(整理)不等式综合模拟试题202年中考试题
中考数学总复习《不等式与不等式组》专项测试题-附参考答案

中考数学总复习《不等式与不等式组》专项测试题-附参考答案(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.若不等式组 {2x −3>1,x ≤a的整数解共有 4 个,则 a 的取值范围是 ( ) A . 6≤a <7 B . 6<a ≤7 C . 6<a <7 D . 6≤a ≤72. a ,b 为实数,且 a >b ,则下列不等式的变形正确的是 ( )A . a +b <b +xB . −a +2>−b +2C . 3a >3bD . a 2<b 2 3.不等式组 −2x ≤6 的解集在数轴上表示正确的是 ( )A .B .C .D . 4.疫情复课之前,某校七年级(1)班购置了一批防疫物资,其中有 10 支水银温度计,若干支额温枪.水银温度计每支 5 元,额温枪每支 230 元,如果总费用超过 1000,那么额温枪至少有 ( )A . 3 支B . 4 支C . 5 支D . 6 支5.“x 的 3 倍与 5 的差大于 9”列出的不等式是 ( )A . 3x −5≤9B . 3x −5≥9C . 3x −5<9D . 3x −5>9 6.解不等式x+23>1−x−32 时,去分母后结果正确的为 ( )A . 2(x +2)>1−3(x −3)B . 2x +4>6−3x −9C . 2x +4>6−3x +3D . 2(x +2)>6−3(x −3)7.下列结论中,正确的是 ( )A .若 a ≠b ,则 a 2≠b 2B .若 a >b ,则 a 2>b 2C .若 a 2=b 2,则 a =±bD .若 a >b ,则 1a >1b8.如图,天平托盘中的每个砝码的质量都是 1 千克,则图中显示物体质量范围是 ( )A.大于2千克B.大于3千克C.大于2千克且小于3千克D.大于2千克或小于3千克二、填空题(共5题,共15分)9.将数轴上x的范围用不等式表示:.10.不等式2x−1>3的解集为.11.代数式−3x+5的值不大于4,用不等式表示为.12.用不等式表示“x与y的一半的和是非负数”.13.一个含有未知数的不等式的组成这个不等式的解集.三、解答题(共3题,共45分)14.解不等式组{5x≤3x+2①x−2<2x+1②请结合题意填空,完成本题的解答.(1)解不等式①,得.(2)解不等式②,得.(3)把不等式①和②的解集在数轴上分别表示出来:原不等式组的解集为.15.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到2本.这些书有多少本?共有多少人?16.如果关于x的方程1+x2−x =2mx2−4的解,也是不等式组{1−x2>x−22(x−3)≤x−8的解,求m的取值范围.参考答案1. 【答案】A2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】D6. 【答案】D7. 【答案】D8. 【答案】C9. 【答案】 9≤a <1210. 【答案】 x >211. 【答案】 −3x +5≤412. 【答案】 x +12y ≥013. 【答案】所有的解14.【答案】(1)x ≤1(2)x >−3(3)(4)−3<x ≤1 15.【答案】解:设有x 个学生,那么共有(3x+8)本书,则: {3x +8−5(x −1)≥03x +8−5(x −1)<2解得5.5<x ≤6.5所以x=6,共有6×3+8=26本.答:有26本书,6个学生.16.【答案】解: 1+x 2−x =2mx 2−4方程两边同时乘以 (x +2)(x −2) 得x 2−4−x 2−2x =2mx =−m −2∵x ≠±2∴−m −2≠±2 ;解①得, x <53解②得, x ≤−2∴不等式组的解集为 x ≤−2 ; ∵关于 x 的方程 1+x 2−x =2m x 2−4的解,也是不等式组 {1−x 2>x −22(x −3)≤x −8的解 ∴{−m −2≤−2−m −2≠−2∴m 的取值范围 m >0 . 故答案是: m >0。
中考数学模拟题《不等式(组)及其应用》专项测试卷(含答案)

中考数学模拟题《不等式(组)及其应用》专项测试卷(含答案)学校:___________班级:___________姓名:___________考号:___________(30道)一 单选题1.(2023·湖南益阳·统考中考真题)将不等式组0,20x x >⎧⎨-≤⎩的解集在数轴上表示 正确的是( )A .B .C .D .2.(2023·山东济南·统考中考真题)实数a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .0ab >B .0a b +>C .33a b +<+D .33a b -<-3.(2023·浙江·统考中考真题)实数a b c 在数轴上的对应点的位置如图所示 下列结论正确的是( )A .a c b >>B .c a b a ->-C .0a b +<D .22ac bc <4.(2023·湖南娄底·统考中考真题)不等式组35220x x -+<⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .5.(江苏省扬州市江都区邵樊片2020-2021学年下学期七年级第二次月考数学试题)不等式1x ≥的解集在数轴上表示正确的是( ) A . B . C .D .6.(2023·四川德阳·统考中考真题)不等式组()3241213x x xx ⎧--≥-⎪⎨+>-⎪⎩的解集是( ) A .1x ≤ B .4x < C .14x ≤< D .无解7.(2023·四川雅安·统考中考真题)不等式组10112x x +≥⎧⎪⎨-<⎪⎩的解集是( )A .11x -<<B .1<1x -≤C .13x -<≤D .13x -≤<8.(2023·湖南·统考中考真题)不等式组24010x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2023·辽宁营口·统考中考真题)不等式组22014x x ->⎧⎨+≤⎩的解集在数轴上表示正确的是( )A .B .C .D .10.(2023·北京·统考中考真题)已知10a ->,则下列结论正确的是( )A .11a a -<-<<B .11a a -<-<<C .11a a -<-<<D .11a a -<-<<11.(2023·山东日照·统考中考真题)若关于x 的方程32122x m x x -=--解为正数,则m 的取值范围是( ) A .23m >-B .43<m C .23m >-且0m ≠ D .43<m 且23m ≠12.(2023·山东·统考中考真题)解不等式组789,12x x x x -<⎧⎪⎨+≤⎪⎩①②时 不等式①①的解集在同一条数轴上表示正确是( )A .B .C .D .13.(2023·湖北鄂州·统考中考真题)已知不等式组21x a x b->⎧⎨+<⎩的解集是11x -<<,则()2023a b +=( )A .0B .1-C .1D .2023二 解答题14.(2023·陕西·统考中考真题)解不等式:3522x x ->.15.(2023·山东济南·统考中考真题)解不等式组:()223235x x x x ⎧+>+⎪⎨+<⎪⎩①② 并写出它的所有整数解.16.(2023·山东潍坊·统考中考真题)(1)化简:22214412x x x x x x -+⎛⎫-+ ⎪--⎝⎭(2)利用数轴 确定不等式组()()342112323x x x x⎧+≥-⎪⎨-<-⎪⎩的解集.17.(2023·浙江·统考中考真题)(1)分解因式:22a a +. (2)解不等式:()211x x ->+.18.(2023·湖南娄底·统考中考真题)为落实“五育并举” 绿化美化环境 学校在劳动周组织学生到校园周边种植甲 乙两种树苗.已知购买甲种树苗3棵 乙种树苗2棵共需12元 购买甲种树苗1棵 乙种树苗3棵共需11元.(1)求每棵甲 乙树苗的价格.(2)本次活动共种植了200棵甲 乙树苗 假设所种的树苗若干年后全部长成了参天大树 并且平均每棵树的价值(含生态价值 经济价值)均为原来树苗价的100倍 要想获得不低于5万元的价值 请问乙种树苗种植数量不得少于多少棵?19.(2023·宁夏·统考中考真题)解不等式组2131124 234x xx x--⎧->⎪⎨⎪-≤-⎩①②下面是某同学的部分解答过程请认真阅读并完成任务:解:由①得:()422131x x-->-第1步44231x x-+>-第2步43142x x-->---77x->-第3步1x>第4步任务一:该同学的解答过程第_______步出现了错误错误原因是_______ 不等式①的正确解集是_______ 任务二:解不等式① 并写出该不等式组的解集.20.(2023·四川德阳·统考中考真题)2022年8月27日至29日以“新能源新智造新时代”为主题的世界清洁能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题着力实现会展聚集带动产业聚集.其中德阳清洁能源装备特色小镇位于德阳经济技术开发区规划面积4.82平方公里计划2025年基本建成.若甲乙两个工程队计划参与修建“特色小镇”中的某项工程已知由甲单独施工需要18个月完成任务若由乙先单独施工2个月再由甲乙合作施工10个月恰好完成任务.承建公司每个月需要向甲工程队支付施工费用8万元向乙工程队支付施工费用5万元.(1)乙队单独完工需要几个月才能完成任务?(2)为保证该工程在两年内完工且尽可能的减少成本承建公司决定让甲乙两个工程队同时施工并将该工程分成两部分甲队完成其中一部分工程用了a个月乙队完成另一部分工程用了b个月已知甲队施工时间不超过6个月乙队施工时间不超过24个月且a b为正整数,则甲乙两队实际施工的时间安排有几种方式?哪种安排方式所支付费用最低?21.(2023·山东泰安·统考中考真题)(1)化简:2211025 224x x xx x-++⎛⎫-÷⎪+-⎝⎭(2)解不等式组:2731132xx x+>⎧⎪+-⎨>⎪⎩.22.(2023·湖北恩施·统考中考真题)为积极响应州政府“悦享成长·书香恩施”的号召学校组织150名学生参加朗诵比赛因活动需要计划给每个学生购买一套服装.经市场调查得知购买1套男装和1套女装共需220元购买6套男装与购买5套女装的费用相同.(1)男装女装的单价各是多少?(2)如果参加活动的男生人数不超过女生人数的23购买服装的总费用不超过17000元那么学校有几种购买方案?怎样购买才能使费用最低最低费用是多少?23.(2023·北京·统考中考真题)解不等式组:23535xxx x+⎧>⎪⎨⎪-<+⎩.24.(2023·江苏无锡·统考中考真题)(1)解方程:2220x x+-=(2)解不等式组:32 251 x xx+>-⎧⎨-<⎩25.(2023·江苏徐州·统考中考真题)(1)解方程组41 258 x yx y=+⎧⎨-=⎩(2)解不等式组45312135xx x-≤⎧⎪-+⎨<⎪⎩26.(2023·辽宁·统考中考真题)某礼品店经销A B两种礼品盒第一次购进A种礼品盒10盒B种礼品盒15盒共花费2800元第二次购进A种礼品盒6盒B种礼品盒5盒共花费1200元(1)求购进A B两种礼品盒的单价分别是多少元(2)若该礼品店准备再次购进两种礼品盒共40盒总费用不超过4500元那么至少购进A种礼品盒多少盒?27.(2023·甘肃兰州·统考中考真题)解不等式组:312(1)223x xxx->+⎧⎪+⎨>-⎪⎩.28.(2023·内蒙古赤峰·统考中考真题)(1)计算:21(3.14π)2cos6012-⎛⎫--+︒-⎪⎝⎭(2)解不等式组:2601352xx-<⎧⎪⎨-≤⎪⎩①②.三填空题29.(2023·江苏宿迁·统考中考真题)不等式21x-≤的最大整数解是.30.(2023·黑龙江大庆·统考中考真题)若关于x的不等式组3(1)68220x xx a->-⎧⎨-+≥⎩有三个整数解,则实数a的取值范围为 .参考答案一 单选题1.(2023·湖南益阳·统考中考真题)将不等式组0,20x x >⎧⎨-≤⎩的解集在数轴上表示 正确的是( )A .B .C .D .【答案】B【分析】先解不等式20x -≤ 再利用大于向右拐 小于向左拐在数轴上表示两个解集即可.【详解】解:020x x >⎧⎨-≤⎩①② 由① 得:2x ≤在数轴上表示两个不等式的解集如下:①不等式组的解集为:02x <≤ 故选B【点睛】本题考查的是一元一次不等式组的解法 利用数轴上确定不等式组的解集 熟练的使用数轴工具是解本题的关键.2.(2023·山东济南·统考中考真题)实数a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .0ab >B .0a b +>C .33a b +<+D .33a b -<-【答案】D【分析】根据题意可得32,2b a -<<-= 然后根据数的乘法和加法法则以及不等式的性质进行判断即可.【详解】解:由题意可得:32,2b a -<<-= 所以b a < ①,30,033,3a b ab a b a b <+-<><-++观察四个选项可知:只有选项D 的结论是正确的 故选:D.【点睛】本题考查了实数与数轴以及不等式的性质 正确理解题意 得出32,2b a -<<-=是解题的关键. 3.(2023·浙江·统考中考真题)实数a b c 在数轴上的对应点的位置如图所示 下列结论正确的是( )A .a c b >>B .c a b a ->-C .0a b +<D .22ac bc <【答案】D【分析】根据a b c ,,对应的点在数轴上的位置 利用不等式的性质逐一判断即可. 【详解】解:由数轴得:0a c b <<< a b < 故选项A 不符合题意①c b < ①c a b a -<- 故选项B 不符合题意 ①a b < a b < ①0a b +> 故选项C 不符合题意 ①a b < 0c ≠ ①22ac bc < 故选项D 符合题意 故选:D .【点睛】本题考查的是实数与数轴 绝对值的概念 不等式的性质 掌握以上知识是解题的关键.4.(2023·湖南娄底·统考中考真题)不等式组35220x x -+<⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【分析】先分别求出各不等式的解集 再利用数轴表示解集的公共部分即可.【详解】解:35220x x -+<⎧⎨-≤⎩①② 由①得:2x >- 由①得:1x ≤在数轴上表示两个不等式的解集如下:①不等式组的解集为:21x -<≤ 故选:C【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知大于向右拐 小于向左拐的原则是解答此题的关键.5.(江苏省扬州市江都区邵樊片2020-2021学年下学期七年级第二次月考数学试题)不等式1x ≥的解集在数轴上表示正确的是( ) A . B . C .D .【答案】A【分析】根据在数轴上表示不等式解集的方法求解即可. 【详解】解:①x ≥1①1处是实心原点 且折线向右. 故选:A .【点睛】本题考查的是在数轴上表示不等式的解集 熟知“小于向左 大于向右”是解答此题的关键. 6.(2023·四川德阳·统考中考真题)不等式组()3241213x xxx ⎧--≥-⎪⎨+>-⎪⎩的解集是( ) A .1x ≤ B .4x < C .14x ≤< D .无解【答案】A【分析】先求出每个不等式的解集 再根据 “同大取大 同小取小 大小小大中间找 大大小小找不到(无解)”求出不等式组的解集即可. 【详解】解:()3241213x x xx ⎧--≥-⎪⎨+>-⎪⎩①② 解不等式①得:1x ≤ 解不等式①得:4x < ①不等式组的解集为1x ≤ 故选A .【点睛】本题主要考查了解一元一次不等式组 正确求出每个不等式的解集是解题的关键. 7.(2023·四川雅安·统考中考真题)不等式组10112x x +≥⎧⎪⎨-<⎪⎩的解集是( )A .11x -<<B .1<1x -≤C .13x -<≤D .13x -≤<【答案】D【分析】分别求解两个不等式 得到不等式组的解集 然后判断即可. 【详解】解:10112x x +≥⎧⎪⎨-<⎪⎩①② 解不等式①得:1x ≥- 解不等式①得:3x <①不等式组的解集为:13x -≤< 故选:D .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大 同小取小 大小小大中间找 大大小小找不到”的原则是解答此题的关键.8.(2023·湖南·统考中考真题)不等式组24010x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】A【分析】先求出不等式组中每一个不等式的解集 再求出它们的公共部分 然后把不等式组的解集表示在数轴上即可.【详解】解:由240x +>得2x >- 由10x -≤得1x ≤ 解集在数轴上表示为:则不等式组的解集为21x -<≤. 故选:A .【点睛】本题考查了解一元一次不等式组 在数轴上表示不等式的解集 把每个不等式的解集在数轴上表示出来(> ≥向右画 < ≤向左画) 数轴上的点把数轴分成若干段如果数轴的某一段上面表示解集的线的条数与不等式的个数一样 那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥” “≤”要用实心圆点表示 “<” “>”要用空心圆点表示.9.(2023·辽宁营口·统考中考真题)不等式组22014x x ->⎧⎨+≤⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】B【分析】解出不等式组的解集 在数轴上表示 含端点值用实心圆圈 不含端点值用空心圆圈 即可求解. 【详解】解:22014x x ->⎧⎨+≤⎩①② 解不等式①得:1x >解不等式①得:3x ≤①不等式组的解集为13x <≤①数轴表示如下所示:故选B .【点睛】本题考查了数轴上表示不等式的解集 解答此类题目时一定要注意实心圆点与空心圆点的区别 这是此题的易错点.10.(2023·北京·统考中考真题)已知10a ->,则下列结论正确的是( )A .11a a -<-<<B .11a a -<-<<C .11a a -<-<<D .11a a -<-<< 【答案】B【分析】由10a ->可得1a >,则0a > 根据不等式的性质求解即可.【详解】解:10a ->得1a >,则0a >①1a -<-①11a a -<-<<故选:B .【点睛】本题考查了不等式的性质 注意:当不等式两边同时乘以一个负数,则不等式的符号需要改变.11.(2023·山东日照·统考中考真题)若关于x 的方程32122x m x x -=--解为正数,则m 的取值范围是( ) A .23m >- B .43<m C .23m >-且0m ≠ D .43<m 且23m ≠ 【答案】D 【分析】将分式方程化为整式方程解得432m x -=根据方程的解是正数 可得4302m -> 即可求出m 的取值范围. 【详解】解:32122x m x x -=-- ()22213x x m -⨯-=2443x x m -+=234x m -=-432m x -= ①方程32122x m x x -=--的解为正数 且分母不等于0 ①4302m -> 4312m x -=≠ ①43<m 且23m ≠ 故选:D .【点睛】此题考查了解分式方程 根据分式方程的解的情况求参数 解不等式 将方程化为整式方程求出整式方程的解 列出不等式是解答此类问题的关键.12.(2023·山东·统考中考真题)解不等式组789,12x x x x -<⎧⎪⎨+≤⎪⎩①②时 不等式①①的解集在同一条数轴上表示正确是( )A .B .C .D .【答案】B【分析】分别求出两个不等式的解集 然后根据在数轴上表示解集的方法判断即可.【详解】解:解不等式①得:4x >-解不等式①得:1x ≥不等式①①的解集在同一条数轴上表示为:故选:B .【点睛】本题考查了解一元一次不等式组 在数轴上表示不等式解集 把每个不等式的解集在数轴上表示出来(> ≥向右画 < ≤向左画) 在表示解集时“≥” “≤”要用实心圆点表示 “<” “>”要用空心圆点表示.13.(2023·湖北鄂州·统考中考真题)已知不等式组21x a x b ->⎧⎨+<⎩的解集是11x -<<,则()2023a b +=() A .0 B .1- C .1 D .2023【答案】B【分析】按照解一元一次不等式组的步骤进行计算 可得21a x b +<<- 再结合已知可得21a +=-11b -= 然后进行计算可求出a b 的值 最后代入式子中进行计算即可解答.【详解】解:21x a x b ->⎧⎨+<⎩①②解不等式①得:2x a >+解不等式①得:1x b <-①原不等式组的解集为:21a x b +<<-①不等式组的解集是11x -<<①21a +=- 11b -=①3a =- 2b =①()()()2023220230231132a b =-+=+-=-故选:B .【点睛】本题考查了根据一元一次不等式组的解集求参数 准确熟练地进行计算是解题的关键.二 解答题14.(2023·陕西·统考中考真题)解不等式:3522x x ->.【答案】5x <-【分析】去分母 移项 合并同类项 系数化成1即可.【详解】解:3522x x -> 去分母 得354x x ->移项 得345x x ->合并同类项 得5x ->不等式的两边都除以1- 得5x <-.【点睛】本题考查了解一元一次不等式 能正确根据不等式的性质进行变形是解此题的关键.15.(2023·山东济南·统考中考真题)解不等式组:()223235x x x x ⎧+>+⎪⎨+<⎪⎩①② 并写出它的所有整数解. 【答案】13x -<< 整数解为0 1 2【分析】分别求解两个不等式 再写出解集 最后求出满足条件的整数解即可.【详解】解:解不等式① 得1x >-解不等式① 得3x <在同一条数轴上表示不等式①①的解集原不等式组的解集是13x -<<①整数解为0 1 2.【点睛】本题主要考查了解一元一次不等式组 解题的关键是熟练掌握解一元一次不等式组的方法和步骤 以及写出不等式组解集的口诀“同大取大 同小取小 大小小大中间找 大大小小找不到”.16.(2023·山东潍坊·统考中考真题)(1)化简:22214412x x x x x x -+⎛⎫-+ ⎪--⎝⎭(2)利用数轴 确定不等式组()()342112323x x x x ⎧+≥-⎪⎨-<-⎪⎩的解集. 【答案】(1)21x x -- (2)画图见解析 不等式组的解集为:23x -≤<. 【分析】(1)先通分计算括号内的分式的减法 再通分计算分式的加法运算即可(2)分别解不等式组中的两个不等式 再在数轴上表示两个不等式的解集 再确定两个解集的公共部分即可.【详解】解:(1)22214412x x x x x x -+⎛⎫-+ ⎪--⎝⎭()()()222212x x x x x x x ---=+--()221x x x x x --=+-()()223211x x x x x x x --+=+--()221x xx x -=-()()21x x x x -=-21x x -=-(2)()()342112323x xx x ⎧+≥-⎪⎨-<-⎪⎩①②由① 得:31222x x +≥-解得:2x ≥-由① 得:33184x x -<-解得:3x <两个不等式的解集在数轴上表示如下:①不等式组的解集为:23x -≤<.【点睛】本题考查的是分式的加减运算 一元一次不等式组的解法熟记分式的加减运算的运算法则与解不等式组的方法与步骤是解本题的关键.17.(2023·浙江·统考中考真题)(1)分解因式:22a a +.(2)解不等式:()211x x ->+.【答案】(1)()2a a + (2)3x >.【分析】(1)利用提取公因式法分解因式即可(2)按照解不等式的一般步骤求解即可.【详解】解:(1)()222a a a a +=+(2)()211x x ->+去括号 得221x x ->+移项合并 得3x >.【点睛】本题考查了因式分解的方法和解不等式 熟练掌握因式分解的方法和解不等式的步骤是解题的关键.18.(2023·湖南娄底·统考中考真题)为落实“五育并举” 绿化美化环境 学校在劳动周组织学生到校园周边种植甲 乙两种树苗.已知购买甲种树苗3棵 乙种树苗2棵共需12元 购买甲种树苗1棵 乙种树苗3棵共需11元.(1)求每棵甲 乙树苗的价格.(2)本次活动共种植了200棵甲 乙树苗 假设所种的树苗若干年后全部长成了参天大树 并且平均每棵树的价值(含生态价值 经济价值)均为原来树苗价的100倍 要想获得不低于5万元的价值 请问乙种树苗种植数量不得少于多少棵?【答案】(1)每棵甲种树苗的价格为2元 每棵乙种树苗的价格3元(2)乙种树苗种植数量不得少于100棵【分析】(1)设每棵甲种树苗的价格为x 元 每棵乙种树苗的价格y 元 由“购买甲种树苗3棵 乙种树苗2棵共需12元 购买甲种树苗1棵 乙种树苗3棵共需11元”列出方程组 可求解(2)设乙种树苗种植数量为m 棵,则甲种树苗数量为()200m -棵 根据“获得不低于5万元的价值”列不等式解题即可.【详解】(1)解:设每棵甲种树苗的价格为x 元 每棵乙种树苗的价格y 元 由题意可得:3212311x y x y +=⎧⎨+=⎩ 解得:23x y =⎧⎨=⎩答:每棵甲种树苗的价格为2元 每棵乙种树苗的价格3元(2)设乙种树苗种植数量为m 棵,则甲种树苗数量为()200m -棵①()20020030050000m m -+≥解得:100m ≥①m 的最小整数解为100.答:乙种树苗种植数量不得少于100棵.【点睛】本题考查的是二元一次方程组的应用 一元一次不等式的应用 熟练的确定相等关系与不等关系是解本题的关键.19.(2023·宁夏·统考中考真题)解不等式组2131124234x x x x --⎧->⎪⎨⎪-≤-⎩①②下面是某同学的部分解答过程 请认真阅读并完成任务:解:由①得:()422131x x -->- 第1步44231x x -+>- 第2步43142x x -->---77x ->- 第3步1x > 第4步任务一:该同学的解答过程第_______步出现了错误 错误原因是_______ 不等式①的正确解集是_______ 任务二:解不等式① 并写出该不等式组的解集.【答案】任务一:4 不等号的方向没有发生改变 1x < 任务二:1x ≥- 1<1x ≤-【分析】任务一:系数化1时 系数小于0 不等号的方向要发生改变 即可得出结论任务二:移项 合并同类项 系数化1 求出不等式①的解集 进而得出不等式组的解集即可.【详解】解:任务一:①77x ->-①1x <①该同学的解答过程第4步出现了错误 错误原因是不等号的方向没有发生改变 不等式①的正确解集是1x <故答案为:4 不等号的方向没有发生改变 1x <任务二:234x x -≤-342x x -+≤-22x -≤1x ≥-又1x <①不等式组的解集为:1<1x ≤-.【点睛】本题考查解一元一次不等式 求不等式组的解集.解题的关键是正确的求出每一个不等式的解集 注意系数化1时 系数是负数 不等号的方向要发生改变.20.(2023·四川德阳·统考中考真题)2022年8月27日至29日 以“新能源 新智造 新时代”为主题的世界清洁能源装备大会在德阳举行.大会聚焦清洁能源装备产业发展热点和前瞻性问题 着力实现会展聚集带动产业聚集.其中德阳清洁能源装备特色小镇位于德阳经济技术开发区 规划面积4.82平方公里 计划2025年基本建成.若甲 乙两个工程队计划参与修建“特色小镇”中的某项工程 已知由甲单独施工需要18个月完成任务 若由乙先单独施工2个月 再由甲 乙合作施工10个月恰好完成任务.承建公司每个月需要向甲工程队支付施工费用8万元 向乙工程队支付施工费用5万元.(1)乙队单独完工需要几个月才能完成任务?(2)为保证该工程在两年内完工 且尽可能的减少成本 承建公司决定让甲 乙两个工程队同时施工 并将该工程分成两部分 甲队完成其中一部分工程用了a 个月 乙队完成另一部分工程用了b 个月 已知甲队施工时间不超过6个月 乙队施工时间不超过24个月 且a b 为正整数,则甲乙两队实际施工的时间安排有几种方式?哪种安排方式所支付费用最低?【答案】(1)乙队单独完工需要27个月才能完成任务.(2)甲乙两队实际施工的时间安排有3种方式 安排甲工作2个月 乙工作24个月 费用最低为136万元.【分析】(1)设乙单独完成需要x 个月 由“乙先单独施工2个月 再由甲 乙合作施工10个月恰好完成任务.”建立分式方程求解即可(2)由题意可得:11827a b += 可得2183a b =- 结合6a ≤ 24b ≤ 可得1824b ≤≤ 结合,a b 都为正整数 可得b 为3的倍数 可得甲乙两队实际施工的时间安排有3种方式 从而可得答案.【详解】(1)解:设乙单独完成需要x 个月,则21110118x x ⎛⎫++= ⎪⎝⎭解得:27x =经检验27x =是原方程的解且符合题意答:乙队单独完工需要27个月才能完成任务.(2)由题意可得:11827a b += ①3254a b += ①2183a b =- ①6a ≤ 24b ≤ ①2186324b b ⎧-≤⎪⎨⎪≤⎩ 解得:1824b ≤≤①,a b 都为正整数①b 为3的倍数①618a b =⎧⎨=⎩或421a b =⎧⎨=⎩或224a b =⎧⎨=⎩ ①甲乙两队实际施工的时间安排有3种方式方案①:安排甲工作6个月 乙工作18个月 费用为:68185138⨯+⨯=(万元)方案①:安排甲工作4个月 乙工作21个月 费用为:48215137⨯+⨯=(万元)方案①:安排甲工作2个月 乙工作24个月 费用为:28245136⨯+⨯=(万元)①安排甲工作2个月 乙工作24个月 费用最低为136万元.【点睛】本题考查的是分式方程的应用 二元一次方程的应用 一元一次不等式组的应用 确定相等关系与不等关系是解本题的关键.21.(2023·山东泰安·统考中考真题)(1)化简:2211025224x x x x x -++⎛⎫-÷ ⎪+-⎝⎭ (2)解不等式组:2731132x x x +>⎧⎪+-⎨>⎪⎩. 【答案】(1)25x x -+ (2)25x -<< 【分析】(1)根据分式的混合计算法则求解即可(2)先求出每个不等式的解集 再根据 “同大取大 同小取小 大小小大中间找 大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:(1)2211025224x x x x x -++⎛⎫-÷ ⎪+-⎝⎭ ()()()252412222x x x x x x x ++-⎛⎫=-÷ ⎪+++-⎝⎭ ()()()222525x x x x x +-+=⋅++ 25x x -=+ (2)2731132x x x +>⎧⎪⎨+->⎪⎩①② 解不等式①得:2x >-解不等式①得:5x <①不等式组的解集为25x -<<【点睛】本题主要考查了分式的混合计算 解一元一次不等式组 正确计算是解题的关键.22.(2023·湖北恩施·统考中考真题)为积极响应州政府“悦享成长·书香恩施”的号召 学校组织150名学生参加朗诵比赛 因活动需要 计划给每个学生购买一套服装.经市场调查得知 购买1套男装和1套女装共需220元 购买6套男装与购买5套女装的费用相同.(1)男装 女装的单价各是多少?(2)如果参加活动的男生人数不超过女生人数的23购买服装的总费用不超过17000元 那么学校有几种购买方案?怎样购买才能使费用最低 最低费用是多少?【答案】(1)男装单价为100元 女装单价为120元.(2)学校有11种购买方案 当女装购买90套 男装购买60套时 所需费用最少 最少费用为16800元【分析】(1)设男装单价为x 元 女装单价为y 元 根据题意列方程组求解即可(2)设参加活动的女生有a 人,则男生有()150a -人 列不等式组找到a 的取值范围 再设总费用为w 元 得到w 与a 的关系 根据一次函数的性质可得当a 取最小值时w 有最小值 据此求解即可.【详解】(1)解:设男装单价为x 元 女装单价为y 元 根据题意得:22065x y x y +=⎧⎨=⎩解得:100120x y =⎧⎨=⎩. 答:男装单价为100元 女装单价为120元.(2)解:设参加活动的女生有a 人,则男生有()150a -人 根据题意可得()2150312010015017000a a a a ⎧-≤⎪⎨⎪+-≤⎩解得:90100a ≤≤①a 为整数①a 可取90 91 92 93 94 95 96 97 98 99 100 一共11个数故一共有11种方案设总费用为w 元,则()1201001501500020w a a a =+-=+①200>①当90a =时 w 有最小值 最小值为15000209016800+⨯=(元).此时 15060a -=(套).答:当女装购买90套 男装购买60套时 所需费用最少 最少费用为16800元.【点睛】本题考查二元一次方程组和一元一次不等式组的应用 找到题中的等量关系或不等关系是解题的关键.23.(2023·北京·统考中考真题)解不等式组:23535x x x x+⎧>⎪⎨⎪-<+⎩.【答案】12x <<【分析】分别求出每一个不等式的解集 根据口诀:同大取大 同小取小 大小小大中间找 大大小小找不到确定不等式组的解集. 【详解】23535x x x x +⎧>⎪⎨⎪-<+⎩①②解不等式①得:1x >解不等式①得:2x <∴不等式的解集为:12x <<【点睛】本题考查了解一元一次不等式组 正确掌握一元一次不等式解集确定方法是解题的关键. 24.(2023·江苏无锡·统考中考真题)(1)解方程:2220x x +-=(2)解不等式组:32251x x x +>-⎧⎨-<⎩【答案】(1)1117x -+= 2117x -- (2)13x -<< 【分析】(1)根据公式法解一元二次方程即可求解(2)分别求出每一个不等式的解集 根据口诀:同大取大 同小取小 大小小大中间找 大大小小找不到确定不等式组的解集.【详解】(1)2220x x +-=解:①2,1,2a b c ===-①24142217b ac ∆=-=+⨯⨯=0> ①24117b b ac x -±--±==解得:1117x -+= 2117x --=(2)32251x x x +>-⎧⎨-<⎩①②解不等式①得:1x >-解不等式①得:3x <①不等式组的解集为:13x -<<【点睛】本题考查了解一元二次方程 求不等式组的解集 熟练掌握公式法解一元二次方程以及解一元一次不等式组是解题的关键.25.(2023·江苏徐州·统考中考真题)(1)解方程组41258x y x y =+⎧⎨-=⎩(2)解不等式组45312135x x x -≤⎧⎪-+⎨<⎪⎩【答案】(1)92x y =⎧⎨=⎩ (2)82x -<≤【分析】(1)利用代入法解二元一次方程组即可(2)求出每个不等式的解集 取每个不等式解集的公共部分即可.【详解】解:(1)41258x y x y =+⎧⎨-=⎩①②把①代入①得 ()24158y y +-=解得2y =把2y =代入①得 4219x =⨯+=① 92x y =⎧⎨=⎩(2)45312135x x x -≤⎧⎪⎨-+<⎪⎩①②解不等式①得 2x ≤解不等式①得 8x >-①不等式组的解集是82x -<≤.【点睛】此题考查了二元一次方程组的解法和一元一次不等式组的解法熟练掌握相关解法是解题的关键.26.(2023·辽宁·统考中考真题)某礼品店经销A B 两种礼品盒 第一次购进A 种礼品盒10盒 B 种礼品盒15盒 共花费2800元 第二次购进A 种礼品盒6盒 B 种礼品盒5盒 共花费1200元(1)求购进A B 两种礼品盒的单价分别是多少元(2)若该礼品店准备再次购进两种礼品盒共40盒 总费用不超过4500元 那么至少购进A 种礼品盒多少盒?【答案】(1)A 礼品盒的单价是100元 B 礼品盒的单价是120元(2)至少购进A 种礼品盒15盒.【分析】(1)设A 礼品盒的单价是a 元 B 礼品盒的单价是b 元 根据题意列方程组即可得到结论 (2)设购进A 礼品盒x 盒,则购进B 礼品盒(40)x -盒 根据题意列不等式即可得到结论.【详解】(1)解:设A 礼品盒的单价是a 元 B 礼品盒的单价是b 元根据题意得:10152800651200a b a b +=⎧⎨+=⎩解得:100120a b =⎧⎨=⎩答:A 礼品盒的单价是100元 B 礼品盒的单价是120元(2)解:设购进A 礼品盒x 盒,则购进B 礼品盒(40)x -盒根据题意得:10012040()0450x x +-≤解得:15x ≥①x 为整数①x 的最小整数解为15①至少购进A 种礼品盒15盒.【点睛】本题考查了二元一次方程组的应用 一元一次不等式的应用 正确的理解题意是解题的关键.27.(2023·甘肃兰州·统考中考真题)解不等式组:312(1)223x x x x ->+⎧⎪+⎨>-⎪⎩. 【答案】34x <<【分析】分别解不等式组中的两个不等式 再取两个不等式的解集的公共部分即可. 【详解】解:312(1)223x x x x ->+⎧⎪⎨+>-⎪⎩①② 由①得:32>21x x -+解得:>3x。
2020年数学中考专题复习测试试题:不等式(组)综合测试试题

不等式(组)综合测试题(时间:________ 分数:120分)一、选择题(每小题3分,共30分)1. 若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0 2. 不等式3x-1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2 3. 不等式组的解集在数轴上表示为()A B C D4.已知a<3,则不等式(a-3)x<3-a的解集是()A.x>1B.x<1C.x>﹣1D.x<﹣15. 在平面直角坐标系中,若点P(3-m,m-1)在第二象限,则m的取值范围是()A.m>3B.m>1C.m<1D.1<m<36. 不等式组⎪⎩⎪⎨⎧+≤-221,521<xx的非负整数解的个数是()A.5个B.4个C.3个D.2个7.如图,直线y1=kx+b与直线y2=mx-n相交于点P(1,m),则关于x的不等式mx-n>kx+b的解集是()A.x>0B.x<0C.x>1D.x<1第7题图8.若不等式组无解,则k的取值范围是()A.k≥1B.k≤1C.k<1D.k>19.油电混动汽车是一种节油、环保的新技术汽车,它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下表:油电混动汽车普通汽车购买价格(万元)15.612每百公里燃油成本(元)3060某人计划购入一辆上述品牌的汽车,他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本,则他在估算时,预计平均每年行驶的公里数至少为()A.8000 公里B.10 000 公里C.12 000 公里D.14 000公里10.对实数x按如图的程序进行操作,规定:程序运行从“输入实数x”到“结果是否大于365”为一次操作.如果必须进行3次操作才能得到输出值,那么输入值x必须满足()A.x<50B.x<95C.50<x<95D.50<x≤95第10题图二、填空题(每小题4分,共24分)11. 已知不等式(a-2)x≤(a-2)的解集为x≥1,那么a的取值范围是.12.如图,小雨把不等式3x+1>2(x-1)的解集表示在数轴上,则阴影部分盖住的数字是 .第12题图13.不等式组1<x-2≤2的所有整数解的和为.14.若关于x的一元一次不等式2x-m≥0有2个负整数解,则m的取值范围是.15.方嘉商场有一种进价为8元,出售标价为12元的小商品,由于积压,准备打折销售,但要保证利润率不低于5%,则最多可打折.16.若关于x的不等式组的解集中的任意x,都能使不等式x-5>0成立,则a的取值范围是.三、解答题(共66分)17.(每小题6分,共12分)解不等式(组):(1)2(x+4)>3(x-1);(2)18.(12分)如图,在数轴上,点A,B分别表示数1,-2x+3.(1)求x的取值范围;(2)数轴上表示数-x+2的点应落在.A.点A的左边B.线段AB上C.点B的右边19.(12分)已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.20.(14分)某校拟举办“创文知识”抢答赛,欲购买A,B两种奖品以鼓励抢答者.如果购买A种奖品20件,B种奖品15件,共需380元;如果购买A种奖品15件,B种奖品10件,共需280元.(1)A,B两种奖品每件分别为多少元?(2)现要购买A,B两种奖品共100件,总费用不超过900元,那么A种奖品最多可购买多少件?21.(16分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.参考答案:不等式(组)综合测试题一、1. D 2. D 3. D 4. C 5. A 6. C 7. C 8. B 9. C 10. D二、11. a<2 12. -3 13. 15 14. -6<m≤-4 15. 7 16. a≤-6三、17. (1)x<11;(2)32≤x<2.18. 解:(1)根据题意,得﹣2x+3>1,解得x<1. (2)B提示:由x<1,得-x>-1.所以﹣x+2>1.所以数轴上表示数-x+2的点在点A的右边. -2x+3-(-x+2)=-x+1.由-x>-1,得-x+1>0.所以-2x+3>-x+2.所以数轴上表示数-x+2的点在点B的左边,即在线段AB上.19. 解:解不等式5x+1>3(x﹣1),得x>-2.解不等式x≤8-x+2a,得x≤4+a.因为原不等式组有解,所以不等式组的解集是-2<x≤4+a.因为不等式组恰好有两个整数解,是-1和0,所以0≤4+a<1.解得-4≤a<-3.20. 解:(1)设A种奖品每件为x元,B种奖品每件为y元.根据题意,得解得答:A种奖品每件为16元,B种奖品每件为4元.(2)设A种奖品可购买a件,则B种奖品可购买(100﹣a)件.根据题意,得16a+4(100﹣a)≤900.解得a≤.因为a为正整数,所以a的最大值为41.答:A种奖品最多可购买41件.21. 解:设购买A型号笔记本电脑x台时的费用为w元.(1)当x=8时,方案一:w=90%a×8=7.2a;方案二:w=5a+(8﹣5)a×80%=7.4a.所以当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元.(2)若该公司采用方案二购买更合算,所以x>5.方案一:w=90%ax=0.9ax;方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax. 根据题意,得0.9ax>a+0.8ax.解得x>10.所以若该公司采用方案二购买更合算,x的取值范围是x>10.。
中考数学不等式与不等式祖专题训练50题(含参考答案)

中考数学不等式与不等式祖专题训练含答案一、单选题1.如果a >b ,则下列各式中不成立的是( )A .a+4>b+4B .2+3a>2+3bC .a-6>b-6D .-3a>-3b 2.不等式5x ≥的解集在数轴上表示正确的是( )A .B .C .D . 3.一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3- 4.若a b >,则下列各式正确的是( )A .33a b -<-B .0a b -<C .33a b <D .a b >5.如图,不等式组1239x x -<⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .6.不等式组 21352x x ->-⎧⎨->⎩的整数解有( ) A .3个 B .4个 C .5个 D .6个 7.若m <n ,则下列不等式正确的是( )A .m ﹣2>n ﹣2B .44m n >C .﹣6m >﹣6nD .﹣8m <﹣8n 8.下列语句或式子中正确的是( )A .任何实数的零次幂都等于1B .5的倒数的相反数是-5C .1111()()a b a b ab ---++=D .若a<b ,则a 2<b 29.已知不等式30x a +≥的负整数解恰好是3-,2-,1-.那么a 满足条件( ) A B CD10.若点P (2m +1,312m -)在第四象限,则m 的取值范围是( ) A .m <13 B .m >12- C .1123m -<< D .1123m -≤≤ 11.若x <y ,比较2-3x 与2-3y 的大小,则下列式子正确的是( )A .2-3x >2-3yB .2-3x <2-3yC .2-3x=2-3yD .无法比较大小12.不等式组21013x x ->⎧⎨+≤⎩的解集表示在数轴上正确的是( ) A . B .C .D .13.不等式ax -2<0的解集在数轴上表示如图,那么a 的取值范围是( )A .1a <B .2a <C .1a =D .2a =14.下列不等式的解集中,不包括-3的是( )A .3x ≤-B .3x ≥-C .4x ≤-D .4x >- 15.若0<x <1,则x,2x ,3x 的大小关系是( )A .x <2x <3xB .x <3x <2xC .3x <2x <xD .2x <3x <x 16.(天津市和平区普通中学2018届初三数学中考复习综合练习题)如果m<n<0,那么下列式子中错误的是A .m −9<n −9B .−m>−nC .1m <1nD .m n>1 17.若a >b ,则( )A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +1 18.用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,设需要x 分钟才能将污水抽完,则x 的取值范围是( ) A .x≥40 B .x≤50 C .40<x <50 D .40≤x≤50 19.下列说法中,错误的一项是( )A .由a (m 2+1)<b (m 2+1)成立可推a <b 成立B .由a (m 2﹣1)<b (m 2﹣1)成立可推a <b 成立C .由a (m +1)2<b (m +1)2成立可推a <b 成立D .由a (m +b )<b (m +a )成立可推am <bm 成立20.已知正整数a ,b ,c ,d 满足:a <b <c <d ,a +b +c +d =2022,22222022d c b a -+-=,则这样的4元数组(a ,b ,c ,d )共有( )A .251组B .252组C .502组D .504组二、填空题21.x 的3倍与5的差小于6,用不等式表示为________.22.如果关于x 的一元二次方程210kx +=有两个不相等的实数根,则k 的取值范围是________.23.不等式11x -的非负整数解是__.24.已知一次函数()1123y a x a =-+-,如果函数值y 随着自变量x 的增大而减小,那么在平面直角坐标系中,这个函数图象与y 轴的交点M 位于y 轴的______半轴.(填正或负)25.若不等式|x +1|+|x ﹣2|>a 对任意实数x 恒成立,则a 的取值范围是_____.26.不等式组31432x x -<⎧⎨+≥⎩的解集是___________. 27.不等式2x ﹣1≤3x +2的负整数解的和是 ___.28.若点P (1﹣a ,1)在第二象限,则(a ﹣1)x <1﹣a 的解集为______.29.不等式7x+21>0的解集为_____30.不等式()231a x -<的解集是123x a >-,则a 的取值范围是_______________________.31.不等式2﹣x >0的解集是_____.32.把一些书分给几名同学,如果每人分4本,那么余3本;如果前面的每名同学分6本,那么最后一人就分得不超过2本,则这些书有本______. 33.若不等式组841x x x m +>-⎧⎨≤⎩的解集为x<3,则m 的取值范围是____________. 34.如果关于x 的方程325x k x +=-的解是正数,则k 的取值范围是________.35.不等式组2421x x -<⎧⎨-≥⎩的解集是______. 36.当_________时,34x x -++有最小值,最小值是_________;37.如果(1)20m m x +-<是关于x 的一元一次不等式,则m=_______38.若不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,且使关于x 的分式方程6mx x -=436x x +- 有整数解,那么符合条件的所有整数m 的值之和是______.39.在橙子收获旺季,某果园开展现场采摘现场销售活动,每天接待到果园采摘橙子的游客络绎不绝.果园里有A 、B 、C 三种不同品种的橙子,第一周A 、B 、C 三种橙子的采摘重量之比为4:3:5,第一周C 品种橙子的单价是A 、B 品种橙子的单价之和的3倍,第一周C 品种橙子的单价小于21元且不低于3元.第二周继续接待采摘三种橙子的游客,本周A 、C 品种橙子的采摘重量之比为2:3,B 品种橙子的采摘重量比第一周下降了15,A 品种橙子的单价与第一周相同,B 品种橙子的单价比第一周增加1倍,C 品种橙子的单价是第一周的4倍.两周结束后,经统计,第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额多1090元,第一周三种橙子的总采摘重量与第二周三种橙子的总采摘重量之差不低于166斤且小于196斤,则这两周C 种橙子的总销售额一共为 _____元,(A 、B 、C 三种不同品种橙子的单价为每斤整数元,以及每次采摘重量都是整数斤)三、解答题40.下面是小明解不等式532122x x ++-<的过程: ①去分母,得5132x x +-<+,①移项、合并同类项,得22x,①两边都除以-2,得1x >.先阅读以上解题过程,然后解答下列问题.(1)小明的解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是___________________________________________________;(3)第①步的依据是___________________________________________;(4)该不等式的解集应该是________________. 41.解不等式组4+6>13(1)5x x x x --≤-⎧⎨⎩①② 请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式①,得_____;(3)把不等式①和①的解集在数轴上表示出来.(4)原不等式组的解集为_____.42.下面是小红同学解不等式5117263x x -≤-的过程,请认真阅读并完成相应任务. 解:5111214x x -≤-,.............第一步5121114x x -≤-,.............第二步73x -≤-....................第三步37x ≤........................第四步 任务一:填空.(1)以上解题步骤中,第___步是去分母,去分母的依据是___;(2)第___步出现错误,这一步错误的原因是___,这一步正确的结果是___,依据是___.任务二:除了任务一中出现的错误外,请根据平时的学习经验,就解不等式时还需要注意的事项给其他同学提一条建议.43.我们定义:如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)不等式3x ≥ (选填“是”或“不是”3x ≤的“云不等式”).(2)若关于x 的不等式20x a -≥与不等式1211x x ->-互为“云不等式”且有2个公共的整数解,求a 的取值范围.44.解不等式(组):(1)()3511x x >+-; (2)()51312151132x x x x ⎧-<+⎪⎨-+-≤⎪⎩①② 45.某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案? 46.2021年体育实验考试期间,商城县某初中组织本校332名九年级考生和8名领队教师到商城高中参加考试,学校准备租用45座甲种客车和30座的乙种客车.若租用1辆甲种客车和2辆乙种客车共需租金1650元;若租用2辆甲种客车和1辆乙种客车共需租金1800元.(1)求甲乙两种客车每辆的租金各是多少元?(2)为了保证安全,学校要求每辆车上至少要有一名领队教师陪同,在总租金不超过5200元的情况下,有多少种租车方案?并求出最省钱的租车方案.47.为应对新型冠状病毒,某药店老板到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌的数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?48.2019年4月29日至2019年10月7日,2019年中国北京世界园艺博览会(简称北京世园会)在中国北京市延庆区举行,展期162天.这是继云南昆明后第二个获得国际园艺生产者协会批准及国际展览局认证授权举办的A1级国际园艺博览会.北京世园会门票种类分为平日票、指定日票、三次票等票种,同时按销售对象分为普通票、优惠票和团队票(学生享受优惠票,15人以上可以享受团体票).指定日包括开园日、“五一”假期、端午节假期、中秋节假期、“十一”假期这些日期,其余时间为平日;三次票是指除指定日外,同一持票人在展会期间可以任选三天入园的票种. 具体如下表:小明,小亮两家共10人打算一起参观北京世园会(10人均需购票).(1)若他们端午节去北京世园会参观购买门票共用去1360元,问买了普通票和优惠票各几张(2)如果他们平日去北京世园会参观,且购买门票的费用不超过2000元,那么在保证游玩的前提下最多可以买几张三次票?共有几种买票方案?分别是什么?49.清明节,除了扫墓踏青之外,传统时令小吃——青团也深受大家欢迎,知味观推出一款鲜花牛奶青团和一款芒果青团,鲜花牛奶青团每个售价是芒果青团的54倍,4月份鲜花牛奶青团和芒果青团总计销售60000个,且鲜花牛奶青团和芒果青团销售量之比为5:7,鲜花牛奶青团销售额为250000元.(1)求鲜花牛奶青团和芒果青团的售价?(2)5月份正值知味观店庆,决定再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花牛奶青团个数的32,且不多于鲜花牛奶青团的2倍,其中,鲜花牛奶青团每个让利a元销售,芒果青团售价不变,并且让利后的鲜花牛奶青团售价不得低于芒果青团售价的78,知味观如何设计生产方案使总销售额最大?参考答案:1.D【分析】适当地选用不等式的基本性质对所给不等式进行变形,注意不等号方向的“不变”与“改变”.【详解】A .根据不等式的基本性质1可知,44a b +>+,此选项正确,不符合题意; B .根据不等式的基本性质1和2可知,2323a b +>+,此选项正确,不符合题意; C .根据不等式的基本性质1可知,66a b ->-,此选项正确,不符合题意;D .根据不等式的基本性质3可知:不等式两边乘(或除以)同一个负数,不等号的方向改变;即-3a<-3b ,故D 错误;故选D .【点睛】本题考查了不等式的基本性质,解决这类问题时,先看已知不等式与变化后的不等式两边变化情况,从而确定应用哪一个性质.2.C【分析】不等式的解集在数轴上表示的方法:①定点,根据不等式中的实数确定数轴上的点(“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示);①定向,根据不等号方向确定(>,≥向右画;<,≤向左画),按要求操作即可得出.【详解】解:根据5和≥确定在数轴上取对应的数字为5的实心点,然后方向向右,从而得到:,故选:C .【点睛】本题考查了不等式的解集在数轴上表示的方法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.D【分析】由一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),利用一次函数图象上点的坐标特征即可得出关于m 的方程,解之即可得出m 的值,由y 的值随着x 的值的增大而减小,利用一次函数的性质可得出m -2<0,解之即可得出m <2,进而可得出m =-3.【详解】解:①一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),①m 2-3=6,即m 2=9,解得:m =-3或m =3.又①y 的值随着x 的值的增大而减小,①m -2<0,①m <2,①m =-3.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m 的方程及一元一次不等式是解题的关键.4.A【分析】根据不等式的性质和绝对值的定义,结合“a b >”,依次分析各个选项,选出正确的选项即可.【详解】解:A 、若a b >,则33a b -<-,正确,该选项符合题意;B 、若a b >,则0a b ->,原变形错误,该选项不符合题意;C 、若a b >,则33a b >,原变形错误,该选项不符合题意; D 、若a 和b 同为负数,若a b >,a b <,该选项不符合题意;故选:A .【点睛】本题考查了不等式的性质和绝对值,正确掌握不等式的性质和绝对值的定义是解题的关键.5.A【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】解:1239x x -⎧⎨-≤⎩<①② 由①,得x <3;由①,得x≥-3;故不等式组的解集是:-3≤x <3;表示在数轴上如图所示:故选:A . 【点睛】此题考查在数轴上表示不等式的解集、解一元一次不等式组.解题关键在于掌握把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.A【分析】先求出两个不等式的解集,再求其公共解,然后写出所有的整数解即可求出个数.【详解】解:解不等式213x ->-得:1x >-,解不等式52x ->得:3x <,所以,不等式组的解集是13x -<<,所以,不等式组的整数解有0、1、2共3个.故选:A .【点睛】本题主要考查了一元一次不等式组整数解的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.C【分析】根据不等式的基本性质,逐项判断即可.【详解】解:A 、①m <n ,①m ﹣2<n ﹣2,①选项A 不符合题意;B 、①m <n ,①44m n <,①选项B 不符合题意; C 、①m <n ,①﹣6m >﹣6,①选项C 符合题意;D 、①m <n ,①﹣8m >﹣8n ,①选项D 不符合题意.故选:C .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.8.C【分析】根据零次幂,相反数,负指数幂,不等式一一判定即可.【详解】A.0的零次幂没有意义,故错误;B. 5的倒数的相反数是-15,故错误; C. ()()1111a b a b ab---++=,正确; D.当a ,b 都为负数时,不等式不成立,故错误.故选C【点睛】本题考查了相反数,不等式的性质,熟练掌握概念和性质是解题的关键. 9.D【分析】首先解不等式求得不等式的解集,然后根据不等式的负整数解得到关于a 的不等式组,从而求得a 的范围.【详解】解不等式30x a +≥,得:3a x ≥-, 根据题意得:433a -<-≤-, 解得:912a ≤<.故选D . 【点睛】本题考查了不等式的整数解,根据x 的取值范围正确确定3a -的范围是解题的关键.在解不等式时要根据不等式的基本性质.10.C【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:①点P (2m +1,312m -)在第四象限. ①2103102m m +>⎧⎪⎨-<⎪⎩. 解得1123m -<<. 故选:C .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m 的取值范围.11.A【分析】根据不等式的基本性质对以下选项进行一一验证即可.【详解】解:在不等式x <y 的两边同时乘以-3,不等号的方向改变,即-3x >-3y . 在不等式-3x >-3y 的两边同时加上2,不等号的方向不变,即2-3x >2-3y ,故选项A 正确.故选:A .【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.A【分析】先求出不等式组的解集,再表示在数轴上即可解答;【详解】解:210x ->,解得:12x >; 13x +≤,解得:2x ≤;①原不等式组的解集为:122x <≤, 在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式组及解集在数轴上的表示,掌握相关知识并正确求解是解题的关键.13.D【分析】先根据题意得出不等式的解集,进而可得出结论.【详解】①数轴上点1处是空心圆点,且折线向左,①不等式的解集为x <1,解不等式ax-2<0得,x <2a, ①2a=1, 解得a=2.故选D . 【点睛】本题考查的是在数轴上表示不等式的解集,熟知不等式解集的表示方法是解答此题的关键.14.C【分析】不包括-3即-3不在解集内,由此可得出答案.【详解】解:根据题意,不包括-3即-3不在解集内,只有C选项,x≤ -4,不包括-3.故选C.【点睛】本题考查不等式的解集,熟练掌握是解题的关键.15.C【详解】试题分析:当0<x<1时,则3x<2x<x.本题可以利用特殊值法来进行比较.考点:数的大小比较16.C【详解】A、根据不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立.m<n两边减去9,得到:m−9<n−9,成立;B、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时乘以−1得到−m>−n,成立;C、由m<n<0,可设m=−2,n=−1,验证1m>1n,不成立.D、根据不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.m<n两边同时除以负数n得到mn>1,成立.故选C.17.C【分析】举出反例即可判断A、B、D,根据不等式的传递性即可判断C.【详解】解:A、a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;B、a=3,b=1,a>b,但是b+1<a,不符合题意;C、①a>b,①a+1>b+1,①b+1>b﹣1,①a+1>b﹣1,符合题意;D、a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.故选:C.【点睛】此题考查不等式的性质,对性质的理解是关键.18.D【分析】设大约需x分钟才能将污水抽完,利用总的抽水量超过1200t而不足1500t列出不等式组解决问题.【详解】设大约需x 分钟才能将污水抽完,由题意得:301200{301500x x ≥≤ , 解得:40≤x≤50.故选D .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.19.B【分析】根据不等式的基本性质逐一判断即可.【详解】解:①m 2+1>0,则不等式的两边同时除以m 2+1,则不等式不变号,①A 正确;①a (m 2﹣1)<b (m 2﹣1)中,m 2﹣1可以是正数也可以是负数或0,①B 错误; ①a (m +1)2<b (m +1)2成立,①(m +1)2≠0,可得(m +1)2>0,则不等式的两边同时除以(m +1)2,则不等式不变号,①C 正确;①a (m +b )<b (m +a )可以化为am +ab <bm +ab ,则不等式的两边同时减去ab ,则不等式不变号,①D 正确;故选:B .【点睛】本题考查不等式的基本性质;熟练掌握不等式的基本性质是解题的关键. 20.D【分析】根据题意得出321a b c d +≤+≤+≤,继而得出()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=,再由已知条件构造()10102a c a a =+≥++,即可解答.【详解】因为a ,b ,c ,d 为正整数,且a b c d <<<,所以321a b c d +≤+≤+≤.所以()()()()()()222220222022d c b a d c d c b a b a d c b a =-+-=-++-+≥+++=.因此1d c -=,1b a -=,即1d c =+,1b a =+.所以()()112022a b c d a a c c +++=+++++=,因此1010a c +=.又2a c +≤,所以()10102a c a a =+≥++,因此1504a ≤≤.所以符合条件的4元数组(),,,a b c d 为(),1,1010,1011a a a a +--,其中1504a ≤≤. 所以符合条件的4元数组有504组.故选:D .【点睛】本题考查了整式的应用,解题的关键是根据题目已知等式构造不等式,属于竞赛题.21.356x <【分析】根据运算的顺序列不等式即可.【详解】解:x 的3倍与5的差小于6,用不等式表示为:356x <,故答案为:356x <.【点睛】本题考查列一元一次不等式,解题关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.22.113k -≤<且0k ≠【分析】根据一元二次方程的定义和根的判别式得出0k ≠,310k +≥,(2410k ∆=-⨯>,据此求解即可 【详解】解:关于x 的一元二次方程2(1)210k x x --+=有两个不相等的实数根, ①0k ≠,310k +≥且(2410k ∆=-⨯>, 解得:113k -≤<且0k ≠, 故答案是:113k -≤<且0k ≠.【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键.23.0x =,1,2【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.【详解】解:移项得:11x +,合并同类项得:2x ,故不等式的非负整数解是0x =,1,2.故答案为:x =0,1,2.【点睛】本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.24.正【分析】根据函数值y 随着自变量x 的增大而减小,可得120a -<,从而得到103a ->,即可求解.【详解】解:①函数值y 随着自变量x 的增大而减小,①120a -<, 解得:12a >, ①103a ->, ①这个函数图像与y 轴的交点M 位于y 轴的正半轴.故答案为:正【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质以及一次函数图象上点的坐标特征是解题的关键.25.a <3.【分析】根据绝对值的几何意义,求得|x +1|+|x ﹣2|的最小值为3,从而得到实数a 的取值范围.【详解】解:①|x +1|+|x ﹣2|表示数轴上的x 对应点到﹣1、2对应点的距离之和, ①它的最小值为3,①不等式|x +1|+|x ﹣2|>a 对任意的实数x 恒成立,①a <3,故答案为:a <3.【点睛】本题主要考查了绝对值的意义,以及绝对值不等式的解法.解题的关键是利用绝对值不等式的几何意义,体现了数形结合的思想.26.513x -≤< 【分析】分别求出两个不等式的解集,再进行求解即可.【详解】解:解314x -<得53x <, 解32x +≥得1x ≥-,①不等式组的解集为:513x -≤<,故答案为:513x -≤<. 【点睛】本题考查了不等式组的求解,正确的计算是解决本题的关键.27.6-.【分析】先求出不等式的解集,找出不等式的负整数解即可.【详解】解:2132x x -≤+,①233x x -≤,①3x -≤,①3x ≥-;①负整数解有:3-,2-,1-;①负整数解的和是:3(2)(1)6-+-+-=-;故答案为:6-.【点睛】本题主要考查一元一次不等式的整数解,不等式的性质,解一元一次不等式等知识点的理解和掌握,能求出不等式的解集是解此题的关键.28.x <﹣1【分析】根据点P 在第二象限得出a >1,据此知a ﹣1>0,再将不等式两边都除以a ﹣1即可得答案.【详解】解:①点P (1﹣a ,1)在第二象限,①1﹣a <0,则a >1,①a ﹣1>0,①不等式(a ﹣1)x <1﹣a 的解集为x <﹣1,故答案为:x <﹣1.【点睛】本题考查了第二象限内点的坐标特征,不等式的性质,解不等式,系数化为1的过程中,在解不等式时,一定要先判断两边所除的式子的符号.29.x >-3【分析】先移项、然后按不等式的基本性质进行解答即可.【详解】解:7x+21>07x >-21x >-3故答案为x>-3.【点睛】本题主要考查了解一元一次不等式,掌握不等式的基本性质是解答本题的关键.30.32 a<【分析】据已知不等式的解集,结合x的系数确定出2a-3为负数,求出a的范围即可.【详解】解:①不等式(2a-3)x<1的解集是123xa>-,①2a-3<0,①32a<,即a的取值范围是32a<,故答案为32a<.【点睛】本题考查了解一元一次不等式和不等式的性质,能根据不等式的性质得出关于a 的不等式是解此题的关键.31.x<2【分析】利用不等式的基本性质解出不等式的解集即可【详解】根据不等式的基本性质将2﹣x>0变形为2>x,故不等式2﹣x>0的解集是x<2【点睛】主要考查一元一次不等式的解法32.19【分析】设共有x名同学分书,则这批书共有(4x+3)本,根据“如果前面的每名同学分6本,那么最后一人就分得不超过2本”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为正整数即可得出结论.【详解】解:设共有x名同学分书,则这批书共有(4x+3)本,依题意,得436(1) 436(1)2x xx x+>-⎧⎨+≤-+⎩,解得:7292x≤<,又①x为正整数,①x=4,①4x+3=19.故答案为:19.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.33.m≥3【分析】化简不等式组得3x x m <⎧⎨≤⎩,根据不等式组的解集为x<3,即可得出m 的取值范围. 【详解】解:解不等式组得3x x m <⎧⎨≤⎩, ①不等式组解集为x<3,①m≥3.故答案为:m≥3.【点睛】本题主要考查的是不等式组的解集,掌握不等式组的解集是解题的关键.34.52k <- 【分析】解出方程的解为522k x --=,再根据题意得到5202k -->,转化为解一元一次不等式即可解答.【详解】解:325x k x +=- 解得522k x --= 关于x 的方程325x k x +=-的解是正数,5202k --∴> 520k ∴-->52k ∴<- 故答案为:52k <-. 【点睛】本题考查方程的解、解一元一次方程、解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.35.3x ≥【分析】先求出每一个不等式的解集,后确定不等式组的解集.【详解】①2421x x -<⎧⎨-≥⎩①②①解不等式①,得x >-2,解不等式,①,得x ≥3,①不等式组的解集为x ≥3,故答案为:x ≥3.【点睛】本题考查了一元一次不等式组的解法,熟练进行不等式求解是解题的关键. 36. 43x -≤≤ 7【分析】根据题意以及绝对值的非负性,再利用分类讨论的数学思想可以解答本题.【详解】当x >3时,34x x -++=34217x x x -++=+>;当43x -≤≤时,34x x -++34x x =-++=7;当x <-4时,34x x -++=34=217x x x ----->.∴当43x -≤≤时,34x x -++有最小值7.故答案为:43x -≤≤;7.【点睛】本题考查了绝对值相关最值的求解,涉及不等式运算,解答本题的关键是明确绝对值的定义,利用分类讨论的数学思想解答.37.1【分析】利用一元一次不等式的定义判断即可确定出m 的值.【详解】①(1)20m m x +-<是关于x 的一元一次不等式,①1m +≠0且|m|=1,①m =1.故答案是:1.【点睛】考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.38.11【分析】根据不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立确定出m 的范围,再由m 是整数得到m 的值,分式方程去分母后将m 的值代入检验,使分式方程的解为整数即可.【详解】①3x <6,①x <2,①不等式3x <6的解都能使关于x 的一次不等式(m-1)x <m+5成立,①不等式(m-1)x <m+5的解集是51m x m +<-, ① 521m m +≥-, 解之得1<m≤7,①m 是整数,①m=2,3,4,5,6,7, ①6mx x -=436x x +-, ①mx=3x-18+4x , ①187x m=- , ①分式方程6mx x -=436x x +- 有整数解, ①m=2, 185x =,舍去;m=3, 92x =,舍去;m=4, 6x =,是增根,舍去;m=5, 9x =;m=6, 18x =;m=7,x 无解,舍去;①5+6=11.故答案为11.【点睛】本题主要考查的是分式方程的解法,一元一次不等式组的解法的有关知识,熟练掌握分式方程的解法是解答本题的关键.39.2880【分析】设第一周A 、B 、C 三种橙子的采摘重量分别为4m 斤、3m 斤、5m 斤,第一周A 、B 单价分别为x 元,y 元;设第二周A 、C 三种橙子的采摘重量分别为2m 斤、3m 斤;则第一周C 品种橙子的单价为3(x +y )元,第二周A 、B 、C 三种橙子的单价分别为x 元,2y 元;12(x +y )元,通过第一周三种橙子的总销售额比第二周A 、C 两种橙子的总销售额。
中考数学不等式与不等式祖专题训练50题含参考答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.若不等式(1)1a x a 的解集是1x <,则a 必满足( ) A .1a <-B .1a >-C .1a <D .1a >2.判断下列各式中不等式有( )个(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -. A .2B .3C .4D .63.x 与3的和的一半是负数,用不等式表示为( ) A .1302x +> B .1302x +<C .()1302x +> D .()1302x +< 4.若关于x 的方程311x ax +=-的解是正数,则a 的取值范围是( ) A .a >﹣1 B .a >﹣1且a ≠0 C .a <﹣1 D .a <﹣1且a ≠﹣35.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A .41x x >⎧⎨≤-⎩B .41x x ≤⎧⎨>-⎩C .41x x >⎧⎨>-⎩D .41x x <⎧⎨≥-⎩6x 的取值范围是( ) A .4x ≥B .>4xC .4x ≤D .4x <7.若a >b ,则下列不等式不成立的是( ) A .a +m >b +m B .a (m 2+1)>b (m 2+1) C .22a b -<-D .a 2>b 28.如果不等式组7x x m <⎧⎨>⎩无解,那么m 的取值范围是( )A .7m >B .7m ≥C .7m <D .7m ≤9.如果a b >,那么下列式子一定正确的是( ) A .22a b >B .55a b -<-C .510ba > D .22ab ->+10.若a b > ,则下列不等式变形错误的是A .11a b +>+B .22a b > C .D .11.若m <n ,则下列各式中正确的是() A .m -2>n -2B .2m >2nC .-2m >-2nD .22m n > 12.下列说法不正确的是( ) A .2x =-是不等式21x ->的一个解 B .2x =-是不等式21x ->的一个解集 C .728x x ->+与15x <的解集不相同D .3x <-与721x ->的解集相同13.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品( ) A .9件B .10件C .11件D .12件14.若整数a 使关于x 的分式方程2311a x x+=--的解为正数,且使关于y 的不等式组21324()0y yy a +⎧->⎪⎨⎪-⎩的解集为2y <-,则符合条件的所有整数a 之和为( ) A .3 B .5 C .7 D .915.对于题目:“已知点A (﹣6,4),B (3,4),若抛物线2121y x x a=-+与线段AB 恰有一个公共点,求a 的取值范围”,嘉嘉的结果是4a ,淇淇的结果是1a >,则( )A .嘉嘉的结果正确B .淇淇的结果正确C .嘉嘉、淇淇的结果合在一起才正确D .嘉嘉、淇淇的结果合在一起也不正确16.适合|2a+5|+|2a -3|=8的整数a 的值有( ) A .4个B .5个C .7个D .9个17.若()11a x a +>+的解集是1x <,则a 必须满足是( ) A .a<0B .1a >-C .1a <-D .1a ≤18.已知,a b c 、、是实数,且a b >,则以下四个式子中,正确的是( ) A .ac bc >B .22a b -->C .11a b>D .11a b -+-+>19.不等式组30312x x +≥⎧⎨-≤⎩的解集是( )A .x ≤﹣1B .x ≥3C .﹣3≤x ≤1D .﹣3≤x <120.关于x ,y 的方程组21431x y p x y p +=+⎧⎨+=-⎩的解满足x y ≤,则p 的范围是( )A .p ≤52B .p ≥52C .p ≥-52D .p ≤-52二、填空题21.用不等式表示:y 的3倍与1的和大于8;_____________.22.语句“x 的18与y 的和不超过5”可以表示为 _____.23.如果关于x ,y 的二元一次方程组22522x y m x y m +=+⎧⎨+=-+⎩的解满足1x y +>,那么m 的取值范围是_______.24.已知关于x 、y 的方程组3522323x y m x y m +=+⎧⎨+=-⎩的解满足不等式23x y +≥,则m 的取值范围为___.25.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.26.解不等式组()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩,它的解集为___________________.27.关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.28.如图所示的不等式的解集是________.29.不等式组1123(7)x x x ≥⎧⎨--⎩>的整数解的和为_____.30.已知式子413a -的值小于2,则a 的最大整数值是_______. 31.不等式组2352x x -≥⎧⎨->-⎩的解集是__________.32.不等式组1012x x x ->⎧⎪⎨+≥⎪⎩的解集是________.33.若关于x 的分式方程11222k x x--=--的解是正数,则k 的取值范围是______. 34.若3x my n =⎧⎨=+⎩和121x m y n =+⎧⎨=-⎩都是方程y =kx +k +1的解,且k <7,则n 的取值范围是______.35.不等式组253(3)121035x x x +<+⎧⎪-⎨+≥⎪⎩的整数解有________个.36.定义运算[x ]表示求不超过x 的最大整数.如[0.5]=0,[1.3]=1,[﹣1.2]=﹣2,[﹣2.5]=﹣3.若[﹣2.5]•[2x ﹣1]=﹣6,则x 的取值范围是 _____. 37.不等式组1221113x x x⎧-≥⎪⎨⎪--⎩>的解集是________.38.已知||4(5)21k k x y ---=是关于x ,y 的二元一次方程,则1k +________(填“是”或“不是”)不等式221x x +<-的解.39.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3 个整数解,那么a 的取值范围是_____.40.据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.三、解答题41.解不等式组:()2132324x x x x +<-⎧⎨--≤⎩.42.某校购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且购买乙种树苗的棵数比甲种树苗棵数的2倍多30棵.(1)若购买两种树苗的总费用不超过3400元,最多可以购买甲种树苗多少棵?(2)为保证绿化效果,学校决定再购买甲、乙两种树苗共24棵(两种树苗都要买),总费用不超过500元,问有哪几种可能的购买方案?43.下面是小明同学解不等式的过程,请认真阅读并完成相应任务. 213232x x -->-1. 解:2(2x -1)>3(3x -2)-6……第一步 4x -2>9x -6-6……第二步 4x -9x >-6-6+2……第三步 -5x >-10……第四步 x >2……第五步(1)任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的;①第______步开始出现错误,这一步错误的原因是______. (2)任务二:请直接写出该不等式的正确解集.44.解不等式组: 215238x x x x +-⎧<⎪⎨⎪≥-⎩并将解集在如图所示的数轴上表示出来.45.解不等式组: ()12221x x x ->⎧⎪⎨+≥-⎪⎩①②46.解不等式或不等式组,并在数轴上表示解集. (1)5341x x +>-; (2)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩.47.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同. (1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.48.某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?49.萧红中学校去年在商场购买甲、乙两种不同品牌的篮球则买甲种篮球花费1500元,购买乙种篮球花费4000元,购买乙种篮球的数量是购买甲种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花50元(1)求每个甲种篮球和每个乙种篮球的单价各是多少元?(2)为响应国家“五育并举”的号召.今年学校决定再次购买甲、乙两种篮球共60个.恰逢商场这两种篮球的售价进行调整.两种篮球售价比去年购买时提高了20%、乙种篮球售价比去年购买时降低了20%.如果今年购买甲、乙两种篮球的总费用不超过10350元,那么学校今年至少可购买多少个乙种篮球?50.一次函数y=-3x+b的图像经过点(-1,2).(1)求这个一次函数表达式;(2)若点A(2m,y1),B(m-1,y2)在该一次函数的图像上,且y1<y2,求实数m的取值范围.参考答案:1.A【分析】由不等式(1)1a x a 的解集是1x <,不等式的方向发生了改变,从而可得:1a +<0,于是可得答案.【详解】解:不等式(1)1a x a 的解集是1x <,1a ∴+<0,a ∴<1-,故选:A .【点睛】本题考查的是不等式的基本性质,不等式的解集,掌握“不等式的两边都除以同一个负数,不等号的方向要改变.”是解题的关键 2.C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -中(1)1>0a +;(3)89<;(4)31x x -≤;(6)>1x y -是不等式,共4个,故选C .【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠. 3.D【分析】理解:和的一半,应先和,再一半;负数,即小于0. 【详解】根据题意得:12(x +3)<0.故选D .【点睛】本题考查了列不等式.解题的关键是找准关键字,把文字语言转换为数学语言. 4.D【分析】先求出方程的解,根据解是正数列出不等式,即可解答 【详解】在方程两边同乘x ﹣1得:3x+a=x ﹣1, 解得:x=-1-a2①方程的解是正数,①102112aa --⎧>⎪⎪⎨--⎪≠⎪⎩解得a <﹣1且a≠﹣3. 故选D .【点睛】本题考查了分式方程的解、一元一次不等式,解决本题的关键是根据方程的解是正数得出不等式 5.D【分析】根据不等式的解集在数轴上的表示方法即可得出. 【详解】解:由数轴可知,4x <且1x ≥-,①这个不等式组可能是41x x <⎧⎨≥-⎩故答案为:D .【点睛】本题考查了不等式组的解集在数轴上的表示方法,解题的关键是熟知数轴表示不等式组解集的方法. 6.C【分析】根据二次根式的非负性质列出不等式来求解. 【详解】解:①①40x -≥, ①4x ≤. 故选:C .【点睛】本题主要考查了二次根式有意义的条件,理解二次根式的非负性质是解答关键. 7.D【详解】A. ①a >b , ①a+m >b+m ,故正确; B. ①a >b ,① a (m 2+1)>b (m 2+1),故正确; C. ①a >b ,①-22ab <-,故正确;D. ①a=1,b=-2时,满足a >b ,但 a 2<b 2,故不正确; 故选D .8.B【分析】根据不等式组无解,判断m 与7的大小关系.【详解】解:①不等式组7x x m <⎧⎨>⎩无解,①m ≥7, 故选:B .【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 9.B【分析】根据不等式的性质逐个判断即可. 【详解】解:A .不妨设a =-1,b =-2,则a 2<b 2,本选项不一定成立,故本选项不符合题意; B .①a >b ,①-5a <-5b ,故本选项符合题意; C .不妨设a =-5,b =-10, 则510ab=,故本选项不符合题意; D .不妨设a =1,b =2,则a -2<b +2,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 10.D【详解】试题分析:根据不等式的基本性质依次分析各选项即可作出判断. A .11a b +>+,B .22a b>,C .,均正确,不符合题意;D .,故错误,本选项符合题意.考点:不等式的基本性质点评:本题属于基础应用题,只需学生熟练掌握不等式的基本性质,即可完成. 11.C【详解】若m <n ,不等两边都乘以—2,不等号方向改变得, -2m >-2n,①答案是C.-2m >-2n.故答案为 C.点睛:本题考查不等式的性质,不等式两边同加或同减同一个数,不等号方向不变;不等式两边同乘同一个正数,不等号方向不变;不等式两边同乘同一个负数,不等号方向改变.12.B【分析】利用不等式解与解集的定义判断即可.【详解】解:A、x=-2是不等式-2x>1的一个解,说法正确,不符合题意;B、x=-2是不等式-2x>1的一个解,原说法错误,符合题意;C、x-7>2x+8的解集为x<-15与x<15的解集不相同,说法正确,不符合题意;D、x<-3与-7x>21的解集相同,说法正确,不符合题意,故选:B.【点睛】本题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.13.C【分析】购买5件需要15元,30元超过15元,则购买件数超过5件,设可以购买x件这样的商品,根据:5件按原价付款数+超过5件的总钱数≤30,列出不等式求解即可得.【详解】设可以购买x(x为整数)件这样的商品.3×5+(x-5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选C.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.14.B【分析】解分式方程,检验根得出a的范围;根据分式方程的解为正数,列出不等式求得a的范围;解不等式组,根据解集为y<-2,的出a的范围;根据a为整数,得出a的值,最后求和即可.【详解】解:分式方程的两边都乘以(x-1)得:2-a=3(x-1),解得53ax-=,①x-1≠0,①51 3a-≠,①a ≠2,①方程的解为正数, ①503a ->, ①a<5且a ≠2;21?324()0?y y y a +⎧->⎪⎨⎪-≤⎩①②, 解不等式①得:y<-2,解不等式①得:y ≤a ,①不等式组的解集为y<-2,①a ≥-2.①-2≤a<5且a ≠2①整数a 的和为(-2)+(-1)+0+1+3+4=5;故选:B .【点睛】本题考查了分式方程的解,一元一次不等式组的解集,考核学生的计算能力,注意分式方程一定要检验.15.D【分析】分两种情况进行分析讨论:a >0与a <0,根据抛物线的顶点位置和开口方向,结合题意,列出不等式求解即可.【详解】解:当a >0时,1-a <1,①抛物线的对称轴在y 轴右边,顶点在y =4的下方,若抛物线与线段AB 恰有一个公共点,则()()22162614132314a a⎧--⨯-+≥⎪⎪⎨⎪⨯-⨯+<⎪⎩, 解得,a >1;当a <0时,1-a >1,若1<1-a <4,即-3<a <0时,抛物线开口向下,顶点在直线y =4的下方,则抛物线与线段AB 无交点;若1-a =4,即a =-3时,抛物线的顶点在线段AB 上,此时抛物线与线段AB 只有一个公共点;若1-a >4,即a <-3时,抛物线的对称轴在直线x =-3的左边,顶点在直线y =4的上方, 若抛物线与线段AB 恰有一个公共点,则()()2216261132314a a⎧--⨯-+>⎪⎪⎨⎪⨯-⨯+≤⎪⎩, 解得,a <一4,综上,a <-4或a =-3或a >1.故嘉嘉、淇淇的结果合在一起也不正确,故选:D .【点睛】题目主要考查二次函数的基本性质及解不等式组,理解题意,根据题意列出不等式组是解题关键.16.A【详解】①|2a +5|+|2a -3|=8,①250230a a +>⎧⎨-<⎩ , ①5322a -<<, ①整数a 的值有:-2,-1,0,1共4个.故选A.点睛:本题考查了绝对值的化简和一元一次不等式组的解法.根据绝对值的运算法则:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,可得250230a a +>⎧⎨-<⎩,解不等式组求出a 的整数解.17.C【分析】由()1a b x a +>+的解集是1x <,可得0a b +<,再利用不等式的解集可得11a a b+=+,再利用两数相除,同号得正,可得10a +<,从而可得答案. 【详解】解: ()1a b x a +>+的解集是1x <,∴ 0a b +<,∴ 不等式的解集为:x <1,a a b++∴11 aa b+=+,①10a+<,①a<1,-故选:.C【点睛】本题考查的是利用不等式的基本性质解不等式,以及利用不等式的解集确定字母系数的范围,掌握不等式的基本性质是解题的关键.18.D【分析】分别利用不等式的基本性质判断得出即可.【详解】A、由a>b,当c<0时,得ac<bc,原变形错误,故这个选项不符合题意;B、由a>b,得-2a<-2b,原变形错误,故这个选项不符合题意;C、由a>b,得11a b>或11a b<,原变形错误,故这个选项不符合题意;D、由a>b,得-1+a>-1+b,原变形正确,故这个选项符合题意;故选:D.【点睛】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.19.C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:30 312 xx+≥⎧⎨-≤⎩①②解不等式①,得:x≥﹣3,解不等式②,得:x≤1,则不等式组的解集为:﹣3≤x≤1.故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.D【分析】根据x y≤,列出不等式,即可求出p的取值范围.【详解】方程组21 431 x y px y p+=+⎧⎨+=-⎩①②①×2得:4x+2y=2p+2①,①-①得:-y=p+3,解得:y=-p-3,把y=-p-3代入①得:x=p+2,①方程组得解为:23x p y p =+⎧⎨=--⎩; ①方程组的解满足条件x y ≤,①p+2≤-p-3解得:p≤52- 故选:D .【点睛】本题考查了解一元一次不等式,以及解二元一次方程组,弄清题意是解题的关键.21.318y +>.【分析】关系式为:y 的3倍18+>,把相关数值代入即可.【详解】解:根据题意,可列不等式:318y +>,故答案为:318y +>.【点睛】考查列一元一次不等式,根据关键词得到相应的关系式是解决本题的关键.22.18x +y ≤5 【分析】x 的18即x 乘18,与y 的和不超过5,就是小于或等于5,据此解答即可. 【详解】解:语句“x 的18与y 的和不超过5”可以表示为18x +y ≤5. 故答案为:18x +y ≤5. 【点睛】本题主要考查了不等式的意义,关键是明白不超过5,就是小于或等于5. 23.4m >-##-4<m【分析】直接把两个方程相加,求出,根据1x y +>得出关于m 的不等式,解之即可.【详解】解:22522x y m x y m +=+⎧⎨+=-+⎩, 直接把两个方程相加,得337x y m +=+,①73m x y ++=, ①1x y +>, ①713m +>, ①4m >-.故答案为:4m >-.【点睛】本题考查了解二元一次方程组、一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.2m ≤【分析】先利用加减消元法解二元一次方程组,求得用m 表示的x 、y ,根据方程组的解满足不等式x +2y ≥3可得关于m 的不等式,解不等式即可.【详解】解:3522323x y m x y m +=+⎧⎨+=-⎩①②, ①×2-①×3,得:134y m =-,将134y m =-代入①,得:721x m =-,①方程组的解为721134x m y m =-⎧⎨=-⎩, ①方程组的解满足不等式x +2y ≥3,①()72121343m m -+-≥,解得:2m ≤,故答案为:2m ≤.【点睛】本题主要考查了解二元一次方程组和一元一次不等式,熟练掌握解二元一次方程组的基本方法和解不等式的基本步骤是解题的关键.25.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.26.3<x≤4【分析】先分别解出各不等式的解集,再找到其公共解集即可求解. 【详解】解()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩①② 解不等式①得x >3;解不等式①得x≤4故不等式组的解集为3<x≤4故答案为:3<x≤4.【点睛】此题主要考查不等式组的求解,解题的关键是熟知不等式的求解方法. 27.m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:①正比例函数()2y m x =+中,y 随x 的增大而增大,①2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.28.x ≤2【分析】本题考查不等式的解集在数轴上表示,左边表示小于,实心圆点表示等于.【详解】解:由图得,x ≤2.故答案为x ≤2.29.10【详解】试题解析:解不等式1−2x >3(x −7),得:225x <, 则不等式组的解集为2215x ≤<, ①不等式组的整数解的和为1+2+3+4=10,故答案为1030.1 【分析】根据题意列一元一次不等式4123a -<,解此不等式的解集为74a <,再找到其中最大的整数解即可.【详解】解:由题意得,4123a -<, 416a ∴-<,47a <,74a ∴<, ∴a 的最大整数值是1,故答案为:1.【点睛】本题考查解一元一次不等式、不等式的整数解等知识,准确解出一元一次不等式的解集是解答本题的关键.31.57x ≤【分析】先求出两个不等式的解集,再求其公共解.【详解】2352x x ①②-≥⎧⎨->-⎩, 由①得,x≥5,由①得,x<7,所以,不等式组的解集是:5≤x <7.故答案为5≤x <7.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 32.12x <≤【分析】分别求出两个不等式的解集,即可求解.【详解】解①1012x x x ->⎧⎪⎨+≥⎪⎩①②, 解不等式①得① 1x >解不等式①得①2x ≤,①不等式组的解集为12x <≤ 故答案为① 12x <≤【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.33.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠ ①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.34.n <11【分析】将方程的解代入方程中,得到关于k 、m 、n 的方程组,可求k =n -4,根据k <7即可求n 的取值范围.【详解】解:由题意可得:()312111n km k n k m k +=++⎧⎨-=+++⎩解得:k =n -4①k <7①n -4<7①n <11故答案为:n <11【点睛】本题考查了二元一次方程的解,求出k =n -4是本题的关键.35.4 【分析】先解不等式组,得到该不等式组的解集为445x -<≤,即可得到其整数解的个数.【详解】解:253(3)121035x x x +<+⎧⎪⎨-+≥⎪⎩①②, 解不等式①可得:4x >-;解不等式①可得:45x ≤, 所以该不等式组的解集为:445x -<≤, 所以该不等式组的整数解为3-,2-,1-,0,共4个,故答案为:4.【点睛】本题考查不等式组的整数解,正确解一元一次不等式组是解题的关键. 36.1.52x ≤<【分析】根据题意得出﹣3•[2x ﹣1]=﹣6,即[2x ﹣1]=2,据此可得2≤2x ﹣1<3,解之即可.【详解】解:根据题意,得:﹣3•[2x ﹣1]=﹣6,①[2x ﹣1]=2,则2≤2x ﹣1<3,解得1.52x ≤<.故答案为:1.52x ≤<.【点睛】本题主要考查解一元一次不等式组,解题的关键是根据新定义列出关于x 的不等式组.37.-5<x≤-4【分析】先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法即可求得解集. 【详解】解不等式1x 22-≥得:x≤-4, 解不等式11-x >1-3x 得:x>-5,所以不等式组的解集是:-5<x≤-4,故答案为-5<x≤-4.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组解集的确定方法是关键. 不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了. 38.不是【分析】先根据二元一次方程的定义求出k 值,从而得k +1的值,再把k +1代入不等式检验,即可求解.【详解】解:①||4(5)21k k x y ---=是关于x ,y 的二元一次方程, ①5041k k -≠⎧⎨-=⎩,解得:k =-5, ①k +1=-5+1=-4,把x =k +1=-4代入不等式左边得-4+2=-2,把x =k +1=-4代入不等式右边得2×(-4)-1=-9,①-2>-9,①k +1不是不等式221x x +<-的解,故答案为:不是.【点睛】本题考查二元一次方程的定义,判定一个数是否是不等式的解,求出k 值是解题的关键.39.-3≤a <-2.【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式3-2x >2,得:x <12 ,解不等式x-a >0,得:x >a ,则不等式组的解集为a <x <12,①不等式组恰有3个整数解,①不等式组的整数解为-2、-1、0,则-3≤a <-2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.40.28.25【分析】设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.【详解】解:设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,①《长津湖》与《铁道英雄》的日销售量和为450本,①a +b =450,即b =450-a ,①《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本, ①22303b a ≤< ,即()24502303a a -≤<, 解得:180230a ≤< ,①《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,①5060m n <+≤ ,①《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,①()()332205ma nb mb na +-+= ,①b =450-a ,①()()345034502205ma n a m a na +---+=⎡⎤⎡⎤⎣⎦⎣⎦,①()()13503135032205n a m a ma na ---+-= ,①()()413502205m n a --= ,①180230a ≤<,①413500a -<,①0m n -< ,即m n < ,①当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即()3345013503ma nb ma n a ma n na +=+-=+- 最大,①此时3na 的值最小,则m 最大,①180230a ≤<,①a 的最小值为180,将a =180代入()()413502205m n a --=,解得: 3.5m n -=- ,即 3.5n m =+ ,①5060m n <+≤,①50 3.560m m <++≤,即23.2528.25m <≤ ,①m 最大,①28.25m = ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为28.25元.故答案为:28.25【点睛】本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.41.35x <≤【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()2132324x x x x +<-⎧⎪⎨--≤⎪⎩①② 由①得,3x >,由①得,5x ≤,故不等式组的解集为:35x <≤.【点睛】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.42.(1)最多可以购买甲种树苗40棵;(2)该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵【分析】(1)设购买甲种树苗x 棵,由购买两种树苗的总费用不超过3400元,列出不等式,可求解;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,由总费用不超过500元,列出不等式,即可求解.【详解】解:(1)设购买甲种树苗x 棵,由题意可得:()30202303400x x ++≤,解得:40x ≤,答:最多可以购买甲种树苗40棵;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,依题意得:()302024500m m +≤﹣, 解得:2m ≤.又①m 为正整数,①m 可以取1,2,①该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵.【点睛】本题考查的是一元一次不等式的应用,正确理解题目意思是解决本题的关键. 43.(1)①乘法分配律;①五,不等式两边都除以-5,不等号的方向没有改变(2)x <2【分析】(1)①由题意可得依据乘法分配律(运算律)进行变形的;①由题意根据不等式的基本性质3进行分析即可;(2)由题意根据不等式的基本性质3进行分析计算即可.(1)解:①以上解题过程中,第二步是依据乘法分配律(运算律)进行变形的;①第五步开始出现错误,这一步错误的原因是不等式两边都除以-5,不等号的方向没有改变;故答案为:乘法分配律;五,不等式两边都除以-5,不等号的方向没有改变;(2)213232x x -->-1. 解:2(2x -1)>3(3x -2)-64x -2>9x -6-64x -9x >-6-6+2-5x >-10x <2该不等式的正确解集是x <2.【点睛】本题考查解一元一次不等式,注意掌握其一般步骤:①去分母;①去括号;①移项;①合并同类项;①化系数为1.44.3<x ≤4【分析】先解每个不等式,再将不等式解集表示在数轴上,再取公共解集即可.【详解】解:21{5238x x x x +-<≥-①②,由①得:x >3,由②得:x ≤4,将解集在数轴上表示出来如下:∴原不等式组的解集为:3<x ≤4.【点睛】本题考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的一般步骤和正确的取不等式组的解集.45.34x <≤【分析】分别求不等式的解,再找公共部分,就是不等式组的解.【详解】解:由①式得:3x >.由①式得:4x ≤.①不等式组的解集为: 34x <≤.【点睛】本题主要考查解一元一次不等式组,掌握“同小取小”, “同大取大”, “大小小大取中间”,“小小大大无解”是关键.46.(1)x >−4,数轴见详解;(2)x ≤1,数轴见详解【分析】(1)根据解一元一次不等式的方法,可以求得该不等式的解集,然后在数轴上表示出其解集即可;(2)先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示即可.【详解】解:(1)5x +3>4x −1,移项,得5x −4x >−1−3,合并同类项,得x >−4,其解集在数轴上表示如下,。
中考数学总复习《不等式与不等式组》专项测试卷-附参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附参考答案(测试时间60分钟 满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.若 x >y ,则下列式子中错误的是 ( )A . x −3>y −3B . x 3>y 3C . x +3>y +3D . −3x >−3y2.“数 x 不大于 3”可以表示为 ( )A . x ≤3B . x <3C . x =3D . x ≥33.把不等式组 {x +1≤0,−x >0 的解集表示在数轴上,正确的是 ( ) A . B .C .D .4.关于 x 的不等式组 {x−13≤1,a −x <2 恰好只有四个整数解,则 a 的取值范围是 ( ) A . a <3 B . 2<a ≤3 C . 2≤a <3 D . 2<a <35.已知关于 x 的不等式组 {x −1<0,x −a ≥0有以下说法: ①如果 a =−2,那么不等式组的解集是 −2≤x <1;②如果不等式组的解集是 −3≤x <1,那么 a =−3;③如果不等式组的整数解只有-2,-1,0,那么 a =−2;④如果不等式组无解,那么 a ≥1.其中所有正确说法的序号是 ( )A .①②③B .①②④C .①③④D .②③④6.如图,要使输出 y 的值大于 100,则输入的最小正整数 x 的值是 ( )A . 22B . 21C . 20D .以上答案都不对7.不等式 3(1−x )>2−4x 的解集在数轴上表示正确的是 ( ) A .B .C .D .8.下列不等式中,是一元一次不等式的是 ( )A . 4x −5y <1B . 4y +2≤0C . −1<2D . x 2−3>5二、填空题(共5题,共15分)9.据某气象台发布信息,2020 年 6 月 12 日该地最高气温是 32∘C ,最低气温是 25∘C ,则当天气温 t(℃)的变化范围是 .10.不等式组 {2−x ≥0,2x >x −1的最小整数解是 .11.若代数式y+15−y−12 的值不小于 −3,则 y 的取值范围是 .12.若关于 x 的不等式 x−m 2≥−1 的解集如图所示,则 m 的值为 .13.有一个两位数,它的十位数比个位数大 1,并且这个两位数大于 30 且小于 42,则这个两位数是 .三、解答题(共3题,共45分)14.解不等式组:{x −3(x −1)<7,x −2x ≤2x−33.并把解集在数轴上表示出来.15.某花农培育甲种花木 10 株,乙种花木 8 株,共需成本 6400 元;培育甲种花木 4 株,乙种花木 5 株,共需成本 3100 元.(1) 求甲乙两种花木成本分别是多少元?(2) 若 1 株甲种花木售价为 700 元,一株乙种花木售价为 500 元.该花农决定在成本不超过 29000 元的情况下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的 3 倍还多 10 株,那么要是总利润不少于 18200 元,花农有哪几种具体的培育方案?16.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为 40 元,用 90 元购进甲种玩具的件数与用 150 元购进乙种玩具的件数相同.(1) 求每件甲种、乙种玩具的进价分别是多少元?(2) 商场计划购进甲、乙两种玩具共 48 件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过 1000 元,求商场共有几种进货方案?参考答案1. 【答案】D2. 【答案】A3. 【答案】A4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】B9. 【答案】 25≤t ≤3210. 【答案】 011. 【答案】 y ≤37312. 【答案】 413. 【答案】 3214. 【答案】{x −3(x −1)<7, ⋯⋯①x −2x ≤2x−33. ⋯⋯②由①得,x >−2.由②得,x ≥35.故此不等式组的解集为:x ≥35.在数轴上表示为:15. 【答案】(1) 设甲种花木的成本价是 x 元,乙种花木的成本价为 y 元.由题意得:{10x +8y =6400,4x +5y =3100,解得:{x =400,y =300. (2) 设种植甲种花木为 a 株,则种植乙种花木为 (3a +10) 株.{400a +300(3a +10)≤29000,(700−400)a +(500−300)(3a +10)≥18200,解得:18≤a ≤20因为 a 为整数所以 a 可取 18 或 19 或 20.所以有三种具体方案:①植甲种花木 18 株,种植乙种花木 3a +10=64 株;②种植甲种花木 19 株,种植乙种花木 3a +10=67 株;③种植甲种花木 20 株,种植乙种花木 3a +10=70 株.16. 【答案】(1) 设甲种玩具进价 x 元/件,则乙种玩具进价为 (40−x ) 元/件90x =15040−x x =15经检验 x =15 是原方程的解.∴40−x =25甲、乙两种玩具分别是 15 元/件,25 元/件;(2) 设购进甲种玩具 y 件,则购进乙种玩具 (48−y ) 件{y <48−y,15y +25(48−y )≤1000,解得20≤y <24∵y 是整数,甲种玩具的件数少于乙种玩具的件数∴y 取 20,21,22,23共有 4 种方案.。
中考数学不等式与不等式祖专题训练50题-含参考答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.已知a <0, -1<b <0.则a ,ab ,ab 2 由小到大的排列顺序是( ). A .a <ab <ab 2B .ab 2<ab <aC .a <ab 2<abD .ab <a <ab 22.据气象台预报,2020年5月某日大埔最高气温27℃,最低气温21℃,则当天气温t (℃)的变化范围是( ) A .t >21B .t ≤27C .21<t <27D .21≤t ≤273.若a >b ,则下列不等式正确的是( ) A .2a <2b B .ac >bc C .-a+1>-b+1D .3a +1>3b +14.不等式123x x +>-的最大整数解为:( ) A .1B .2C .3D .45.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题( ). A .13B .14C .15D .166.如果不等式(a -2)x>a -2的解集是x<1,那么a 必须满足( ) A .a<0B .a>1C .a>2D .a<27.不等式组1020x x +>⎧⎨-≥⎩的解集在数轴上表示正确的是( )A .B .C .D .8.如果成立,则实数的取值范围是( ) A .B .C .D .9.如果 x > y ,那么下列结论错误的是( ) A .x + 2 > y + 2B .x - 2 > y - 2C .2x > 2 yD .-2x > -2 y10.下列不等式中是一元一次不等式的是( )A .3y x +≥B .3-4<0C .2241x -≥D .24x -≤11.把不等式组30322x x -<⎧⎪⎨+≥⎪⎩的解集表示在数轴上,正确的是( )A .B .C .D .12.若关于x 的不等式()11a x ->的解集是11x a <-,则a 的取值范围是( ) A .1a >B .1a <C .1a ≠D .1a <且0a ≠13.如果a >b ,那么下列不等式中一定成立的是( ) A .a +m <b +mB .am <bmC .am 2>bm 2D .m ﹣a <m ﹣b14.函数12y x =+-,当4m x ≤≤,对应y 的取值范围为23y -≤≤,则m 的取值范围为( ) A .1m =-B .1m ≤-C .61m -≤≤-D .14m -≤<15.若关于x 的不等式组023115x ax x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,且关于y 的方程2433a y a y y -=---的解是正数,则所有满足条件的整数a 的值之和是( ) A .﹣8B .﹣4C .﹣3D .﹣116.将一箱苹果分给若干个学生,每个学生都分到苹果.若每个学生分5个苹果,则还剩12个苹果;若每位学生分8个苹果,则有一个学生所分苹果不足8个.若学生的人数为x ,则列式正确的是( ) A .05128(1)8x x ≤+--< B .05128(1)8x x <+--≤ C .15128(1)8x x ≤+--< D .15128(1)8x x <+--≤17.下列各式中正确的是( ) A .若a >b ,则a ﹣1<b ﹣1 B .若a >b ,则a 2>b 2 C .若a >b ,则ac >bcD .若a c >bc,则a >b18.某商品的进价是1000元,标价为1500元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打( )折出售此商品. A .9B .8C .7D .619.不等式组()11{?22213x x -<++≥的解集是( ) A .﹣1<x≤3 B .1≤x <3 C .﹣1≤x <3 D .1<x≤320.不等式2x 97x ≤-的解集在数轴上表示出来,正确的是( ) A . B . C .D .二、填空题21.若(1)30k k x -+≥是关于x 的一元一次不等式,则k 的值为______. 22.满足一元一次不等式组101203x x -≤⎧⎪⎨->⎪⎩的最大整数值为___.23.有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使总收入不低于15.6万元,则至多安排______人种甲种蔬菜.24.若不等式组1>125x ax x -⎧⎨-≥-⎩的解为1<2x ≤-,则a 的取值是_____________25.不等式组10324x x x ->⎧⎨>-⎩所有整数解的和为_____.26.不等式2x <4x ﹣6的最小整数解为_____.27.x 的3倍与15的差不小于8,用不等式表示为 ________28.小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有 _____种.29.不等式组23348x x ⎧>-⎪⎨⎪-≤⎩的最小整数解为_____.30.一辆公共汽车上原有(54)a -名乘客,到某一车站有(92)a -名乘客下车,车上原来可能有_____名乘客.31.已知实数x ,y ,a 满足x +3y +a =4,x ﹣y ﹣3a =0.若﹣1≤a ≤1,则2x +y 的取值范围是_____.32.已知将直线y kx =向上平移2个单位后,恰好经过点(1,0)-,则不等式42x kx -<+的解集为_____.33.不等式2x-6≥0的解集为________.34.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.35.不等式了()133x m m ->-的解集为5x >,则m 的值为_______. 36.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简=__________.37.若关于x 的不等式组324x a x a <+⎧⎨>+⎩无解,则a 的取值范围是__.38.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;哥哥上午十点钟从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,那么哥哥的速度至少是__________. 39.若关于x 的不等式组123354413x x xa x a恰有两个整数解,则a 的取值范围是_____.三、解答题 40.解不等式(组) (1)()2332x x +≥+ (2)12323x x -+< (3)2130x x >⎧⎨-<⎩(4)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩41.某商品经销店计划购进A ,B 两种纪念品,若购进A 种纪念品7件,B 种纪念品8件共需380元;若购进A 种纪念品10件,B 种纪念品6件共需380元. (1)求A ,B 两种纪念品每件的进价分别为多少元;(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备购进A ,B 两种纪念品共40件,且这两种纪念品全部售出后总获利不低于216元,求该商店最多可以购进A 种纪念品多少件.42.根据下列语句列不等式并求出解集:x 与4的和不小于6与x 的差.43.某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元. (1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?44.解不等式组()()3151124x x x x ⎧-<+⎪⎨-≥-⎪⎩并求它的所有的非负整数解.45.如图甲所示的A 型(11⨯)正方形板材和B 型(31⨯)长方形板材,可用于制作成图乙所示的竖式和横式两种无盖箱子.已知板材每平方米20元.(1)若用2860元的资金去购买A 、B 两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少只?(2)若有A 型板材67张、B 型板材135张,用这批板材制作两种类型的箱子共40只.问有哪几种制作方案? 46.计算(1)解不等式组312(1)212x x x +≥-⎧⎪⎨-<⎪⎩(2)解方程:53.212x x =-+ 47.飞盘运动由于门槛低、限制少,且具有较强的团体性和趣味性,在全国各地悄然兴起,深受年轻人喜爱.某商家购进了海绵和橡胶两种飞盘进行销售,已知一个橡胶飞盘比一个海绵飞盘的进价多30元,其中购买海绵飞盘花费4000元,购买橡胶飞盘花费3200元,且购买海绵飞盘的数量是购买橡胶飞盘数量的2倍.(1)求一个海绵飞盘的进价是多少元;(2)商家第一次购进的飞盘很快售完,决定再次购进同种类型的海绵和橡胶两种飞盘共80个,但海绵飞盘的进价比第一次购买时提高了16%,而橡胶飞盘的进价在第一次购买时进价的基础上打9折,如果商家此次购买海绵和橡胶两种飞盘的总费用不超过4800元,那么此次最多可购买多少个橡胶飞盘?48.在“母亲节”到来之际,某校九年级团支部组织全体团员到敬老院慰问.为筹集慰问金,团员们利用课余期间去卖鲜花.已知团员们从花店按每支1.5元的价格买进鲜花共支,并按每支5元的价格全部卖出,若从花店购买鲜花的同时,还用去50元购买包装材料.(1)求所筹集的慰问金y(元)与x(支)之间的函数表达式;(2)若要筹集不少于650元的慰问金,则至少要卖出鲜花多少支?49.为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A 种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?参考答案:1.C【分析】根据:不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以负数a,得到:0>ab2>a,据此即可求得各数的大小关系.【详解】℃a<0,b<0,℃ab>0,℃−1<b<0,℃b2<1;℃a<ab2<ab.故选C.【点睛】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.D【分析】变化范围是指在最低值和最高值之间,且包含最高值和最低值,根据题意用不等式表示.【详解】最高气温27℃,最低气温21℃,则t的变化范围为:21≤t≤27.故选D.【点睛】本题考查不等式表示生活中的应用,知道这个量的最大值和最小值,便可确定变量的变化范围,从而可用不等式表示,理解题意是解题的关键.3.D【分析】根据不等式的性质,逐项判断即可.【详解】解:℃a>b,℃2a>2b,℃选项A不符合题意;℃a>b,c<0时,ac<bc,℃选项B不符合题意;℃a>b,℃-a <-b , ℃-a +1<-b +1, ℃选项C 不符合题意; ℃a >b , ℃3a >3b ,℃3a +1>3b+1,℃选项D 符合题意. 故选:D .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 4.C【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出最大整数解即可.【详解】解:123x x +>- 移项得231x x ->-- 合并同类项得4x ->- 系数化为1得4x <故该不等式的最大整数解为3,故选C.【点睛】本题考查一元一次不等式的整数解.解本题注意在第三步系数化为1时需改变不等号的方向. 5.B【分析】竞赛得分=10×答对的题数+(-5)×未答对(不答)的题数,根据本次竞赛得分要超过100分,列出不等式求解即可. 【详解】解:设要答对x 道. 10x+(-5)×(20-x )>100, 10x-100+5x >100, 15x >200,解得x >403=1133,他至少要答对14道题, 故选B .【点睛】本题考查一元一次不等式的应用,得到得分的关系式是解决本题的关键. 6.D【详解】试题分析:根据两边同时除以(a -2),不等号的方向改变,可得(a -2)<0,解得a <2.考点:解一元一次不等式 7.B【分析】先分别求出各不等式的解集,再求其公共解集,然后把解集在数轴上表示出来即可.【详解】解:解10x +>得x >−1, 解20x -≥得x≤2,℃不等式组的解集为−1<x≤2, 在数轴上表示解集为:故选:B .【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则. 8.C 【详解】如果成立那么必须30,30,0mm m m-〉-≥≥可得9.D【分析】根据不等式的基本性质来分别判断求解.【详解】解:A .因为x y >,在不等边两边同时加上2,不等式方向不变,故原选项正确,此项不符合题意;B .因为x y >,在不等边两边同时减去2,不等式方向不变,故原选项正确,此项不符合题意;C.因为x y>,在不等边两边同时乘2,不等式方向不变,故原选项正确,此项不符合题意;D.因为x y>,在不等边两边同时除以-2,不等式方向要改变,故原选项错误,此项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质,理解等式的基本性质是解答关键.不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.10.D【分析】利用一元一次不等式的定义判断即可.【详解】下列不等式中是一元一次不等式的是2-x≤4,故选D.【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.11.A【分析】先求出不等式组的解集,再根据解集画图即可.【详解】解:30322xx-<⎧⎪⎨+≥⎪⎩①②,由℃得,x<3,由℃得,x≥-2,故不等式组的解集为-2≤x<3.故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式的解集,每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.B【分析】根据不等式()11a x ->的解集是11x a <-,得出关于a 的不等式,求出a 的取值范围即可. 【详解】解:℃原不等式两边同时除以1a -,不等号方向改变,℃10a -<,解得1a <,故B 正确.故答案选:B .【点睛】本题考查的是解一元一次不等式,熟知不等式的基本性质,是解答此题的关键. 13.D【分析】根据不等式的基本性质,对每个选项分别进行判断,即可得到答案.【详解】解:A .℃a >b ,℃a +m >b +m ,故本选项不合题意;B .如果a >b ,m >0,则am >bm ,故本选项不合题意;C .如果a >b ,m =0,则am 2=bm 2,故本选项不合题意;D ..℃a >b ,℃﹣a <﹣b ,℃m ﹣a <m ﹣b ,故本选项符合题意;故选:D .【点睛】本题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质进行判断. 14.C【分析】求出当y =3和y =-2时的x 的值,根据函数图像即可求出m 的取值. 【详解】解:画出函数12y x =+-图象如图所示.把3y =代入12y x =+-得312x =+-,解得4x =或6-,把=2y -代入12y x =+-得212x -=+-,解得=1x -,当4m x ≤≤,对应y 的取值范围为23y -≤≤,=由图可知61m -≤≤-.故选:C .【点睛】本题主要考查了带绝对值的一次函数的图像和性质,熟练掌握一次函数图像上点的坐标特征是解题的关键.15.B【分析】先解不等式组,根据关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,可得a 的取值范围,再解分式方程,关于y 的方程2433a y a y y-=---的解是正数,可得a 的取值范围,进一步求和即可.【详解】解: 023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩①②, 解不等式℃得,x a >,解不等式℃得,3x ≤,关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解, 3a ∴<,解分式方程 2433a y a y y-=---, 去分母得,24(3)a y y a =-+-, 解得:3125a y +=, 关于y 的方程2433a y a y y-=---的解是正数, y ∴>0且3y ≠,31205a +∴>且31235a +≠, 解得4a ->,且1a ≠,43a ∴-<<且1a ≠,∴满足条件的整数a 的值:32102---、、、、;3(2)(1)024-+-+-++=-,故选:B .【点睛】本题考查了分式方程的解,和解一元一次不等式组,熟练掌握解不等式组的方法以及解分式方程的步骤是解题的关键.16.C【分析】根据每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友所分苹果不到8个.由此得出不等式组.【详解】解:根据小朋友的人数为x ,根据题意可得:15128(1)8x x ≤+--<,故选:C .【点睛】此题主要考查了一元一次不等式的应用,根据题意找出不等式的取值范围是解决问题的关键.17.D【详解】A 、不等式的两边都减1,不等号的方向不变,故A 错误;B 、当a=-1,b=-2时,a 2<b 2,故B 错误;C 、当c=0时,ac=bc ,故C 错误;D 、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D 正确;故选D .18.C【分析】设售货员可以打x 折出售此商品,利用利润=售价-进价,结合利润率不低于5%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设售货员可以打x 折出售此商品,依题意得:1500×10x -1000≥1000×5%, 解得:x ≥7,℃售货员最低可以打7折出售此商品.故选:C .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.19.C【详解】分析:分别求出每一个不等式的解集,然后再确定不等式组的解集即可. 详解:解不等式112x -<,得:x <3, 解不等式2(x+2)+1≥3,得:x≥﹣1,℃不等式组的解集为﹣1≤x <3,故选C .点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.C【分析】先利用不等式的性质求出原不等式的解集,再把它的解集在数轴上表示出来即可.【详解】2x 97x ≤-,2x 7x 9+≤,9x 9≤,x 1≤.在数轴上表示如下图所示:故选C .【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,关键是明确解不等式的方法,会在数轴上表示不等式的解集.21.1- 【分析】根据一元一次不等式的定义可得1k =且10k -≠,分别进行求解即可.【详解】解:℃(1)30k k x -+≥是关于x 的一元一次不等式, ℃1k =且10k -≠,解得:1k =-,故答案为:1-.【点睛】本题主要考查一元一次不等式定义的“未知数的最高次数为1次”这一条件;还要注意,未知数的系数不能是0,掌握一元一次不等式的定义是解题的关键.22.1【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得满足不等式组的整数解.【详解】解:由不等式x ﹣1≤0,得x ≤1,由不等式2﹣13x >0,得x <6, 故原不等式组的解集是x ≤1,℃最大整数x =1,故答案为:1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.23.4【分析】设最多安排x 人种甲种蔬菜,根据有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使收入不低于15.6万元,可列不等式求解.【详解】解:设安排x 人种甲种蔬菜,3x ×0.5+2(10﹣x )×0.8≥15.6,解得:x ≤4.所以最多安排4人.故答案为:4.【点睛】本题考查了一元一次不等式的应用,关键设出种植甲的人数,以总收入作为不等量关系列不等式求解.24.2-【分析】先解不等式组得出12a a +≤<,然后根据不等式组的解集为1<2x ≤-,列出关于a 的方程,是解题的关键.【详解】解:解不等式组1>125x a x x -⎧⎨-≥-⎩得:12x a x ≤>+⎧⎨⎩, ℃不等式组的解集为1<2x ≤-,℃11a +=-,解得:2a =-.故答案为:2-.【点睛】本题主要考查了解不等式组,解题的关键是根据不等式组的解集列出关于a 的方程,是解题的关键.25.﹣6【分析】根据一元一次不等式组求出不等式组的解集,进而即可得到所有整数解的和.【详解】解:解不等式10x ->,得:1x <解不等式324x x >-,得:4x >-则不等式组的解集为41x -<<其整数解得和为32106---+=-,故答案为:6-.【点睛】本题主要考查了一元一次不等式组的解,熟练掌握相关计算技巧是解决本题的关键.26.4【详解】移项,合并同类项,系数化成1,即可求出不等式的解集,即可得出答案.解:℃2x<4x-6,℃2x-4x<-6,℃-2x<-6,℃x>3,℃不等式2x<4x-6的最小整数解为4,故答案为4.27.3x﹣15≥8【分析】首先表示“x的3倍”为3x,再表示“与15的差”为3x-15,最后再表示“不小于8”为3x-15≥8.【详解】由题意可知:3x-15≥8故答案为:3x-15≥8.28.3【分析】设购买A种玩具x件,则购买B种玩具102x-⎛⎫⎪⎝⎭件.根据题意即可列出关于x的一元一次不等式组,解出x的解集,再根据x为整数,102x-为整数,即得出答案.【详解】设购买A种玩具x件,则购买A种玩具用x元,℃购买B种玩具用(10-x)元,℃购买B种玩具102x-⎛⎫⎪⎝⎭件,根据题意可知11012102xxxx⎧⎪≥⎪-⎪≥⎨⎪-⎪>⎪⎩,解得:1383x<≤.℃x为整数,102x-为整数,℃x的值为4或6或8,即可购买A种玩具4件,B种玩具3件,可购买A种玩具6件,B种玩具2件,可购买A种玩具8件,B种玩具1件.故小明的购买方案有3种.故答案为:3.【点睛】本题考查一元一次不等式组的应用.正确的用x表示出购买B种玩具的数量和正确的列出不等式组是解题关键.29.0【分析】先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值,进而得出最小整数解.【详解】解:23348xx⎧>-⎪⎨⎪-≤⎩①②,解℃得x>23 -,解℃得3x<12,即x≤4,由上可得23-<x≤4,℃x为整数,故x可取0、1、2、3、4,℃最小整数解为0.故答案为:0.【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.30.6,11,16【分析】关系式为:车上人数、下车人数一定都是非负整数,因而就可以得到一个关于a 的不等式组,求出a的范围,再根据车上人数、下车人数一定都是整数,则a一定是整数,从而求出a的值.【详解】解:根据题意,得5a−4≥9−2a解得a≥137,又℃540920aa-≥⎧⎨-≥⎩,解得:4952a≤≤,℃139 72a≤≤因为a为整数,所以a=2,3,45a−4分别为6,11,16即客车上原有乘客6人或11人或16人.故答案为:6,11,16【点睛】解决本题的关键是理解所有的人数均为自然数.根据这一条件求出a的范围.31.0≤2x +y ≤6【分析】把a 当作参数,联立方程组求出x ,y 的值,然后用x 表示出2x +y ,利用不等式的性质求解.【详解】联立方程组3430x y a x y a ++=⎧⎨--=⎩①②,将a 作为参数解得:121x a y a =+⎧⎨=-⎩, ℃﹣1≤a ≤1,℃2x +y =3a +3,可得:0≤2x +y ≤6.故答案为0≤2x +y ≤6.【点睛】本题主要考查不等式的性质和解二元一次方程组,解题时要把a 当作参数,联立方程组求出x ,y 的值,然后利用不等式的性质求解.32.6x >-【分析】根据题意,先求出k 值,然后解不等式即可.【详解】直线y kx =向上平移2个单位后,解析式为2y kx =+,℃过点(1,0)-,℃20k -+=,解得:2k =,则不等式为:422x x -<+,解得:6x >-,故答案为:6x >-.【点睛】本题主要考查一次函数图象的平移,根据题意准确求出平移之后的解析式是解题关键.33.x≥3【分析】先移项,再将不等式的两边同时除以2,就可得到不等式的解集.【详解】解: 2x-6≥02x≥6解之:x≥3故答案为x≥3【点睛】考核知识点:解一元一次不等式.34.1825【分析】先按照方案一结合题意求解出增订前的各类书的数量,并求出增订的总数量,再按照方案二的比例分别解出按照方案二增订后的各类书的总量,进而求解比例即可.【详解】设原本有A 类新书4x 本,B 类新书x 本,则C 类新书有(900-5x )本, 由题意:4400559005428x x x ≤⎧⎪⎨-≤⨯⎪⎩,解得:70100x ≤≤, 设两种方案都增订m 本书,方案一:增订A 类15m 本,B 类310m 本,C 类12m 本, 则增订后共计:A 类145x m +本,B 类310x m +本,C 类190052x m ⎛⎫-+ ⎪⎝⎭本, 按方案一增订,则增订后A ,B 两类书总数量之比为7:2, 可得:1475=3210x m x m ++,解得:1710x m =,即:10=17m x , 由70100x ≤≤,且m 和x 均为正整数,得x =85,m =50,℃求得增订前:A 类340本,B 类85本,C 类475本,方案二:增订A 类2205m =本,B 类1510m =本,C 类1252m =本, 则增订后共计:A 类360本,B 类90本,C 类500本,增订后A ,C 两类书总数量之比为36018=50025, 故答案为:1825. 【点睛】本题考查列方程及不等式解决问题,解题关键在于根据题意建立不等式,求解出范围中符合题意的数据.35.2【分析】解一元一次不等式如下步骤:℃去分母;℃去括号;℃移项;℃合并同类项;℃化系数为1.以上步骤中,只有℃去分母和℃化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向. 【详解】解:解不等式()133x m m ->- ℃x-m >9-3m℃x >9-2m ,℃解集为x >5,℃9-2m=5,解得m=2,故答案为2.【点睛】本题考查了解一元一次不等式,熟练解一元一次不等式是解题的关键. 36.5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩,23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ℃2m <,|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:℃k >0,b >0⇔y=kx+b 的图象在一、二、三象限;℃k >0,b <0⇔y=kx+b 的图象在一、三、四象限;℃k <0,b >0⇔y=kx+b 的图象在一、二、四象限;℃k <0,b <0⇔y=kx+b 的图象在二、三、四象限.37.1a.【分析】把a当作已知条件,根据不等式组无解求出a的取值范围即可.【详解】解:324x ax a<+⎧⎨>+⎩①②,不等式组无解,432a a∴++.解得:1a故答案为1a【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.38.16千米/时【详解】设哥哥的速度至少为x千米/时,根据题意可得:40404206060x-⨯≥,解得:16x≥.答:哥哥的速度至少是16千米/时.故答案为16千米/时.39.1a1 2<【分析】先求出不等式组的解集,再根据不等式组有且只有两个整数解,求出实数a的取值范围.【详解】解:123354413x xx a x a①②,由℃得:25 x>-,由℃得:2x a<,不等式组的解集为:225x a -<<,不等式组只有两个整数解为0、1,122a,∴1a1 2<.故答案为1a 12<. 【点睛】此题考查的是一元一次不等式的解法和特殊解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.40.(1)3x ≤-(2)9x >- (3)132x << (4)1x ≥-【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集;(4)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)去括号得:2x +3≥3x +6,移项得:2x -3x ≥6-3,合并同类项得:-x ≥3,系数化1得:x ≤-3;(2)去分母得:3(x -1)<2(2x +3),去括号得:3x -3<4x +6,移项得:3x -4x <6+3,合并同类项得:-x <9,系数化1得:x >-9;(3)解第一个不等式得:x >12,解第二个不等式得:x <3, 所以不等组得解集为:12<x <3;(4)解第一个不等式得:x >-4,解第二个不等式得:x ≥-1,。
中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案(测试时间60分钟 满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.解不等式x−32<2x+13−1,下列去分母正确的是 ( )A . 3(x −3)<2(2x +1)−1B . 2(x −3)<3(2x +1)−6C . 3(x −3)<2(2x +1)−2D . 3(x −3)<2(2x +1)−62.关于 x 的不等式组 {x −1≤3,a −x <2有 5 个整数解,则 a 的取值范围是 ( )A . 1<a ≤2B . 1<a <2C . 1≤a <2D . −1≤a <03.如果 a >b ,那么下列不等式不一定成立的是 ( )A . a −3>b −3B . −2a <−2bC . a 2<b 2D . a 2>b 24.不等式组 {x −1>0,5−2x ≥1的解集在数轴上表示正确的是 ( ) A . B . C .D . 5.不等式x+12>2x+13−1 的正整数解的个数是 ( )A . 0 个B . 4 个C . 6 个D . 7 个 6.已知关于 x 的不等式组 {x −1<0,x −a ≥0有以下说法: ①如果 a =−2,那么不等式组的解集是 −2≤x <1;②如果不等式组的解集是 −3≤x <1那么 a =−3;③如果不等式组的整数解只有 −2,−1,0那么 a =−2;④如果不等式组无解,那么 a ≥1.其中所有正确说法的序号是 ( )A .①②③B .①②④C .①③④D .②③④7.a,b为实数,且a>b,则下列不等式的变形正确的是( )A.a+b<b+x B.−a+2>−b+2C.3a>3b D.a2<b28.某种品牌自行车的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于5%,则至多可打的折数是( )A.八折B.八四折C.八五折D.八八折二、填空题(共5题,共15分)9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了 5.5万元,这批电话手表至少有块.10若关于x的不等式x−m2≥−1的解集如图所示,则m的值为.11.将不等式“−2x>−2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.12.“b与15的和小于27”,用不等式表示为.13.在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对道题.三、解答题(共3题,共45分)14.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多 2 万元.(1) 求甲、乙两种机器每台各多少万元?(2) 如果工厂购买机器的预算资金不超过 34 万元,那么你认为该工厂有哪几种购买方案?15.关于 x 的不等式组 {x <3a +2,x >a −4无解,求 a 的取值范围.16.若点 P 的坐标为 (x−13,2x −9),其中 x 满足不等式组 {5x −10≥2(x +1),12x −1≤7−32x, 求点 P 所在的象限.参考答案1. 【答案】D2. 【答案】C3. 【答案】D4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】A8. 【答案】B9. 【答案】10510. 【答案】0<a<211. 【答案】不等式两边都乘以(或除以)同一个负数,不等号的方向改变12. 【答案】b+15<2713. 【答案】2014. 【答案】(1) 甲型机器每台7万元,乙型机器每台5万元.(2)方案1:购买乙型机器6台;方案2:购买甲型机器1台,乙型机器5台;方案3;购买甲型机器2台,乙型机器4台.15. 【答案】a≤−3.16. 【答案】点P在第四象限。
2019-2020年中考数学模拟测试试题(不等式与不等式组)(二)

2019-2020年中考数学模拟测试试题(不等式与不等式组)(二)一、选择题1.在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()A.10人B.11人C.12人D.13人2.地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%~15%范围内,由此预测,2013年底剩下江豚的数量可能为()头.A.970 B.860 C.750 D.7203.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40 B.45 C.51 D.56二、填空题4.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有(填写所有正确的序号).三、解答题5.5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.6.为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲、乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?7.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是.(2)如果[]=3,求满足条件的所有正整数x.8.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.9.某文具店准备购进甲、乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲、乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?10.某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?11.某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元)300﹣400 400﹣500500﹣600600﹣700700﹣900…返还金额(元)30 60 100 130 150 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标价至少为多少元?12.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价;(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?13.青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数量如下表所示:甲种花卉(盆)乙种花卉(盆)A种园艺造型(个)80盆40盆B种园艺造型(个)50盆90盆(1)已知搭配一个A种园艺造型和一个B种园艺造型共需500元.若园林局搭配A种园艺造型32个,B种园艺造型18个共投入11800元.则A、B两种园艺造型的单价分别是多少元?(2)如果搭配A、B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你帮忙设计出来.14.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.15.某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)薰衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,薰衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?16.为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C每辆汽车的装载量(吨) 4 5 6(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.17.在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?18.为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)45 30租金(元/辆)400 300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.19.设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a220.在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一班不足3幅,但不少于1幅.(1)该校原有的班数是多少个?(2)新学期所增加的班数是多少个?21.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?22.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?23.“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?24.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)25.某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?26.雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m2,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:板房规格板材数量(m2)铝材数量(m2)甲型40 30乙型60 20请你根据以上信息,设计出甲、乙两种板房的搭建方案.27.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.。
中考数学 不等式(组)专题训练(含答案)精选全文完整版

可编辑修改精选全文完整版2020中考数学 不等式(组)专题训练(含答案)一、单选题(共有10道小题)1.实数a b c ,,在数轴上对应的点如下图所示,则下列式子中正确的是()A .ac bc >B .––a b a b =C .–a b c -<<D .––––a c b c >2.如图,在数轴上表示不等式组1010x x ->⎧⎨+≥⎩的解集,其中正确的是()3.适合不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩的全部整数解的和是( )A . -1B . 0C .1D . 2 4.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( )A .a ≤-3B .a <-3C .a >3D .a ≥35.不等式组102123x x ⎧->⎪⎨⎪-<⎩的解集为( )A.12x >B.1x <-C.211x <<-D.12x >- 6.一元一次不等式()122573x x --≥-的解集为()A.109x ≥B.209x ≥C.109x ≤D.209x ≤ xcb aABDC7.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为( )A . 8B .6C .5D .48.不等式2<10x 的解集在数轴上表示正确的是( )9.不等式210x ->的解集是( )A.12x>B. 12x <C. 12x >-D. 12x <-10.若不等式02>-ax 的解集为x <-2,则关于y 的方程02=+ay 的解为( )A .y =-1B .y =1C .y =-2D .y =2二、填空题(共有7道小题)11.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒, 步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于米12.不等式组8<4-121>7-3x x x x +⎧⎪+⎨⎪⎩的解集为 .13.不等式()133x m m ->-的解集为1x >,则m 的值为 14.不等式组11343x x ⎧≤⎪⎨⎪-<⎩的解集是________.15.解不等式组21 1 21 3 x x +≥-⎧⎨+≤⎩①②,请结合题意填空,完成本题的解答(1)解不等式①,得(2)解不等式②,得(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:16.不等式组()32423x x x --≥⎧⎪⎨<⎪⎩的解集是________.A C DB17.已知关于x 的不等式组2132x x x m+⎧>-⎪⎨⎪<⎩的所有整数解的和是-7,则m 的取值范围是三、计算题(共有2道小题) 18.已知3=x 是关于x 的不等式32223xax x >+-的解,求a 的取值范围.19.解不等式组:()3242113x x x x ⎧-≥-⎪⎨+>-⎪⎩ 并写出它的所有的整数解.四、解答题(共有5道小题)20.某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本。
中考数学总复习《不等式与不等式组》专项测试卷-带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-带参考答案(测试时间60分钟 满分100分)学校:___________姓名:___________班级:___________考号:___________ 一、选择题(共8题,共40分)1.若不等式组 {2x −3>1,x ≤a 的整数解共有 4 个,则 a 的取值范围是 ( )A . 6≤a <7B . 6<a ≤7C . 6<a <7D . 6≤a ≤72. a ,b 为实数,且 a >b ,则下列不等式的变形正确的是 ( ) A . a +b <b +x B . −a +2>−b +2 C . 3a >3bD . a2<b23.不等式组 −2x ≤6 的解集在数轴上表示正确的是 ( ) A . B . C .D .4.疫情复课之前,某校七年级(1)班购置了一批防疫物资,其中有 10 支水银温度计,若干支额温枪.水银温度计每支 5 元,额温枪每支 230 元,如果总费用超过 1000,那么额温枪至少有 ( )A . 3 支B . 4 支C . 5 支D . 6 支5.已知整数 k 使得关于 x ,y 的二元一次方程组 {kx −y =12,3x −y =3的解为正整数,且关于 x的不等式组 {3x −k ≥0,12x −2<1有且仅有四个整数解,则所有满足条件的 k 的和为 ( )A . 4B . 9C . 10D . 156.已知 a,b,c 为有理数,且 a +b +c =0,b ≥−c >|a| 则 a,b,c 与 0 的大小关系是 ( ) A . a <0 b >0 c <0 B . a >0 b >0 c <0C . a ≥0 b <0 c >0D . a ≤0 b >0 c <07.某商店搞促销:某种矿泉水原价每瓶 5 元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买 ( ) 瓶矿泉水时,第二种方案更便宜. A . 5B . 6C . 7D . 88.如图,一个运算程序,若需要经过两次运算才能输出结果,则 x 的取值范围为 ( )A . x >1B . 1<x ≤7C . 1≤x <7D . 1≤x ≤7二、填空题(共5题,共15分)9.据某气象台发布信息,2020 年 6 月 12 日该地最高气温是 32∘C ,最低气温是 25∘C ,则当天气温 t ℃ 的变化范围是 .10.在平面直角坐标系中,若点 P (1−m,5−2m ) 在第二象限,则整数 m 的值为 .11.鱼缸里养 A ,B 两种鱼,A 种鱼的生长温度 x ∘C 的范围是 20≤x ≤28,B 种鱼的生长温度 x ∘C 的范围是 19≤x ≤25,那么鱼缸里的温度 x ∘C 应该控制在 范围内.12.在一次数学知识竞赛中,竞赛题共 30 题.规定:答对一道题得 4 分,不答或答错一道题倒扣 2 分,得分不低于 60 分者得奖.得奖者至少应答对 道题.13.若不等式组 {x −a >2,b −2x >0 的解集是 −1<x <1,则 (a +b )2021= .三、解答题(共3题,共45分)14.若数 a 使关于 x 的分式方程 2x−1+a1−x =3 的解为正数,且使关于 y 的不等式组{y+23−y2>1,2(y −a )≤0的解集为 y <−2,求符合条件的所有整数 a 的和.15.为了弄清废旧电池对环境的危害,小明借读了一本与此相关的 500 页的科普书,计划 10 天内读完,前 5 天因种种原因只读了 100 页,那么从第 6 天起平均每天至少要读多少页,才能按计划读完这本书?16.已知关于 x ,y 的方程组 {x +2y =2m −5,x −2y =3−4m 的解满足 x <1和y <2.(1) 求实数 m 的取值范围; (2) 化简 ∣3m −8∣+∣m +2∣.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】 −1≤x <3 10.【答案】 211.【答案】 20≤x ≤25 12.【答案】 113.【答案】 −114.【答案】分式方程的两边都乘 (x −1),得 2−a =3(x −1),解得 x =5−a 3.∵x −1≠0 ∴5−a 3≠1 ∴a ≠2. ∵ 分式方程的解为正数 ∴5−a 3>0 ∴a <5 且 a ≠2.{y+23−y2>1, ⋯⋯①2(y −a )≤0. ⋯⋯②解不等式①得 y <−2 解不等式②得 y ≤a . ∵ 不等式组的解集为 y <−2 ∴a ≥−2.∴−2≤a <5 且 a ≠2.∴ 整数 a 的和为 (−2)+(−1)+0+1+3+4=5.15.【答案】设从第 6 天起平均每天读 x 页.100+5x ≥500,解得x ≥80.答:从第 6 天起平均每天至少要读 80 页,才能按计划读完这本书. 16.【答案】(1) 解方程组可得 {x =−m −1,y =3m−42.∵x <1,y <2 ∴{−m −1<1,3m−42<2,解得 −2<m <83∴m 的取值范围是 −2<m <83.(2) ∵−2<m <83 ∴3m −8<0 m +2>0 ∴∣3m −8∣+∣m +2∣=8−3m +m +2=−2m +10.。
广东省2024年九年级中考数学一轮复习:不等式与不等式组 模拟练习(含解析)

2024年广东省九年级数学中考一轮复习:不等式与不等式组模拟练习一、单选题1.(2023·广东广州·中考真题)不等式组的解集在数轴上表示为()A.B.C.D.2.(2023·广东·中考真题)一元一次不等式组的解集为()A.B.C.D.3.(2023·广东东莞·模拟预测)当时,不等式成立的是()A.B.C.D.4.如图,数轴上两点M、所对应的实数分别为、,则的结果可能是().A.1B.C.0D.-15.(2023·广东肇庆·三模)若关于x的不等式的解集是,则( )A.B.C.D.6.(2022·广东潮州·一模)如图,数轴上有三个点,点表示的数为2,点表示的数为,且,则点表示的数的整数部分为()A.1B.2C.3D.47.(2023·广东广州·二模)实数a,b在数轴上的位置如图所示,则下列结论正确的是().A.B.C.D.8.(2023·广东东莞·一模)关于x的不等式的解集是( )A.B.C.D.9.一个不等式的解集在数轴上表示如图所示,则这个不等式可能是( )A.B.C.D.10.(2023·广东·模拟预测)不等式组的解集在数轴上表示正确的是()A.B.C.D.11.(2023·广东潮州·二模)如果关于x的不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数对共有( )A.42对B.36对C.30对D.11对二、填空题12.(2023·广东·中考真题)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于,则最多可打折.13.(2023·广东云浮·一模)小红准备用30元钱买甲、乙两种笔记本共10本,已知甲种笔记本每本4元,乙种笔记本每本2元,则小红最多能买本甲种笔记本.14.(2023·广东清远·模拟预测)苹果进价是每千克6元,销售中估计有的苹果正常损耗.商家把售价至少定为元,利润才能不低于.15.不等式的非负整数解共有个.16.(2023·广东东莞·模拟预测)某学校医务室采购了一批水银温度计和额温枪,其中有支水银温度计,若干支额温枪.已知水银温度计每支元,额温枪每支元,如果总费用不超过元,那么额温枪至多有支.17.某商场花费950元购买水果100斤,销售中有5%的水果正常损耗,为了避免亏本,销售单价至少应该定为元/千克.18.(2023·广东汕头·一模)不等式组的解集是.19.(2023·广东肇庆·一模)不等式组的整数解是.20.(2023·广东江门·一模)定义:如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.若方程、都是关于x的不等式组的相伴方程,则m的取值范围为.三、解答题21.(2023·广东佛山·三模)解不等式组:.22.(2023·广东汕头·一模)解不等式组:,并写出它的所有整数解.23.(2023·广东潮州·二模)解不等式组,并在数轴上表示该不等式组的解集.24.(2023·广东深圳·中考真题)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?25.(2023·广东茂名·三模)某服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件与B种型号服装10件共需要1810元;若购进A种型号服装12件与B种型号服装8件共需要1880元.(1)A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定购进A型服装的数量要比购进B型服装的数量的2倍还多4件,这样服装全部售出后可使总的获利不少于732元,问至少购进B型服装多少件?26.(2023·广东茂名·二模)超市购进A、B两种商品,购进4件A种商品比购进5件B种商品少用10元,购进20件A种商品和10件B种商品共用去160元.(1)求A、B两种商品每件进价分别是多少元?(2)若该商店购进A、B两种商品共200件,都标价10元出售,售出一部分商品后降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进A种商品的件数少30件,该商店此次销售A、B两种商品共获利不少于640元,求至少购进A种商品多少件?27.(2023·广东茂名·一模)健康生活,人们越来越喜欢吃新上市的水果,为满足市民的需求,某水果店分别以每千克5元和6元的价格一次性购进了枇杷和桃子个若干千克,共用去了980元.枇杷按每千克获利的价格销售,桃子每千克售价是枇杷每千克售价的倍,经过一段时间后,这两种水果都销售完毕,经统计,销售这两种水果共获利780元.(1)该水果店此次购进的枇杷和桃子分别是多少千克?(2)因为市民对这两种水果仍有需求,于是该水果店又以与上次相同的价格购进了一些枇杷和桃子,两种水果购进的数量都与上次相同,由于市场原因,该水果店调整了这两种水果的销售单价,枇杷每千克售价下调了,桃子价格上调了,若要求销售完这些枇杷和桃子的利润不得低于768元,求a的最大值.28.(2023·广东河·三模)一中集团某兄弟学校计划组织师生共556人参加一次秋季研学活动,如果租用7辆大巴车和5辆中巴车恰好全部坐满.已知每辆大巴车的乘客座位数比中巴车多16个.(1)求每辆大巴车和每辆中巴车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,最多可以租用多少辆中巴车?参考答案:1.B【分析】先解出不等式组的解集,然后将解集表示在数轴上即可.【详解】解:解不等式,得,解不等式,得,∴不等式组的解集为,在数轴上表示为:故选:B.【点睛】此题考查不等式组的解法,解题关键是将解集表示在数轴上时,有等号即为实心点,无等号则为空心点.2.D【分析】第一个不等式解与第二个不等式的解,取公共部分即可.【详解】解:解不等式得:结合得:不等式组的解集是,故选:D.【点睛】本题考查解一元一次不等式组,掌握解一元一次不等式组的一般步骤是解题的关键.3.D【分析】将分别代入四个选项中,看不等式是否成立即可.【详解】A选项:当时,,不符合题意;B选项:当时,,不符合题意;C选项:当时,,不符合题意;D选项:当时,,符合题意;故选D.【点睛】本题考查了代数式求值,熟练掌握上述知识点是解答本题的关键.【分析】根据数轴得到点M、所对应的实数的范围,再结合实数的加法解题.【详解】解:依题意得,则的结果可能是-1,故选:D.【点睛】本题考查数轴与实数的对应关系,涉及一元一次不等式,难度较易,掌握相关知识是解题关键.5.A【分析】本题主要考查了解一元一次不等式,不等式的基本性质,解题的关键是根据的解集是,得出,求出a的值即可.【详解】解:∵关于x的不等式的解集是,∴,∴,∴,解得:,故选:A.6.A【分析】利用数轴上两点的距离求出,进而求得点C表示的数,再利用无理数的估算求解即可.【详解】解:由题意,得,∴点C表示的数为,∵,即,∴,∴点表示的数的整数部分为1,故选:A.【点睛】本题考查数轴上两点的距离、无理数的估算、不等式的性质,正确得到点C表示的数是解答的关键.【分析】根据数轴可得,再根据不等式的性质逐个判断各个选项即可.【详解】解:由图可知,A、,故A不正确,不符合题意;B、,故B正确,符合题意;C、当时,,故C不正确,不符合题意;D、∵,∴,∴,故D不正确,不符合题意.故选:B.【点睛】本题主要考查不等式的性质,解题的关键是掌握:不等式两边都加上或减去同一个数或同一个式子,不等号的方向不变;不等式两边都乘以或除以同一个正数,不等号的方向不变;不等式两边都乘以或除以同一个负数,不等号方向改变.8.B【分析】本题考查解一元一次不等式,先去分母,再去括号、移项、合并同类项、系数化为1,解题的关键是注意不等号两边同时除以一个负数时,不等号要变号.【详解】解:,去分母,得,去括号,得,移项,得,合并同类项,得,系数化为1,得,故选B.9.C【分析】根据在数轴上表示不等式解集的方法解答即可.【详解】解:∵处是空心圆点,且折线向右,故这个不等式的解集为,∴这个不等式可能是.故选:C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”和空心点与实心点的区别是解答此题的关键.10.A【分析】此题主要考查了解一元一次不等式组,正确解不等式是解题关键.分别解不等式进而得出不等式组的解集,进而得出答案.【详解】解:解不等式①得,解不等式②得,∴不等式组的解集为:在数轴上表示为:故选:A.11.C【分析】本题考查了解一元一次不等式组,不等式组的整数解的应用,先求出不等式组的解集,根据已知得出关于、的不等式组,求出整数解即可,解此题的关键是求出、的值.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集是,∵关关于x的不等式组的整数解仅为1,2,3,∴,,∵m、n为整数,∴、2、3、4、5、6,、17、18、19、20,,所以适合这个不等式组的整数对共有30对,故选:C.12.8.8【分析】设打x折,由题意可得,然后求解即可.【详解】解:设打x折,由题意得,解得:;故答案为8.8.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.13.5【分析】设小红买甲笔记本x本,则小红买乙笔记本本,根据所买甲、乙笔记本钱数之和小于等于30,列不等式求解即可.【详解】解:设小红买甲笔记本x本,则小红买乙笔记本本,由题意得:,解得:,∴小红最多买5本甲笔记本,故答案为:5.【点睛】本题考查一元一次不等式的应用,关键是找出不等量关系.14.8【分析】设商家把售价应该定为每千克元,因为销售中估计有的苹果正常损耗,故每千克苹果损耗后的价格为,根据题意列出不等式即可.【详解】解:设商家把售价应该定为每千克元,根据题意得:,解得:,即:商家把售价应该至少定为每千克8元.故答案是:8.【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价进价进价”列出不等式即可求解.15.6【分析】先求出不等式的解集,然后再求出不等式的非负整数解即可.【详解】解:,去分母得:,移项合并同类项得:,未知数系数化为1得:,∴非负整数解有5、4、3、2、1、0共6个.故答案为:6.【点睛】本题主要考查了解不等式,求不等式的非负整数解,解题的关键是熟练掌握解不等式的一般步骤,得出不等式的解集.16.4【分析】设购进额温枪支,根据总价单价数量结合总费用不超过元,即可得出关于的一元一次不等式,解之即可得出的取值范围,再取其中最大的整数值即可得出结论.【详解】解:设购进额温枪支,由题意得,解得为正整数的最大值为故答案为.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.17.20【分析】设销售单价应该定为x元/千克,根据利润=销售收入﹣成本,结合要求不亏本,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:100斤=50千克.设销售单价应该定为x元/千克,依题意得:50×(1﹣5%)x﹣950≥0,解得:x≥20,故答案为:20.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.18./【分析】此题考查了求不等式组的解集,先求出每个不等式的解集,再求出公共部分即可,掌握不等式组的取值方法“同大取大,同小取小,大小小大去中间,大大小小无解”是解题的关键.【详解】解:解不等式①得:,解不等式②得:,∴不等式组的解集为,故答案为:.19.2【分析】本题考查求不等式组的解集以及确定解集内的整数解,熟练掌握不等式的性质是解题关键.先根据不等式的性质求出不等式组的解集,再取整数解即可.【详解】解:,由不等式①得,由不等式②得,其解集是,所以整数解是2.故答案为:2.20.【分析】先求出两个方程的解,再解不等式组,根据题意可得且,即可解答.【详解】解:解方程,得:,解方程,得:,由,得:,由,得:,均是不等式组的解,且,,故答案为:.【点睛】本题考查了解一元一次方程,解一元一次不等式组,理解题意,熟练解一元一次方程和一元一次不等式是解题的关键.21.【分析】本题考查了解一元一次不等式组,解题的关键是准确求出各个不等式的解.分别求出每个不等式的解,再取公共部分即可求解.【详解】解:,由不等式,解得:;由不等式,解得:;原不等式组的解集为:.22.不等式组的解集为;不等式组的所有整数解为、、0【分析】本题考查了一元一次不等式组的解法,先分别解不等式①和②,求出它们的解集,再求出它们解集的公共部分,然后找出其中的整数即可.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【详解】解:解①得:;解②得:;∴原不等式组的解集为;∴原不等式组的所有整数解为、、0.23.,数轴见解析【分析】本题主要考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法和步骤,以及写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.分别求解两个不等式,再写出解集,最后在数轴上表示出来即可.【详解】解:,由①可得:,由②可得:,∴该不等式组的解集为,在数轴上表示如图所示:24.(1)A、B玩具的单价分别为50元、75元;(2)最多购置100个A玩具.【分析】(1)设A玩具的单价为x元每个,则B玩具的单价为元每个;根据“购置2个B玩具与1个A玩具共花费200元”列出方程即可求解;(2)设A玩具购置y个,则B玩具购置个,根据“购置玩具的总额不高于20000元”列出不等式即可得出答案.【详解】(1)解:设A玩具的单价为x元,则B玩具的单价为元;由题意得:;解得:,则B玩具单价为(元);答:A、B玩具的单价分别为50元、75元;(2)设A玩具购置y个,则B玩具购置个,由题意可得:,解得:,∴最多购置100个A玩具.【点睛】本题考查一元一次方程和一元一次不等式的应用,属于中考常规考题,解题的关键在于读懂题目,找准题目中的等量关系或不等关系.25.(1)A种型号服装每件90元,B种型号服装每件100元.(2)至少购进B型服装10件.【分析】本题考查了一元一次不等式的应用、一元一次方程的应用,准确地找到等量关系并用方程组表示出来是解题的关键.(1)根据题意可知,本题中的相等关系是“A种型号服装9件,B种型号服装10件,需要1810元”和“A 种型号服装12件,B种型号服装8件,需要1880元”,列方程组求解即可.(2)利用两个不等关系列不等式,结合实际意义求解.【详解】(1)设A种型号服装每件x元,B种型号服装每件y元.依题意可得:,解得:,答:A种型号服装每件90元,B种型号服装每件100元.(2)设B型服装购进m件,则A型服装购进件.根据题意得:,解不等式得,答:至少购进B型服装10件.26.(1)A种商品每件进价5元,B种商品每件进价6元;(2)至少购进A种商品100件.【分析】此题考查了二元一次方程组的应用和一元一次不等式的应用:(1)根据“购进4件A种商品比购进5件B种商品少用10元,购进20件A种商品和10件B种商品共用去160元”列出方程组解答即可;(2)设购进A种商品件,则B种商品件,“利润不少于640元”列出不等式解答即可.【详解】(1)解:设A甲种商品每件进价x元,B乙种商品每件进价y元,根据题意,得,解得:,答:A种商品每件进价5元,B种商品每件进价6元.(2)解:设A种商品购进a件,则乙种商品件,根据题意,得,解得:,答:至少购进A种商品100件.27.(1)水果店此次购进的枇杷100千克,桃子80千克(2)15【分析】(1)由题意计算出枇杷的售价与桃子的售价,设水果店此次购进的枇杷和桃子分别是千克、千克,根据题意列方程组求解可得;(2)根据题意表示出枇杷每千克售价与桃子每千克售价,根据题意列不等式求解可得;本题主要考查二元一次方程组和一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系,并列出方程组或不等式是解题的关键.【详解】(1)解:枇杷售价:(元/千克),桃子售价:(元/千克)设水果店此次购进的枇杷和桃子分别是x千克、y千克.根据题意得:,解得∴水果店此次购进的枇杷100千克,桃子80千克.(2)∵枇杷每千克售价下调了∴枇杷每千克售价:(元/千克),∵桃子价格上调了,∴桃子每千克售价:(元/千克),∴∴,∴a的最大值为15.28.(1)每辆大巴车的乘客座位数是53个,每辆中巴车的乘客座位数是37个(2)最多可以租用3辆中巴车【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式;(1)设每辆大巴车的乘客座位数是个,每辆中巴车的乘客座位数是个,由题意:某兄弟学校计划组织师生共556人参加一次秋季研学活动,如果租用7辆大巴车和5辆中巴车恰好全部坐满.已知每辆大巴车的乘客座位数比中巴车多16个.列出二元一次方程组,解方程组即可;(2)设租用中巴车辆,则租用辆大巴车,由题意:最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,列出一元一次不等式,解不等式即可.【详解】(1)设每辆大巴车的乘客座位数是x个,每辆中巴车的乘客座位数是y个,依题意,得:,解得:,答:每辆大巴车的乘客座位数是53个,每辆中巴车的乘客座位数是37个.(2)设租用中巴车a辆,则租用辆大巴车,依题意,得:,解得:,∵a为整数,∴a的最大值为3,答:最多可以租用3辆中巴车.。
中考数学不等式与不等式祖专题训练50题含答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.一个不等式的解集在数轴上表示如图,则这个不等式可能是( )A .10x -≤B .10x ->C .10x -≥D .10x -<2.已知不等式组3010x x -<⎧⎨+≥⎩,则两个不等式的解集在同一数轴上表示正确的是( )A .B .C .D .3.若a b >,则下列不等式中正确的是( ) A .33a b >B .22a b ->-C .11+<+a bD .0a b -<4.已知点A (x +3,2﹣x )在第四象限,则x 的取值范围是( ) A .x >2 B .x >﹣3C .﹣3<x <2D .x <25.把不等式组的解集在数轴上表示,正确的是( )A .B .C .D .6.如果不等式组5x x a >⎧⎨>⎩的解集是5x >,则a 的取值范围是( )A .5a ≥B .5a ≤C .5a =D .5a <7.已知关于x 的一次函数y =mx+2m ﹣3在﹣1≤x≤1上的函数值总是正的,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .吉祥物礼品,借价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .()1008010900x x +->B .()1008010900x x +-<C .()1008010900x x +-≥D .()1008010900x x +-≤9.已知直线31y x 经过点2,3A m ⎛⎫⎪⎝⎭,则关于x 的不等式31x m 的解集为( )A .32x <B .23x <C .32x >-D .23x >-10.不等式组2{5x x >-≤的解集在数轴上可表示为( )A .B .C .D .11.若关于x 的不等式组214333x x x m x--⎧<⎪⎨⎪-≤-⎩恰有2个整数解,且关于x 、y 的方程组430mx y x y +=⎧⎨-=⎩也有整数解,则所有符合条件的整数m 的和为( ) A .-18B .-6C .-3D .012.平面直角坐标系中,过点32-(, )的直线l 经过第一、二、三象限,若点()0a ,,1b -(,),1c -(,)都在直线l 上,则下列判断正确的是() A .a b <B .2a <C .2b <D .3c -<13.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( ) A .10B .11C .12D .1314.不等式组38023x x -<⎧⎨-<⎩的非负整数解有( ).15.当x =﹣2时,下列不等式成立的是( ) A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x16.若a b >,则下列四个不等式中正确的是( ) A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-17.不等式组2≤3x-7<9的所有整数解为( ) A .3,4B .4,5C .3,4,5D .3,4,5,618.已知a<b ,则下列不等式中不正确的是( ) A .a 44b < B .a+4<b+4 C .-4a>-4b D .a 2<b 219.(2017届河南安阳滑县中考二模数学试卷)若不等式组2123x a x b -⎧⎨-⎩<>的解集为−1<x<1,则(a −3)(b+3)的值为 A .1B .−1C .2D .−220.如图,正比例函数y x =的图象与反比例函数()0ky k x=≠的图象交于A ,B 两点,90CAD ∠=︒,两边分别交x 轴,y 轴于点D ,C ,四边形OCAD 的面积为1,AE x ⊥轴于点E .有下列结论:①OA OB =;①三角形OAE 的面积为12;①线段AB 的;①不等式kx x>的解集是1x >或1x <-.其中正确结论的个数是( ).A .1B .2C .3D .4二、填空题 21.不等式1-2x≥-1的解集是____. 22﹣3<2x 的解集是 ___.23.“a 的3倍与12的差是一个非负数”用不等式表示为______24在实数范围内有意义,则实数x 的取值范围是______.25.不等式的解是______.26.已知关于x 的不等式20(0)kx k ->≠的解集是3x >,则直线2y kx =-+与x 轴的交点坐标是________.27.已知m 是整数,且一次函数y =(m +3)x +m +2的图象不过第二象限,则m =______. 28.已知关于x 的不等式(a-2)x >1的解集为x <12a -,则a 的取值范围____________. 29.如果ab <,要使ac bc >,则___0c ;30.如果m <n ,则关于x 的一元一次不等式组x mx n ≤⎧⎨<⎩的解集为______.31.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.32.先化简,再求值:211933x x x -⎛⎫-⋅ ⎪+⎝⎭,其中x 为偶数且满足不等式组23213x x -<⎧⎨-≤⎩. 33.不等式350x -≤的正整数解是_________.34.某班数学兴趣小组对不等式组2x x m >⎧⎨≤⎩的解集进行讨论,得到以下结论:①若 m = 4,则不等式组的解集为 2<x ≤ 4; ①若 m = 1,则不等式组无解;①若原不等式组无解,则 m 的取值范围为 m <2;①若 7 ≤ m <8,则原不等式组有 5 个整数解.其中,结论正确的有______. 35.不等式组583(1)131722{x x x x ++-≤-的最大整数解为________.36.不等式1132x x +-<的解集是_____. 37.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么a b +的值为 . 38.抛物线2222y x bx b b =++-+与x 轴没有交点,则b 的取值范围为 _____. 39.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.三、解答题 40.解不等式4312163x x++≤+,并写出它的非正整数解. 41.(1)计算:2﹣2﹣2cos60°+|(π﹣3.14)0(2)解不等式数()295131x xx x --⎧⎨->+⎩,并把它的解集在数轴上表示出来.42.把下列不等式的解集在数轴上表示出来. (1)x≥-3;(2)x >-1;(3)x≤3;(4)x<-32.43.先化简,再求值2222221211x x x x x x x x x ⎛⎫+--+⎪--++⎝⎭,且x 是不等式2192136x x -+-≤的最小整数解.44.解不等式3(3)24->-x x ,并将解集在数轴上表示出来.45.解不等式组1211123x x x -≤⎧⎪+-⎨+<⎪⎩,并把解集在数轴上表示出来.46.在疫情期间,学校购买甲、乙两种消毒液,已知购买3桶甲种消毒液和4桶乙种消毒液共需170元,购买2桶乙种消毒液比购买3桶甲种消毒液少用50元. (1)求购买甲、乙两种消毒液每桶各需多少元?(2)若要购买甲、乙两种消毒液共21桶,且总费用不超过540元,求至多可购进甲种消毒液多少桶?47.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元? (2)有几种购买文化衫和相册的方案?48.解不等式组4713112x x x -<⎧⎪⎨+≥-⎪⎩49.国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,求符合此规定的行李箱的高的最大值.参考答案:1.B【分析】分别得出每个选项的解集,继而得出答案.【详解】解:由数轴可得:1x >, A.10x -≤的解集是1x ≤,故不符合题意; B.10x ->的解集是1x >,故符合题意; C.10x -≥的解集是1x ≥,故不符合题意; D.10x -<的解集是1x <,故不符合题意; 故选:B .【点睛】本题主要考查解一元一 次不等式的基本能力, 严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 2.C【分析】分别解出不等式的解集,再根据找不等式组的解集的规律即可求解. 【详解】解:不等式30x -<,解得3x >, 不等式10x +≥,解得1x ≥-, ①原不等式组的解集为:3x >, 故选:C .【点睛】本题考查了解不等式组并把解集在数轴上表示出来,熟练掌握找不等式组的解集的规律是解题的关键. 3.A【分析】不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变.【详解】A. 不等式两边都乘以3,不等号的方向不变,故本选项正确; B. 不等式两边都乘以−2,不等号的方向改变,故本选项错误; C. 不等式两边都减1,不等号的方向不变,故本选项错误; D. 不等式两边同时减去b ,不等号的方向不变,故本选项错误; 故选A.【点睛】本题考查不等式的性质,解题的关键是掌握不等式的性质. 4.A【分析】根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.【详解】解:①点A(x+3,2﹣x)在第四象限,①30 20xx+>⎧⎨-<⎩,解得x>2.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【详解】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:解得,故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.6.B【分析】根据求解规律是:大大取大,小小取小,大小小大中间找,大大小小无解可得a≥5.【详解】①不等式组5xx a>⎧⎨>⎩的解集是x>5,①a≤5,故选:B.【点睛】此题主要考查了不等式的解集,关键是正确理解不等式组确定公共解集的方法.7.A【分析】由题意可知x取最小和最大值时函数的值总是正的,所以只要将x=﹣1和x=1代入函数式即可求m的取值范围,进而在数轴上表示即可.【详解】解:根据题意得:当x=﹣1时,y=﹣m+2m﹣3=m﹣3>0,①m >3;当x =1时,y =m+2m ﹣3=3m ﹣3>0, ①m >1,①m 的取值范围是m >3. ①m 的取值范围在数轴上表示为:故选:A .【点睛】本题考查了一次函数图象与系数的关系,在数轴上表示不等式的解集,一次函数的图象是直线,只要保证两个端点的函数值恒大于0,即可求得m 的取值范围. 8.D【分析】设购买冰墩墩礼品x 件,则购买雪容融()10x -件,再根据总共花费不超过900元,列出不等式即可.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融()10x -件, 由题意得()1008010900x x +-≤, 故选D .【点睛】本题主要考查了列不等式,正确理解题意找到不等关系是解题的关键. 9.B【分析】利用函数的解析式求得m =3,然后解不等式即可. 【详解】解:①直线y =3x +1经过点2,3A m ⎛⎫⎪⎝⎭,①m =3×23+1=3,①关于x 的不等式为3x +1<3, 解得:23x <, 故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,解一元一次不等式,根据函数的解析式求得m 的值是解题的关键. 10.D【分析】本题考查不等式组的解集在数轴上表示方法.【详解】不等式组的解集为-2<5x≤,在数轴上表示为.故选D.11.C【分析】先解不等式组求出m的取值范围,再解方程组,结合m的取值范围求出m满足不等式组恰有2个整数解,方程组也有整数解的值,然后再求出所有符合条件的整数m的和即可.【详解】解:不等式组214333x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>−2,解不等式①得:34mx+≤,①不等式组的解集为324mx+-<≤.①不等式组恰有2个整数解,①3014m+≤<,解得:31m-≤<,解方程组4 30 mx yx y+=⎧⎨-=⎩,得:43123xmym ⎧=⎪⎪+⎨⎪=⎪+⎩①关于x、y的方程组430mx yx y+=⎧⎨-=⎩也有整数解,①m+3为4的因数,即m+3=±1或±2或±4,①−3≤m<1,①m的值为:−2、−1,①所有符合条件的整数m的和为(−2)+(−1)=−3.故选:C.【点睛】本题考查了一元一次不等式组的解法、二元一次方程组的解法,理解相关知识是解答关键.12.D【分析】设出一次函数解析式为y mx n +=,根据图象经过的象限确定0m >,把32-(, )代入解析式,得到用m 表示的函数关系式,把三个点代入解析式,判断各个选项是否正确.【详解】解:设直线l 的解析式为y =mx +n ,由于直线l 经过第一、二、三象限,所以0m >.由于点32-(, )在直线l 上,所以23m n -+=,即32n m +=,所以一次函数解析式为:32y mx m ++=,当0x =时,32a m +=,∵0m >,∴322a m +=>,故选项B 不合题意;当1x -=时,22b m +=,∵0m >,∴222b m +=>,故选项C 不合题意,∴3222m m ++>,即a b >,故选项A 不合题意,当1y -=时,321cm m ++-=,即33c m +-()=, 因为0m >.所以30c +<,即3c -<,故选项D 符合题意,故选:D .【点睛】本题考查了一次函数图象和性质以及不等式的性质,利用不等式的性质是解决本题的关键.13.C【分析】设预定每组分配的人数为x 人,若按每组人数比预定人数多分配1人,总人数为()81x +,若按每组人数比预定人数少分配1人,总人数为()81x -,根据题意列出不等式组,即可得解集,再根据实际情况得出预定每组分配的人数.【详解】解:设预定每组分配的人数为x 人,根据题意得()()81100,8190,x x ⎧+>⎪⎨-<⎪⎩解得232<x <494, 而x 为整数,所以x =12,即预定每组分配的人数为12人.故选:C.【点睛】此题主要考查不等式组的应用.14.C【详解】分析:求不等式组的解,再判断其中非负整数解.详解:38023x x -<⎧⎨-<⎩,解得32-<x <83,非负整数解有0,1,2,故选C. 点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:①若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:①若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x 表示不等式的解集,此时一般表示为a<x<b ,或a≤x≤b .此乃“相交取中”,如图所示:①若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空” 如图所示:15.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A 、将x =﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B 、将x =﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C 、将x =﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D 、将x =﹣2代入得:﹣6<﹣4,故此选项错误,故选:B .【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.A【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确; B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.17.C【详解】试题解析:可以化为237{379x x ≤--①<②①解不等式①得:x ≥3,解不等式①得:x <163, ①不等式组的解集是3≤x <163, ①不等式组的整数解是3,4,5.故选C .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出不等式组的解集.18.D【分析】根据不等式的性质逐个判断即可.【详解】A 、①a <b , ①a 44b <,正确,故本选项不符合题意; B 、①a <b ,①a +4<b +4,正确,故本选项不符合题意;C 、①a <b ,①−4a >−4b ,正确,故本选项不符合题意;D 、由-3<2,得(-3)2>22,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 19.D【详解】解不等式2x −a <1,得:x <12a +,解不等式x −2b >3,得:x >2b+3,①不等式组的解集为−1<x <1,①112231a b +⎧=⎪⎨⎪+=-⎩,解得:a=1,b=−2,当a=1,b=−2时,(a −3)(b+3)=−2×1=−2,故选D .20.B【分析】根据正比例函数y x =的图象与反比例函数()0k y k x=≠的图象的性质,结合题意,可计算得OA OB =;根据90CAD ∠=︒和四边形OCAD 的面积为1,设点C 坐标为()0,m ,设点D 坐标为(),0n ,通过勾股定理和四边形面积解方程,即可得到k 的值,从而计算得AB 和三角形OAE 的面积,以及不等式k x x>的解集.【详解】①正比例函数y x =的图象与反比例函数()0k y k x=≠的图象交于A ,B 两点 ①0k > ①y x k y x =⎧⎪⎨=⎪⎩①x =结合题意,得A,(B①OAOB =①OA OB =,故①正确;设点C 坐标为()0,m ,设点D 坐标为(),0n ,结合题意,0m >且0n >①OC m =,OD n =①四边形OCAD 的面积为1①四边形OCAD的面积)11=122OAC OAD S S OC OD m n +=+=△△①m n +=结合题意,(22AC m =+,(22AD n =+ 又①90CAD ∠=︒,且90COD ∠=︒①22222AC AD OC OD CD +=+=①((2222+m n m n =+①m n =+①=①1k =①()1,1A ,()1,1B --,AB ==,故①错误;①AE x ⊥①()1,0E ,1AE =①1OE = ①1122OAE S OE AE =⨯=△,故①正确;当0x >时,k x x>即1x x > ①21x > ①1x >或1x <-(舍去)当0x <时,k x x >即1x x > ①21x <①10x -<<①不等式k x x >的解集是1x >或10x -<<,故①错误; 故选:B .【点睛】本题考查了正比例函数、反比例函数、勾股定理、分式、不等式的知识;解题的关键是熟练掌握正比例函数、反比例函数、勾股定理、分式、不等式的性质,从而完成求解.21.x ≤3【分析】由题意先去分母,再移项合并,进而化系数为1即可得出,注意化系数为1时改变符号方向. 【详解】解:1-2x ≥-1 去分母:12x -≥-,移项合并:3x -≥-,化系数为1:3x ≤. 所以不等式1-2x ≥-1的解集是3x ≤. 故答案为:3x ≤.【点睛】本题考查解一元一次不等式,熟练掌握解一元一次不等式运算法则是解答本题的关键.22.6x >-.【分析】先移项,然后系数化为1,即可求出不等式的解集.32x -<,23x -<,①2)3x <,①x >①2)x >-,①6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键. 23.3a ﹣12≥0.【详解】试题分析:理解:差是一个非负数,即是最后算的差应大于或等于0. 解:根据题意,得3a ﹣12≥0.故答案为3a ﹣12≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.24.13x ≥且3x ≠【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【详解】解:由题意得:310x -≥且30x -≠, 解得:13x ≥且3x ≠, 故答案为:13x ≥且3x ≠.【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.25. 【详解】试题分析:把x 的系数化为1即可;注意系数化为一(不等式性质—不等式左右两边同时乘或除以同一个正数,不等号的方向不变/不等式左右两边同时乘或除以同一个负数,不等号的方向改变).化x 的系数化为1得,.①原不等式的解为. 考点:解一元一次不等式.26.(3,0)【分析】解不等式,并结合不等式的解,即可求出k 的值,然后将k 的值代入直线解析式中,再将y=0代入直线解析式中,即可求出结论.【详解】解:()200kx k ->≠当k >0时,解得x >2k; 当k <0时,解得x <2k; ①关于x 的不等式20(0)kx k ->≠的解集是3x >,①k >0,且23k = 解得:23k =将23k =代入直线2y kx =-+中,得223y x =-+ 当y=0时,解得:x=3①直线2y kx =-+与x 轴的交点坐标是(3,0)故答案为(3,0).【点睛】此题考查的是解不等式和求直线与x 轴的交点坐标,掌握不等式的基本性质和坐标轴上点的坐标规律是解决此题的关键.27.﹣2.【分析】根据一次函数的图象不过第二象限可得到一个关于m 的不等式组,解不等式组确定出m 的取值范围,再根据m 是整数,即可确定m 的值.【详解】①一次函数y =(m +3)x +m +2的图象不过第二象限,①3020m m +>⎧⎨+⎩, 解得:﹣3<m ≤﹣2,而m 是整数,则m =﹣2.故答案为:﹣2.【点睛】本题主要考查一次函数的图象及不等式组的整数解,掌握一次函数的图象是解题的关键.28.a <2【分析】根据不等式的基本性质,由不等式(a-2)x >1的解集为x <12a -,可得:a-2<0,据此求出a 的取值范围即可.【详解】①不等式(a-2)x >1的解集为x <12a -, ①a-2<0,①a 的取值范围为:a <2.故答案为a <2. 【点睛】此题主要考查了不等式的解集,要熟练掌握,注意不等式的基本性质的应用. 29.<【分析】根据不等式的基本性质即可解答.【详解】如果a <b ,ac >bc,则c <0.【点睛】本题主要考查不等式的基本性质,熟记不等式的性质并应用是关键. 30.x ≤m【分析】根据同小取小,即可得到不等式的解集,从而可以解答本题.【详解】解:①不等式组x m x n≤⎧⎨<⎩,且m <n , ①x ≤m ,故答案为x ≤m .【点睛】此题考查不等式组的解集,根据不等式的解集求出即可,难度一般. 31.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.32.3x x-,12-. 【分析】先化简211933x x x -⎛⎫-⋅ ⎪+⎝⎭,再求出不等式组的解集,代值计算即可. 【详解】解:211933x x x -⎛⎫-⋅ ⎪+⎝⎭ ()()3(3)(3)=333x x x x x x x x ⎡⎤++--⋅⎢⎥++⎣⎦()3(3)(3)=33x x x x x x +-+-⋅+ =3x x-, 又23213x x -<⎧⎨-⎩①② 解不等式①得x >-1,解不等式①得x ≤2,①-1<x ≤2,①x 为偶数且x ≠0,①x =2, 原式231==22--. 【点睛】此题考查的是分式的化简和求不等式组解集的综合题,掌握找分式的最简公分母的方法和不等式的性质是解题的关键.33.1【分析】先求出不等式的解集,然后求出其正整数解即可.【详解】解:①350x -≤, ①53x ≤, ①正整数解是1,故答案为:1.【点睛】本题主要考查了解一元一次不等式和解不等式的正整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.34.①①①【分析】将m =4和m =1代入不等式组,再根据口诀可得出不等式解集情况,从而判断①①;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由7≤m <8,可得不等式组3、4、5、6、7共5个整数解,从而判断①.【详解】解:①若m =4,则不等式组为24x x >⎧⎨≤⎩,此不等式组的解集为2<x ≤4,此结论正确;①若m=1,则不等式组为21xx>⎧⎨≤⎩,此不等式组无解,此结论正确;①若不等式组无解,则m的取值范围为m≤2,此结论错误;①若7≤m<8,则原不等式组有3、4、5、6、7共5个整数解,此结论正确;故答案为:①①①.【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.4【详解】解①得,x>-2.5;解①得,x≤4;①-2.5<x≤4,①最大整数解为4.36.x>5【分析】先去分母,然后通过移项、化未知数系数为1来解不等式.【详解】解:在不等式的两边同时乘以6,得2x+2<3x﹣3,移项,得﹣x<﹣5,化系数为1,得x>5.故答案是:x>5.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.37.1【分析】先解不等式组,再根据条件得到a,b的值,然后可求出a+b的值.【详解】解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<, 因为01x ≤<,所以4202a a -==,,3112b b +==-,, 1a b +=.考点:不等式组.38.2b <【分析】根据抛物线2222y x bx b b =++-+与x 轴没有交点,可知当22220x bx b b ++-+=时,()()22241+20,b b b --⨯⨯<从而可以求得b 的取值范围. 【详解】解:①抛物线2222y x bx b b =++-+与x 轴没有交点,①22220x bx b b ++-+=无解,①()()22241+20,b b b --⨯⨯<解得:2,b <故答案为: 2.b <【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用一元二次方程根的判别式解答.39.01a <<或203a <<- 【分析】分当a<0时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当a<0时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值,此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键.40.4x ≥-,-4,-3,-2,-1,0.【分析】通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解. 【详解】解:4312163x x ++≤+, 去分母得:()432126x x +≤++,去括号,移项得:34264x x -≤+-,合并同类项得:4x -≤,解得:4x ≥-,①它的非正整数解为:-4,-3,-2,-1,0.【点睛】本题主要考查解一元一次不等式,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.41.(1)14+(2)x >2,见解析. 【分析】根据负整数指数幂的性质、特殊角的三角函数值、二次根式化简以及零指数幂的性质依次计算后,再根据实数的运算法则求得计算结果即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】(1)原式=14﹣2×12+1=14﹣ =14 (2)()295131x x x x --⎧⎪⎨->+⎪⎩①② 解不等式①得:x≥﹣3,解不等式①得:x >2,则不等式组的解集为x >2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.42.(1)(2)(3)(4)【详解】试题分析:将上述不等式的解集规范的表示在数轴上即可.试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点睛:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”.43.11x x +-,13【分析】先利用分式的加减乘除混合运算法则进行化简,然后把不等式2192136x x -+-≤的最小整数解代入求值即可.【详解】解:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭ =()()()()()22111111x x x x x x x x x ⎡⎤+-+-⋅⎢⎥+--⎢⎥⎣⎦=2111x x x x x x+⎛⎫-⋅ ⎪--⎝⎭ =11x x x x+⋅-=11x x +-, 由不等式219236x x -+-≤1,得4x -2-9x -2≤6, ①x ≥-2,①使分式有意义的x 值是1x ≠±,0x ≠,且x 是不等式219236x x -+-≤1的最小整数解, ①x =-2,当x =-2时,原式=211213-+=--. 【点睛】此题主要考查分式的化简求值和解一元一次不等式,熟练掌握分式的混合运算法则和解一元一次不等式的步骤是解题关键.44.7x >-.在数轴上表示见解析【分析】先去括号,再移项,合并同类项,系数化为1,最后在数轴上表示出解集即可.【详解】解:去括号得:9324->-x x ,移项得:4329->-x x ,解得:7x >-.在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,解题关键是掌握不等式的性质.45.﹣1≤x <1【详解】试题分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.试题解析:解:1211123x x x -≤⎧⎪⎨+-+⎪⎩①<② 解①得:x ≥﹣1,解①得:x <1.在数轴上表示如下:则不等式组的解集是:﹣1≤x <1.46.(1)购买甲种消毒液每桶需30元,乙种消毒液每桶需20元(2)12【分析】(1) 设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,列方程组求解即可.(2) 设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,列出不等式求解即可.(1)设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,得341703250x y x y +=⎧⎨-=⎩, 解得3020x y =⎧⎨=⎩, 故购买甲种消毒液每桶需30元,乙种消毒液每桶需20元.(2)设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,得30x +20(21-x )≤540,解得x ≤12,①x 是正整数,①至多可购进甲种消毒液12桶.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,熟练掌握方程组的求解,不等式整数解的求解是解题的关键.47.(1)每件文化衫和每本相册的价格分别为35元,26元(2)共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【分析】(1)设每件文化衫和每本相册的价格分别为x 元,y 元,然后根据每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册列出方程求解即可; (2)设购买文化衫m 件,购买相册(50)m -本,然后根据拿出不少于270元但不超过300元的资金为老师买纪念品列出不等式组求解即可.(1)解:设每件文化衫和每本相册的价格分别为x 元,y 元,由题意得:925200x y x y -=⎧⎨+=⎩, 解得3526x y =⎧⎨=⎩, 答:每件文化衫和每本相册的价格分别为35元,26元;(2)解:设购买文化衫m 件,购买相册(50)m -本,由题意得,180********(50)1800270m m -≤+-≤-, 解得25222599m ≤≤,且m 为整数, ①共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.答:共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,解题的关键在于正确理解题意.48.32x -≤<【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【详解】4713112x x x -<⎧⎪⎨+≥-⎪⎩①② 由①得2x <,。
专题07不等式与不等式组-三年(2020-2022)中考数学真题分项汇编(原卷版)

专题07 不等式与不等式组一、单选题1.(2022·辽宁大连)不等式432x x <+的解集是( )A .2x >-B .2x <-C .2x >D .2x <2.(2022·广东深圳)一元一次不等式组102x x -≥⎧⎨<⎩的解集为( ) A . B .C .D .3.(2022·广西桂林)把不等式x ﹣1<2的解集在数轴上表示出来,正确的是( )A .B .C .D .4.(2022·浙江杭州)已知a ,b ,c ,d 是实数,若a b >,c d =,则( )A .a c b d +>+B .a b c d +>+C .a c b d +>-D .a b c d +>-5.(2022·江苏宿迁)如果x y <,那么下列不等式正确的是( )A .22x y <B .22x y -<-C .11x y ->-D .11x y +>+6.(2021·广西河池)一个关于x 的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )A .x >1B .x ≥1C .x >3D .x ≥37.(2020·湖南株洲)下列哪个数是不等式2(1)30x -+<的一个解?( )A .3B .12-C .13D .28.(2022·广西河池)如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是( )A .102m -<<B .12m >-C .0m <D .12m <- 9.(2022·山东临沂)满足1m 的整数m 的值可能是( )A .3B .2C .1D .010.(2021·贵州遵义)小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x 支签字笔,则下列不等关系正确的是( ) A .5×2+2x ≥30 B .5×2+2x ≤30 C .2×2+2x ≥30 D .2×2+5x ≤3011.(2021·内蒙古呼和浩特)已知关于x 的不等式组2311142x x a --≥⎧⎪⎨--≥⎪⎩无实数解,则a 的取值范围是( ) A .52a ≥- B .2a ≥- C .52a >- D .2a >-12.(2021·内蒙古)定义新运算“⊗”,规定:2a b a b ⊗=-.若关于x 的不等式3x m ⊗>的解集为1x >-,则m 的值是( )A .1-B .2-C .1D .213.(2021·山东聊城)若﹣3<a ≤3,则关于x 的方程x +a =2解的取值范围为( )A .﹣1≤x <5B .﹣1<x ≤1C .﹣1≤x <1D .﹣1<x ≤514.(2020·四川眉山)不等式组121452(1)x x x x +≥-⎧⎨+>+⎩的整数解有( ) A .1个 B .2个 C .3个 D .4个15.(2020·四川宜宾)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( )A .2种B .3种C .4种D .5种16.(2020·广东)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A .无解 B .1x ≤ C .1x ≥- D .11x -≤≤17.(2020·四川广元)关于x 的不等式0721x m x ->⎧⎨->⎩的整数解只有4个,则m 的取值范围是( ) A .21m -<≤-B .21m -≤≤-C .21m -≤<-D .32m -<≤-18.(2020·重庆)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元.小明买了7支签字笔,他最多还可以买的作业本个数为( )A .5B .4C .3D .219.(2022·河北)平面内,将长分别为1,5,1,1,d 的线段,顺次首尾相接组成凸五边形(如图),则d 可能是( )A .1B .2C .7D .820.(2020·广西)不等式组1051x x ->⎧⎨-≥⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个21.(2020·辽宁辽宁)不等式组31231x x +>⎧⎨-≤⎩的整数解的个数是( ) A .2 B . 3 C .4 D .522.(2020·辽宁朝阳)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( )A .8B .6C .7D .923.(2020·甘肃天水)若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<- B .74a -≤≤- C .74a -≤<- D .74a -<≤-24.(2020·山东潍坊)若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解,则a 的取值范围是( ) A .02a ≤≤ B .02a ≤< C .02a <≤ D .02a <<25.(2020·山东德州)若关于x 的不等式组2242332x x x x a--⎧>⎪⎨⎪->--⎩的解集是2x <,则a 的取值范围是( ) A .2a ≥ B .2a <- C .2a > D .2a ≤26.(2021·重庆)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( ) A .5- B .4- C .3- D .2-27.(2020·云南)若整数a 使关于x 的不等式组1112341x x x a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为( ) A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-二、填空题 28.(2022·辽宁营口)不等式组24691x x +>⎧⎨->⎩的解集为____________. 29.(2022·安徽)不等式312x -≥的解集为________. 30.(2021·四川宜宾)不等式2x ﹣1>1的解集是______.31.(2021·湖南益阳)已知x 满足不等式组120x x >-⎧⎨-≤⎩,写出一个符合条件的x 的值________. 32.(2021·甘肃武威)关于x 的不等式11132x ->的解集是___________. 33.(2021·上海)不等式2120x -<的解集是_______.34.(2020·辽宁鞍山)不等式组21321x x -≤⎧⎨-<⎩的解集为________. 35.(2020·广西)如图,数轴上所表示的x 的取值范围为_____.36.(2022·山东聊城)不等式组62312x x x x -≤-⎧⎪⎨->⎪⎩的解集是______________. 37.(2022·贵州铜仁)不等式组2610x x -≤⎧⎨+<⎩的解集是________. 38.(2022·黑龙江哈尔滨)不等式组340,421x x +≥⎧⎨-<-⎩的解集是___________. 39.(2022·黑龙江绥化)不等式组360x x m ->⎧⎨>⎩的解集为2x >,则m 的取值范围为_______.40.(2021·黑龙江哈尔滨)不等式组372510x x -<⎧⎨-≤⎩的解集是________. 41.(2021·四川泸州)关于x 的不等式组23023x x a 恰好有2个整数解,则实数a 的取值范围是_________.42.(2020·宁夏)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.43.(2020·黑龙江鹤岗)若关于x 的一元一次不等式组1020x x a ->⎧⎨->⎩的解是1x >,则a 的取值范围是_______. 44.(2020·黑龙江黑龙江)若关于x 的一元一次不等式组1020x x a ->⎧⎨-<⎩有2个整数解,则a 的取值范围是______. 45.(2020·四川攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门票反而合算.46.(2022·青海)不等式组24063x x +≥⎧⎨->⎩的所有整数解的和为______. 47.(2022·黑龙江)若关于x 的一元一次不等式组2130x x a -⎧⎨-<⎩<的解集为2x <,则a 的取值范围是________. 48.(2021·湖南常德)刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有_________个.49.(2021·贵州黔东南)不等式组()5231131722x x x x ⎧+>-⎪⎨-≤-⎪⎩的解集是__________. 50.(2021·黑龙江大庆)三个数3,1,12a a --在数轴上从左到右依次排列,且以这三个数为边长能构成三角形,则a 的取值范围为______51.(2021·四川遂宁)已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____. 52.(2020·四川绵阳)若不等式52x +>﹣x ﹣72的解都能使不等式(m ﹣6)x <2m +1成立,则实数m 的取值范围是_______.三、解答题53.(2022·浙江湖州)解一元一次不等式组2212x x x +⎧⎨+⎩<①<②54.(2020·广东广州)解不等式组:212541x x x x -+⎧⎨+<-⎩.55.(2022·青海西宁)解不等式组:()324211x x x x ⎧--≥⎨+<-⎩并写出该不等式组的最大整数解.56.(2022·江苏盐城)解不等式组:()212,12142x x x x +≥+⎧⎪⎨-<+⎪⎩.57.(2022·山东烟台)求不等式组13(1)2(1)x x ⎨+-<+⎩的解集,并把它的解集表示在数轴上.58.(2022·北京)解不等式组:274,4.2x x x x +>-⎧⎪⎨+<⎪⎩59.(2022·湖北武汉)解不等式组2532x x x -≥-⎧⎨<+⎩①②请按下列步骤完成解答. (1)解不等式①,得_________;(2)解不等式①,得_________;(3)把不等式①和①的解集在数轴上表示出来:(4)原不等式组的解集是_________.60.(2021·山东济南)解不等式组:3(1)25,32,2x x x x -≥-⎧⎪⎨+<⎪⎩①②并写出它的所有整数解.61.(2021·湖北武汉)解不等式组4101x x ⎨+>+⎩②请按下列步骤完成解答. (1)解不等式①,得_____________;(2)解不等式①,得_____________;(3)把不等式①和①的解集在数轴上表示出来;(4)原不等式组的解集是_____________.62.(2022·广西河池)为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n ,总费用为w 元,求w 关于n 的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?63.(2022·湖南郴州)为响应乡村振兴号召,在外地创业成功的大学毕业生小姣毅然返乡当起了新农人,创办了果蔬生态种植基地.最近,为给基地蔬菜施肥,她准备购买甲、乙两种有机肥.已知甲种有机肥每吨的价格比乙种有机肥每吨的价格多100元,购买2吨甲种有机肥和1吨乙种有机肥共需1700元.(1)甲、乙两种有机肥每吨各多少元?(2)若小姣准备购买甲、乙两种有机肥共10吨,且总费用不能超过5600元,则小姣最多..能购买甲种有机肥多少吨?64.(2022·黑龙江哈尔滨)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A 种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?65.(2022·广西梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg,在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w 元,请写出w与a的函数关系式.66.(2022·黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B 种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?67.(2022·广西玉林)我市某乡村振兴果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨:因龙眼大量上市,价格下跌,第二次购买龙眼的价格为0.3万元/吨,两次购买龙眼共用了7万元.(1)求两次购买龙眼各是多少吨?(2)公司把两次购买的龙眼加工成桂圆肉和龙眼千,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?68.(2022·河南)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.69.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售.优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?70.(2021·山东德州)某公司分别在A ,B 两城生产同种产品,共100件.A 城生产产品的成本y (万元)与产品数量x (件)之间具有函数关系220100y x x =++,B 城生产产品的每件成本为60万元.(1)当A 城生产多少件产品时,A ,B 两城生产这批产品成本的和最小,最小值是多少?(2)从A 城把该产品运往C ,D 两地的费用分别为1万元/件和3万元/件;从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元/件.C 地需要90件,D 地需要10件,在(1)的条件下,怎样调运可使A ,B 两城运费的和最小?71.(2021·广西贵港)某公司需将一批材料运往工厂,计划租用甲、乙两种型号的货车,在每辆货车都满载的情况下,若租用30辆甲型货车和50辆乙型货车可装1500箱材料;若租用20辆甲型货车和60辆乙型货车可装载1400箱材料.(1)甲、乙两种型号的货车每辆分别可装载多少箱材料?(2)经初步估算,公司要运往工厂的这批材料不超过1245箱,计划租用甲、乙两种型号的货车共70辆,且乙型货车的数量不超过甲型货车数量的3倍,该公司一次性将这批材料运往工厂共有哪几种租车方案?72.(2021·黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种),请直接写出再次购买农机具的方案有哪几种?73.(2021·黑龙江黑龙江)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购进甲、乙两种农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具m件,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的资金最少,最少资金是多少?74.(2021·江苏盐城)为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:该地区每周接种疫苗人数统计表该地区全民接种疫苗情况扇形统计图根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为66y x=-),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为________万人:该地区的总人口约为________万人;(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.①估计第9周的接种人数约为________万人;①专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少(0)a a>万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 1.8a=,那么该地区的建议接种人群最早将于第几周全部完成接种?75.(2020·湖北荆州)先化简,再求值2211121aa a a-⎛⎫-÷⎪++⎝⎭:其中a是不等式组22213a aa a-≥-⎧⎨-<+⎩①②的最小整数解;76.(2020·黑龙江牡丹江)某商场准备购进A、B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40 000元购进A型号电脑的数量与用30 000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2 500元,每台B型号电脑售价为1 800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36 000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.77.(2020·甘肃天水)天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.78.(2022·重庆)对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:①247(247)2471319÷++=÷=,①247是13的“和倍数”.又如:①214(214)2147304÷++=÷=,①214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a b c >>.在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为()F A ,最小的两位数记为()G A ,若()()16F AG A +为整数,求出满足条件的所有数A .79.(2021·贵州铜仁)某快递公司为了提高工作效率,计划购买A、B两种型号的机器人来搬运货物,已知每台A型机器人比每台B型机器人每天多搬运20吨,并且3台A型机器人和2台B型机器人每天共搬运货物460吨.(1)求每台A型机器人和每台B型机器人每天分别微运货物多少吨?(2)每台A型机器人售价3万元,每台B型机器人售价2万元,该公司计划采购A、B两种型号的机器人共20台,必须满足每天搬运的货物不低于1800吨,请根据以上要求,求出A、B两种机器人分别采购多少台时,所需费用最低﹖最低费用是多少?。
2022中考模拟数学试题汇编不等式

2022中考模拟数学试题汇编不等式不等式一、选择题012341.(2022年杭州月考)不等式组轴上可表示为()A.某2≥13某18的解集在数1234B.01234C.0D.1234答案:D2.(2022年武汉市中考拟)下图是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是()乙40kg甲丙50kg图240CA405040B50甲5040D50答案:C3.(2022年黑龙江一模)若不等式组535353某0某m0有实数解,则实数m的取值范围是()53A.m≤B.m<C.m>53D.m≥第4题图答案:A4.(2022年济宁师专附中一模)下列不等式组的解集,在数轴上表示为如图所示的是()A.某10某20B.某10某20C.某10某20D.某10某20答案:C5.(2022年浙江永嘉)不等式组2某20某≥1的解在数轴上表示为()-2-10123-2-10123-2-10123-2-10123AB.C.答案:D6.(2022年铁岭加速度辅导学校)在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米答案:D7.(2022年福建模拟)关于某的不等式2某a2的解集如图所示,那么a的值是()A.-4B.-2C.0D.B.76厘米C.86厘米D.96厘米D.2答案:C8.(2022年广州中考数学模拟试题(四))不等式组某0某1的解集的情况为()A.-19.(2022年河南省南阳市中考模拟数学试题)把不等式组正确的是()某20某20的解集表示在数轴上,-202-202-202-202A答案:D二、填空题BCD某-1≤1,1.(2022年江西南昌一模)解不等式组2并写出不等式组的正整数解.某-2<4(某+1),答案:-23.(2022年中考模拟2)已知关于某的方程____________.答案:m6或m44.(2022年铁岭加速度辅导学校)不等式组答案:2某35.(2022年山东宁阳一模)关于某的不等式组某m1某m22某15某11的整数解为2某m某23的解是正数,则m的取值范围为2某4某30的解集是.的解集为某1,则m=________.答案:31某106.(2022年山东菏泽全真模拟1)不等式组2的解为.1某07+某≤3某,某-3<2答案:-2<某<17.(2022年吉林中考模拟题)不等式组的解集为.答案:72≤某52某某a18.(2022年河南中考模拟题2)不等式组(a+1)(b-1)=_________.答案:-6三、解答题的解集为-1<某<1,那么2b312某151.(2022年厦门湖里模拟)解不等式组3某21某22答案:由①得:12某252某2某1由②得:3某22某1某3∴原不等式组的解集为:1某32.(2022年河南模拟)某装修公司为某新建小区的A、B两户型(共300套)装修地板。
2022年中考数学一轮复习:方程与不等式 综合练习题

2022中考数学一轮复习:方程与不等式综合练习题一、单选题1.以x =-3为解的方程是( ) A .3x -7=2B .5x -2=-xC .6x +8=-26D .x +7=4x +162.从﹣3,﹣1,1,3,6这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组 1(27)330x x a ⎧+≥⎪⎨⎪-<⎩无解,且使关于x 的分式方程 2133x a x x --=---有整数解,那么这5个数中所有满足条件的a 的值之和是( ) A .﹣2B .﹣3C .-23D .123.若不等式组5231x ax x >⎧⎨+<+⎩的解集为x >4,则a 的取值范围是( )A .a >4B .a <4C .a ≤4D .a ≥44.一元二次方程210x x --=和22650x x +=-这两个方程的所有实数根之和为( ) A .4B .4-C .6D .15.若关于x 的一元二次方程2230kx x --=有实数根,则字母k 的取值范围是( ) A .12k -B .12k -且0k ≠C .13k -D .13k -且0k ≠6.如图,有四个大小相同的小长方形和两个大小相同的大长方形按如图位置摆放,按照图中所示尺寸,则小长方形的长与宽的差是( )A .3b ﹣2aB .2a b- C .3a b- D .34a b -7.有一根40cm 的金属棒,欲将其截成x 根7cm 的小段和y 根9cm 的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( ) A .1x =,3y =B .4x =,1y =C .3x =,2y =D .2x =,3y =8.要使关于x 的一元二次方程2210ax x +-=有两个实数根,且使关于x 的分式方程2244x a x x++=--的解为非负数的所有整数a 的个数为( )9.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( ) A .9天B .11天C .13天D .22天10.已知非负数 x ,y ,z 满足325234x y z -++==,设 W = 3x -2y + z ,则 W 的最大值与最小值的和为( ) A .-2 B .-3C .-4D .-6二、填空题11.设,m n 分别为一元二次方程2220220x x +-=的两个实数根,则23m m n ++=____. 12.已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.13.2020年春节,在党和政府的领导下,我国进行了一场抗击“新型冠状病毒感染的肺炎疫情”的战斗.为了控制疫情的蔓延,黄冈稳健卫生材料厂接到上级下达赶制一批加工防病毒口罩的任务,原计划每天完成1.2万只,为使口罩早日到达防疫第一线,实际每天比原计划多加工0.4万只,结果提前4天完成任务.则该厂原计划_____天完成任务,这批防病毒口罩共_____万只.14.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如()32x x x x px q =⋅=-=,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,且x >0,则4323x x x -+的值为______.15.在数的学习中,我们会对其中一些具有某种特质的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究一种特殊的数——巧数.定义:若一个两位数恰等于它的各位数字之和的4倍,则这个两位数称为巧数.若一个巧数的个位数字比十位数字大3,则这个巧数是_______________. 三、解答题16.已知关于x 的方程2x 2﹣kx +2=0的一个解与方程211x x+-=4的解相同. (1)求k 的值;(2)求方程2x 2﹣kx +2=0的另一个解.17.用适当的方法解方程:①2x+-=(23)250②2670x x++=(用配方法解)③2+=.314x x④22-=-.2(3)9x x18.现有甲、乙两个瓷器店,出售茶壶和茶杯,茶壶每只价格20元,茶杯每只5元,已知甲店制定的优惠方法是:买一只茶壶送一只茶杯,乙店为总价的90%付款,现某单位需购买茶壶10只,茶杯若干只(不少于10只):(1)当购买茶杯多少时,两种优惠方法一样?(2)当购买40只茶杯时,请聪明的你去办这件事,你打算怎样购买更省钱?请通过计算说明理由.19.宁波桌童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,若每件童装降价,2元,则平均可多售出4件.设每件童裴降价x元;(1)每天可销售___件,每件盈利___元;(用含x的代数式表示)(2)求每件童装降价多少元时,平均每天可赢利1200元.(3)若店长希望平均每天能赢利2000元,这个愿望能实现吗?请说明理由.20.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么买件衬衫应降价多少元?21.已知x=﹣3是关于x的方程(k+3)x+2=3x﹣2k的解.(1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?22.如果方程x 2+px+q=0有两个实数根x 1, x 2,那么x 1+x 2=﹣p ,x 1x 2=q ,请根据以上结论,解决下列问题:(1)已知a 、b 是方程x 2+15x+5=0的二根,则a bb a+=?(2)已知a 、b 、c 满足a+b+c=0,abc=16,求正数c 的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩是关于x ,y的方程组201x y k x y ⎧-+=⎨-=⎩的两个不相等的实数解.问:是否存在实数k ,使得y 1y 2﹣1221x x x x -=2若存在,求出的k 值,若不存在,请说明理由.23.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 = 销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案1.D 2.A 3.C 4.D 5.D 6.B 7.C 8.B 9.B 10.D 11.2020 12.1518m ≤< 13.16 19.214.15.36 16. (1)解方程211x x+-=4, 得x =12.经检验x =12是原方程的解. 把x =12代入方程2x 2﹣kx +2=0, 得12﹣12k +2=0, 解得k =5;(2)当k =5时,方程为2x 2﹣5x +2=0. 由根与系数关系得方程另一个解为51222x =-=. 17解:①()()2352350x x +++-=,2350x ++=或2350x +-=,所以14x =-,21x =; ②2692x x ++=, 2(3)2x +=,3x +=所以13=-x 23x =- ③23410x x -+=,()()3110x x --=,310x -=或10x -=, 所以113x =,21x =;④()()22(3)330x x x --+-=,()()32630x x x ----=,30x -=或2630x x ---=,所以13x =,29x =. 18.解:(1)设购买x 只茶杯时,两店的优惠方法付款一样多, 根据题意得:90%(20×10+5x )=20×10+5(x −10), 解得:x =60,答:购买60只茶杯时,两店的优惠方法付款一样多.(2)在甲店购买10只茶壶,在乙店购买30只茶杯费用最少.理由如下: 因为需要购买40只茶杯时,在甲店需付款20×10+5×(40−10)=350(元); 在乙店需付款90%×(20×10+5×40)=360(元);在甲店购买10只茶壶,送10只茶杯,在乙店购买30只茶杯,需付款20×10+90%×5×(40−10)=335元; ∵335<350<360,∴在甲店购买10只茶壶,在乙店购买30只茶杯费用最少.19.解:(1)设每件童装降价x元时,每天可销售(20+2x)件,每件盈利(40-x)元,故答案为:(20+2x),(40-x);(2)根据题意,得:(20+2x)(40-x)=1200,解得:x1=20,x2=10,∵要扩大销售量,∴x=20,答:每件童装降价20元,平均每天赢利1200元;(3)不能,理由如下:(20+2x)(40-x)=2000,整理,得:x2-30x+600=0,∵Δ=(-30)2-4×600=-1500<0,∴此方程无实数根,故不可能做到平均每天盈利2000元.20.解:设每件衬衫应降价x元,由题意得:(40-x)(20+2x)=1200,即2x2-60x+400=0,∴x2-30x+200=0,∴(x-10)(x-20)=0,解得:x=10或x=20,为了减少库存,所以x=20.故每件衬衫应降价20元.21.(1)把x=﹣3代入方程(k+3)x+2=3x﹣2k得:﹣3(k+3)+2=﹣9﹣2k,解得:k=2;故k=2;(2)当C在线段AB上时,如图,当k =2时,BC =2AC ,AB =6cm , ∴AC =2cm ,BC =4cm , ∵D 为AC 的中点, ∴CD =12AC =1cm .即线段CD 的长为1cm ;(3)在(2)的条件下,∵点A 所表示的数为﹣2,AD =CD =1,AB =6, ∴D 点表示的数为﹣1,B 点表示的数为4.设经过x 秒时,有PD =2QD ,则此时P 与Q 在数轴上表示的数分别是﹣2﹣2x ,4﹣4x . 分两种情况:①当点D 在PQ 之间时, ∵PD =2QD ,∴()()1222441x x ⎡⎤---=---⎣⎦,解得x =910②当点Q 在PD 之间时, ∵PD =2QD ,∴()()1222144x x ⎡⎤----=---⎣⎦,解得x =116. 答:当时间为910或116秒时,有PD =2QD . 22.(1)∵a 、b 是方程x 2+15x+5=0的二根, ∴a+b=﹣15,ab=5,∴a b b a +=()22a b ab ab +-=()215255--⨯=43, 故答案是:43;(2)∵a+b+c=0,abc=16,∴a+b=﹣c ,ab=16c, ∴a 、b 是方程x 2+cx+16c=0的解,∴c 2﹣4•16c ≥0,c 2﹣34c≥0,∵c 是正数,∴c 3﹣43≥0,c 3≥43 , c≥4, ∴正数c 的最小值是4. (3)存在,当k=﹣2时,1212212x x y y x x --= . 由x 2﹣y+k=0变形得:y=x 2+k ,由x ﹣y=1变形得:y=x ﹣1,把y=x ﹣1代入y=x 2+k ,并整理得:x 2﹣x+k+1=0, 由题意思可知,x 1 , x 2是方程x 2﹣x+k+1=0的两个不相等的实数根,故有:()()()()()()()212112121221212121212211214101112112k x x x x k y y x x x x x x x x y y x x x x x x =⎧--+>⎪+⎪⎪=+⎪⎪=--⎨⎪+-⎪--=---=⎪⎪⎪⎩即:23420k k k ⎧<-⎪⎨⎪+=⎩ 解得:k=﹣2. 23.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:3518004103100x y x y +=⎧⎨+=⎩,解得:250210x y =⎧⎨=⎩,答:A 、B 两种型号电风扇的销售单价分别为250元、210元. (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台. 依题意得:200a+170(30-a )≤5400,解得:a≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元; (3)依题意有:(250-200)a+(210-170)(30-a )=1400, 解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.。
2020年贵州省中考数学《不等式与不等式组》练习题 (10)

2020年贵州省中考数学《不等式与不等式组》练习题1.设a<b<0,那么下列式子中错误的是()
A.a2>b2B.ab>0C.a2<ab D.1﹣2a>1﹣2b 【分析】根据不等式的性质逐一判断即可.
【解答】解:∵a<b<0,
∴a2>b2,正确,故选项A不合题意;
ab>0,正确,故选项B不合题意;
a2>ab,故选项C符合题意;
1﹣2a>1﹣2b,正确,选项D不合题意.
故选:C.
【点评】此题主要考查了不等式的基本性质,不等式的基本性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
1。
专题18不等式与方程综合题-2023年北京中考真题模拟题分类汇编

专题18 不等式与方程综合题一.解答题(共35小题)1.(2022•北京)解不等式组:274,42x xxx+>-⎧⎪⎨+<⋅⎪⎩.【答案】见解析【详解】由274x x+>-,得:1x>,由42xx+<,得:4x<,则不等式组的解集为14x<<.2.(2021•北京)解不等式组:451342x xxx->+⎧⎪⎨-<⎪⎩.【答案】见解析【详解】解不等式451x x->+,得:2x>,解不等式342xx-<,得:4x<,则不等式组的解集为24x<<.3.(2020•北京)解不等式组:532, 2132 x xx x->⎧⎪-⎨<⋅⎪⎩【答案】见解析【详解】解不等式532x x->,得:1x>,解不等式2132x x-<,得:2x<,则不等式组的解集为12x<<.4.(2019•北京)解不等式组:4(1)273x xxx-<+⎧⎪+⎨>⎪⎩【答案】见解析【详解】()41273x xxx⎧-<+⎪⎨+>⎪⎩①②,解①得:2x<,解②得72x<,则不等式组的解集为2x<.5.(2018•北京)解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩ 【答案】见解析【详解】()311922x x x x +>-⎧⎪⎨+>⎪⎩①② 解不等式①得:2x >-,解不等式②得:3x <,∴不等式组的解集为23x -<<.6.(2022•海淀区一模)解不等式组:4(1)3532x x x x -<⎧⎪⎨+>⎪⎩. 【答案】见解析【详解】解不等式4(1)3x x -<,得:4x <, 解不等式532x x +>,得:1x >-, 则不等式组的解集为14x -<<.7.(2022•朝阳区一模)解不等式组:3(2)41213x x x x --⎧⎪+⎨-<⎪⎩. 【答案】见解析【详解】解不等式3(2)4x x --,得:1x , 解不等式1213x x +-<,得:4x <, 则不等式组的解集为1x .8.(2022•顺义区一模)解不等式组2(1)581252x x x x ++⎧⎪⎨--<⎪⎩,并写出它的所有整数解. 【答案】见解析【详解】()21581252x x x x ++⎧⎪⎨--<⎪⎩①②, 由①得:2x -,由②得:3x <,∴不等式组的解集为23x -<,则不等式组的整数解为2-,1-,0,1,2.9.(2022•通州区一模)解不等式组:311453x x x x ->+⎧⎪-⎨⎪⎩. 【答案】见解析 【详解】311453x x x x ->+⎧⎪⎨-⎪⎩①②, 由①得:1x >,由②得:5x ,则不等式组的解集为15x <.10.(2022•丰台区一模)解不等式组:3(1)21122x x x x -<+⎧⎪⎨-+⎪⎩. 【答案】见解析【详解】()3121122x x x x -<+⎧⎪⎨-+⎪⎩①②, 解不等式①,得:4x <,解不等式②,得:5x -,故原不等式组的解集是54x -<.11.(2022•房山区一模)解不等式组:21115x x x -⎧⎪+⎨<-⎪⎩. 【答案】见解析【详解】解不等式21x -,得:3x , 解不等式115x x +<-,得:32x >, 则不等式组的解集为332x <. 12.(2022•平谷区一模)解不等式组:22532x x x x +>⎧⎪⎨+⎪⎩. 【答案】见解析【详解】解不等式22x x +>,得:2x <, 解不等式532x x +,得:1x -,则不等式组的解集为12x -<.13.(2022•门头沟区一模)解不等式组:32123x x x x >-⎧⎪+⎨⎪⎩. 【答案】见解析【详解】由32x x >-,得:1x >-, 由123x x +,得:0.2x , 则不等式组的解集为10.2x -<.14.(2022•海淀区二模)解不等式组:5224123x x x x ->+⎧⎪-⎨>⎪⎩. 【答案】见解析 【详解】5224123x x x x ->+⎧⎪⎨->⎪⎩①②, 解①得:2x >,解②得:3x >,则不等式组的解集是:3x >.15.(2022•西城区二模)解不等式:52162x x -<+,并写出它的正整数解. 【答案】见解析【详解】去分母得:5236x x -<+,移项得:5362x x -<+,合并同类项得:28x <,系数化为1得:4x <.故正整数解为1,2,3.16.(2022•昌平区二模)解方程:32122x x x =---. 【答案】见解析【详解】方程两边都乘2x -,得322x x =--,解得:2x =-,检验:当2x =-时,分母20x -≠,所以2x =-是原方程的解,即原方程的解为2x =-.17.(2022•朝阳区二模)解分式方程:312242x x x -=--. 【答案】见解析【详解】两边同时乘以2(2)x -,去分母得:232x x -=-, 解得1x =,检验:把1x =代入2(2)x -,得20-≠,分式方程的解为1x =.18.(2022•朝阳区二模)解不等式1253x x --<,并写出它的所有非负整数解. 【答案】见解析【详解】去分母,得:31512x x -<-,移项,得:31512x x -<-,合并同类项,得:23x <,系数化为1,得:32x <, 该不等式的非负整数解为:0,1.19.(2022•丰台区二模)解不等式组:232,3212x x x x ->-⎧⎪⎨-<+⋅⎪⎩. 【答案】见解析 【详解】2323212x x x x ->-⎧⎪⎨-<+⎪⎩①② 解不等式①,得1x >,解不等式②,得4x <,∴不等式组的解集为14x <<.20.(2022•东城区一模)解不等式组:3122(1)1x x x -⎧<⎪⎨⎪+-⎩.【答案】见解析 【详解】()312211x x x -⎧<⎪⎨⎪+-⎩①②,解①得:5x <,解②得:3x -,所以不等式组的解集为:35x -<.21.(2022•东城区二模)解不等式6438x x --,并写出其正整数解.【答案】见解析【详解】移项得:4368x x ----,合并同类项得:714x --,系数化为1得:2x ,∴正整数解为1,2.22.(2022•顺义区二模)解不等式组:524113142x x x x +-⎧⎪⎨+->+⎪⎩. 【答案】见解析 【详解】524113142x x x x +-⎧⎪⎨+->+⎪⎩①②, 解不等式①得:3x -,解不等式②得:3x <.∴不等式组的解集为33x -<.23.(2022•门头沟区二模)解不等式1211232x x --,并把它的解集在数轴上表示出来.【答案】见解析【详解】去分母,得:3643x x --,移项,得:3463x x --,合并同类项,得:3x -,系数化成1得:3x -.则解集在数轴上表示出来为:.24.(2022•石景山区二模)解不等式组:5322632x x x x +>⎧⎪⎨-<-⎪⎩. 【答案】见解析 【详解】5322632x x x x +>⎧⎪⎨-<-⎪⎩①②, 解不等式①得:1x >-,解不等式②得:2x <.∴不等式组的解集为12x -<<.25.(2022•平谷区二模)解不等式组:53462x x x x +>⎧⎪⎨-⎪⎩. 【答案】见解析 【详解】53462x x x x +>⎧⎪⎨-⎪⎩①② 由①得:3x >-,由②得:2x ,故不等式组的解集为32x -<.26.(2022•房山区二模)解不等式组453(2)1023x x x x ->-⎧⎪+⎨>⎪⎩. 【答案】见解析【详解】()45321023x x x x ⎧->-⎪⎨+>⎪⎩①②, 由①得:1x >-,由②得:2x <,∴不等式组的解集是12x -<<.27.(2022•北京二模)解不等式组:3(2)51023x x x x -+⎧⎪+⎨>⎪⎩. 【答案】见解析【详解】()3251023x x x x ⎧-+⎪⎨+>⎪⎩①②解不等式①,得:14 x.解不等式②,得:2x<.∴原不等式组的解集为124x<.28.(2022•石景山区一模)解不等式组:3(1)1922x xxx+<-⎧⎪⎨+>⎪⎩,并写出它的最大整数解.【答案】见解析【详解】()311922x xxx+<-⎧⎪⎨+>⎪⎩①②,由①得:2x<-,由②得:3x<,∴不等式组的解集是2x<-,∴它的最大整数解是3-.29.(2022•密云区二模)解不等式组21211223x xx x x--+⎧⎪⎨-<+⎪⎩,并写出它的非负整数解.【答案】见解析【详解】解第一个不等式得:1x,解第二个不等式得:29 x>-,∴不等式组的解集是21 9x-<,∴非负整数解是:0,1.30.(2022•大兴区一模)解分式方程:31 2422xx x-=--.【答案】见解析【详解】去分母,得322x x-=-,整理,得35x=,解得53x=.经检验,53x=是原方程式的解.所以原方程式的解是53x=.31.(2022•西城区校级一模)解不等式组:315112x x x x -<+⎧⎪⎨-+⎪⎩ 【答案】见解析【详解】解不等式315x x -<+,得:3x <, 解不等式112x x -+,得:3x -, 则不等式组的解集为33x -<.32.(2022•东城区校级模拟)解不等式组2565213x x x x ++⎧⎪-⎨>-⎪⎩,并求它的整数解. 【答案】见解析【详解】解不等式256x x ++,得:1x , 解不等式5213x x ->-,得:12x >-, 则不等式组的解集为112x -<, 则不等式组的整数解为0、1.33.(2022•海淀区校级模拟)解不等式组:4(1)7324x x x x ++⎧⎪⎨+>⎪⎩. 【答案】见解析【详解】解不等式4(1)7x x ++,得:1x , 解不等式324x x +>,得:2x <, 则不等式组的解集为12x <.34.(2022•西城区校级模拟)解分式方程:33122x x x--=--. 【答案】见解析 【详解】原方程可化为:3(2)322x x x x ---=--, 即1322x x =--, 整理得:23(2)x x -=-,解得:2x =,检验:把2x =代入得:20x -=, ∴此方程无解.35.(2022•海淀区模拟)解不等式组:1251635341x xx x+-⎧>+⎪⎨⎪+-⎩,并写出其中的正整数解.【答案】见解析【详解】1251635341x xx x+-⎧>+⎪⎨⎪+-⎩①②,由①得:53x<,由②得:4x -,∴不等式组的解集为543x-<,则不等式组的正整数解为1.。
2024年广东省中考数学模拟题汇编:不等式与不等式组(附答案解析)

2024年广东省中考数学模拟题汇编:不等式与不等式组一.选择题(共10小题)1.我们把非负实数x“四舍五入”到个位的值记为<x>,也就是说当n为非负整数时,若n﹣0.5≤x<n+0.5则<x>=n.例如:<2.12>=2,<3.55>=4.若<0.5x﹣2>=5,则实数x的取值范围是()A.14<x≤16B.14≤x<16C.13<x≤15D.13≤x<152.如果关于x≥−16>+4有且只有5个整数解,且关于y的方程3y+6a=22﹣y的解为非负整数,则符合条件的所有整数a的和为()A.2B.3C.4D.53.若x+y□5是不等式,则符号“□”不能是()A.﹣B.≠C.>D.≤4.若关于x的不等式组2−1≥5<2−1的整数解共有四个,则a的取值范围是()A.3.5<a≤4B.3.5≤a<4C.3.5<a<4D.3.5≤a≤4 5.若a<b,则下列结论成立的是()A.a+2>b+2B.﹣2a<﹣2b C.3a>3b D.1﹣a>1﹣b6.若关于x K13≤3−恰有2个整数解,且关于x、y的方程组B+=43−=0也有整数解,则所有符合条件的整数m的和为()A.﹣18B.﹣6C.﹣3D.07.对于一个非整数的有理数x(x≠n+0.5,n为整数),我们规定:(x)表示不大于x的最大整数,[x]表示不小于x的最小整数,{x}表示最接近x的整数.例如,(3.14)=3,[3.14]=4,{3.14}=3.则使3(x)+2[x]+{x}=20成立的x的取值范围为()A.3<x<3.5B.3.5<x<4C.3<x<4且x≠3.5D.以上答案都不对8.小华拿26元钱购买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A.3×5+2x<26B.3x+2×5≤26C.3×5+2x≤26D.3x+2×5≥26 9.若关于x的不等式组2+1>++1≤6所有整数解的和为14,则关于整数a的值:甲答:a第1页(共20页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(2012滨州二模)不等式|x -5|-|x -1|>0的解集为 (A )(-∞,3) (B )(-∞,-3) (C )(3,+∞) (D )(-3,+∞)2、(2012德州二模)已知函数()|1||23|,f x x x =--+则f (x )≤1的x 的取值范围是 。
答案:(-∞,-3]⋃[-1,+∞) 解析:依题意,有|x -1|-|2x +3|≤1, ①当x≤-32时,原不等式化为:1-x +2x +3≤1,解得:x≤-3,所以x≤-3; ②当-32<x <1时,原不等式化为:1-x -2x -3≤1,解得:x≥-1,所以-1≤x <1; ③当x≥1时,原不等式化为:x -1-2x -3≤1,解得:x≥-5,所以x≥1; 综上可知:x 的取值范围是(-∞,-3]⋃[-1,+∞) 3、(2012德州一模)若直线100ax by (a,b (,))+-=∈+∞平分圆222220x y x y +---=,则12a b+的最小值是( )A .B .3+C .2D .54、(2012济南3月模拟)已知实数x ,y 满足|2x +y +1|≤|x +2y +2|,且11≤≤-y ,则z =2x +y 的最大值A. 6B. 5C. 4D. -3 【答案】B5、(2012济南三模)若全集U =R ,集合{235}A x x =+<,B ={3|log (2)x y x =+},则()UC AB =A .{}14≥-≤x x x 或B .{}14>-<x x x 或C .{}12>-<x x x 或D .{}12≥-≤x x x 或答案:D解析:因为}14{}532{<<-=<+=x x x x A ,}2}{02{})2(log {3->>+=+==x x x x x y x B ,所以}12{<<-=⋂x x B A ,所以}21{)(-≤≥=⋂x x x B A C U 或,选D.6、(2012莱芜3月模拟)若设变量x ,y 满足约束条件142x y x y y -≥-⎧⎪+≤⎨⎪≥⎩,则目标函数24z x y =+的最大值为(A)10(B)12(C)13(D) 14【答案】C【解析】7、(2012临沂3月模拟)实数y x ,满足⎪⎩⎪⎨⎧≤->≤≥,0),1(,1y x a a y x 若目标函数y x z +=取得最大值4,则实数a 的值为(A )4 (B )3 (C )2 (D )238、(2012临沂二模)设{}213A x x =-≤,{}0B x x a =->,若A B ⊆,则实数a 的取值范围是(A )()-∞,-1 (B )(1]-∞-, (C )(2)-∞-, (D )(2]-∞-, 【答案】A【解析】集合}21{}3123{≤≤-=≤-≤-=x x x x A ,而}{a x x B >=,因为A B ⊆,所以1-<a ,选A.9、(2012青岛二模)设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1y z x +=的最小值为 .答案:1【解析】画出可行域得()2,1点为选用目标,所以()111(1)1.020y y z x x --+--====-- 10、(2012青岛3月模拟)已知0,0a b >>,且24a b +=,则1ab的最小值为 A.41 B.4 C.21D.2 答案:C【解析】142114424a b ab ab ab b a +===+≥2,ab ≤11.2ab ≥ 11、(2012日照5月模拟)在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200x y s y x y x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变化范围是.12、(2012泰安一模)函数()(a x y a 13log -+=>0,且)1≠a 的图象恒过定点A ,若点A 在直线01=++ny mx 上(其中m ,n >0),则nm 21+的最小值等于 A.16B.12C.9D. 8【答案】D【解析】令13=+x ,得2-=x ,此时1-=y ,所以图象过定点A )1,2(--,点A 在直线1=++ny mx ,所以12=+--n m ,即12=+n m .8424442)(21=+≥++=++n m m n n m n m )(,当且仅当nmm n 4=,即m n 2=时取等号,此时21,41==n m ,选D.13、(2012烟台二模)已知函数()f x x 2,=-若a 0≠,且a,b R ∈,都有不等式()a b a b a f x ++-≥成立,则若实数x 的取值范围是___答案:[0,4]解析:因为|a +b |+|a -b |≥2|a |,依题意,得: |a |f (x )≤|a +b |+|a -b |恒成立,就有|a |f (x )≤2|a |,所以,f (x )≤2,画出f (x )=|x -2|的图象,如右图,当f (x )≤2,时有0≤x≤4。
14、(2012烟台二模)已知向量()(),1,2,,=-=+a x z b y z r r 且⊥a b r r ,若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,则z 的最大值为15、(2012滨州二模)设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数z =ax +by (a >0,b >0)的最大值为12,则32a b+的最小值为 (A )256 (B )83 (C )113(D )4答案:D解析:画出不等式组的可行域,如右图所示,目标函数变为:a z y xb b =-+,所直线ay x b=-及其平行线,由图可知,当直线经过点B 时,目标函数取得最大值,求得B 点坐标为(4,6),所以有4a +6b =12,即2a +3b =6,32a b+=1326()6a b⨯+=132194(23)()(12)66b a a b a b a b⨯++=++≥1(126+=4,所以,选D 。
16、(2012德州二模)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤≤14300aya x y x ,若11--=x y z 的最小值为41,17、(2012德州一模)已知在平面直角坐标系xOy 上的区域D 由不等式组501x y y x x +-≤⎧⎪≥⎨⎪≥⎩ 确定,若M(x,y )为区域D 上的动点,点A 的坐标为(2,3),则z OAO M =的最大值为( )A.5 B .10 C . 14 D .252答案:C解析:不等式组的可行域如图所示BCD 区域,z OA OM ==|OA||OM |cos AOM ∠=|cos AOM ∠=ON |,所以就是求|ON |的最大值,当点M 在D 点时,|ON |最大,D (1,4),OAODAD,cos ON AOD OD ∠===,所以,|ON |,因此最大ON |=14,故选C 。
18、(2012德州一模)不等式2313|x ||x |a a ++-≥-对任意实数x 恒成立,则实数a的取值范围是 .答案:[-1,4]解析:因为314|x ||x |++-≥,即31|x ||x |++-的最小值为4,原不等式写成:23a a -≤31|x ||x |++-,则23a a -小于或等于31|x ||x |++-的最小值,即: 23a a -≤4,解得14a -≤≤。
19、(2012临沂3月模拟)不等式312<+x 的解集为___________;20、(2012青岛二模)设x 、y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,则目标函数22z x y =+的最大值为 .【答案】52【解析】目标函数几何意义为区域内动点P到原点的距离的平方,做出图象如图,由图象可知当点P 在C 点时到原点的距离最大,由⎩⎨⎧=--=+-06302y x y x ,得⎩⎨⎧==64y x 此时C 点坐标为)6,4(,所以526422=+=z 。
【2012安徽省合肥市质检理】设102m <<,若1212km m +≥-恒成立,则k 的最大值为 ;【山东省微山一中2012届高三模拟理】5.若x ,y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =+的最大值是 ( )A .-3B .32 C . 2 D .3答案D解析:该题通过由约束条件11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,求目标函数2z x y =+的最大值简单考查线性规划求最优解问题;只要画出可行域即可看出最优解.【山东省潍坊市三县2012届高三模拟理】6.设0<b <a <1,则下列不等式成立的是( )A .ab <b2<1B .21log b <21log a <0 C .2b <2a <2 D .a2<ab <1【答案】C【解析】因为b <a <1,所以2b <2a <1,故选C.【山东省日照市2012届高三12月月考理】(11)如果不等式组⎪⎩⎪⎨⎧≥+-≥≥01,2,0y kx x y x 表示的平面区域是一个直角三角形,则该三角形的面积为(A )5121或(B )3121或(C )4151或(D )2141或【山东实验中学2012届高三第四次诊断性考试理】10. 设x 、y 满足约束条件,若目标函数(其中0,0a b >>)的最大值为3,则的最小值为()(A) . 3 (B) . 1 (C) .2 (D) . 4 【答案】A【解析】解:如图所示,线性规划区域为三角形ABC ,而目标函数的斜率为ak b =-<0,因此目标函数的最大值即为过点B (1,2)取得。
所以有a+2b=3,121121220,0,()()(2)(5)331(5)33a ba b a b a b a b b a a>>∴+=++=++≥+=(当且仅当a=b=1时,等号成立),故12a b +的最小值为3【山东省潍坊市三县2012届高三联考理】【2012唐山市高三模拟统一考试理】已知变量x,y满足约束条件10,310,10,y xy xy x+-≤⎧⎪--≤⎨⎪-+≥⎩则2z x y=+的最大值为。
【答案】2【解析】本题主要考查线性规划的最优解. 属于基础知识、基本运算的考查.实数x,y满足不等式组10,310,10,y xy xy x+-≤⎧⎪--≤⎨⎪-+≥⎩则可行域如图,作出2y x=-,平移,当直线通过A(1,0)时,2z x y=+的最小值是⒉.【2012年西安市高三年级第三次质检理】在平面直角坐标系xOy 上的区域D 由不等式组给定.若M(x ,y)为D 上的动点,点N 的坐标为(,1),则的最大值为. _______【答案】4【解析】本题主要线性规划可行域的概念、平面向量的数量积. 属于基础知识、基本运算的考查.2zOM ON x y =⋅=+【2012年西安市高三年级第四次质检理】不等式|x+1| + |x-1|<3的实数解为_______【答案】33(,)22-【解析】本题主要考查. 属于基础知识、基本运算的考查.法1 由绝对值的意义,|1|,|1|x x -+分别表示数轴上的点到1,-1的距离。