A 正确,B 错误;
12(320)(317)(314)n n n n b a a a n n n ++==---
可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.
∴当4n =时,n T 取最小值,故C 正确,D 错误.
故选:AC . 【点睛】
本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。

相关文档
最新文档