幂的运算整式乘法因式分解

合集下载

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

(完整版)第十四章--整式乘除及因式分解(知识点+题型分类练习),推荐文档

C. ﹣2(3x﹣1)=﹣6x﹣2
D. ﹣2(3x﹣1)=﹣6x+2
2.( 2015•济宁)化简 ﹣16( x﹣0.5)的结果是( )
A. ﹣16x﹣0.5
B. ﹣16x+0.5
C. 16x﹣8
3.(2016·佛山)化简 m n (m n) 的结果是( ).
D. ﹣16x+8
A. 0
B. 2m
C.0.2a2b 与﹣ a2b D.a2b3 与﹣a3b2
4.(2015•柳州)在下列单项式中,与 2xy 是同类项的是( )
A.2x2y2
B.3y
C.xy
D.4x
5.(2014•毕节)若 2 am b4 与 5 an2 b2mn 可以合并成一项,则 mm 的值是( )
A.2
B. 0
C.﹣1
D.1
C. x·x2= x4 C.(-x2)3=-x6 C.(a2)3=a6
D.(2x2)2=6x6 D.(x3)2=x5
D.a6÷a3=a2
8.下列运算正确的是 ( )
A. 3 = 3
9.下列计算正确的是 (
B. ( 1 ) 1 22
)
A.a3·a2=a6
B.a2+a4=2a2
10.下列计算正确的是( )
A. 6a-5a=1
B. a+2a2=3a3
) C.-(a-b)=-a+b
D.2(a+b)=2a+b
7.(2012•浙江)化简: 2(a 1) a _______ .
考点 3、根据题意列代数式
1.(2014•盐城)“x 的 2 倍与 5 的和”用代数式表示为

2.(2010·嘉兴)用代数式表示“a、b 两数的平方和”,结果为_______。

幂的运算整式乘法因式分解

幂的运算整式乘法因式分解

幂的运算、整式乘法、因式分解内容精要:1、公式同底数幂的乘法:n m n m aa a +=•(m 、n 都是整数) 幂的乘方:()mn n m a a =(m 、n 都是整数)积的乘方:()n n nb a ab =(m 、n 都是整数) 同底数幂的除法:()n m a aa a n m n m ,,0≠=÷-都是整数零指数幂:()010≠=a a 负整数指数幂:nn a a 1=-(0≠a ,n 是整数) 乘法公式:平方差公式:()()22b a b a b a -=-+完全平方式()2222b ab a b a +=± 2、运算法则⑴单项式乘以单项式的运算法则单项式乘以单项式,把他们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同他的指数最为积的一个因式。

【注意】单项式乘以单项式运算三步走①:系数相乘,包括符号;②同底数幂相乘运算;③指在一个单项式含有的字母及其指数的处理⑵单项式和多项式相乘的运算法则。

用单项式乘以多项式的每一项,在把所得的积相加,即()()c b a m mc mb ma c b a m ...++=++都是单项式。

(3)多项式和多项式相乘原则多项式和多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,在把所得的积相加。

即:()()d c b a +•+=()bd ad bc ac +++,特殊的二项式乘法公式:()()b x a x +•+=ab ax bx x +++2=()ab x b a x +++23、提取公因式公因式:多项式mc mb ma ++中的每一项都含有一个相同的公因式m ,我们称之为公因式。

对于公因式的定义,要注意两点:一是多项式的每一项都含有它;二是他是多项式的每一项的因式。

提取公因式:把公因式提取出来,多项式mc mb ma ++就可以分解成两个因式m 和a+b+c 的乘积,这种因式分解的方法叫做提公因式法。

整式、正整数幂的运算法则、因式分解

整式、正整数幂的运算法则、因式分解

初中数学讲义整式、正整数幂的运算法则;因式分解龚天勇一、知识目标:1、代数及字母表示数的意义:2、单项式、单项式的系数与次数:3、多项式、多项式的的项与次数::4、代数式与代数式的值:5、整式与分式、有理式。

整式:单项式与多项式统称整式;分式:如果A ,B 表示两个整式,并且B 中含有字母,那么式子 A/B 叫做分式。

分式和整式统称有理式。

6、同类项、合并同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.所有常数项都是同类项。

合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

7、正整数幂的运算性质:n m n m a a a +=∙,n m n m a a a -=÷; mn n m a a =)(,n nn ba b a =)(;n m m a a ab ∙=)( ① 零指数幂:a 0=1(a≠0)② 负整数指数幂:n n aa 1=-(a∈Z) ③ 分数指数幂:(m,n∈N +、m 、n 互质)⎪⎪⎩⎪⎪⎨⎧>=→≥=→-)0(1)0(a a a a a a n m n m n m n m 负分数指数幂正分数指数幂 8、去括号、添括号法则, 去括号或添括号,关键要看连接号。

括号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

乘除法去括号法则的依据实际是乘法分配律9、单项式、多项式相乘与除法10、乘法公式:222+=++()2a b a ab b33223+=+++a b a a b ab b()3333223a b a a b ab b-=-+-()33a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2) 11、十条规则(4)(a-b) (a-b)=0,a=b12、因式分解:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。

代数复习:幂的运算、整式乘法与因式分解

代数复习:幂的运算、整式乘法与因式分解

二.代数式的运算(一)整式的运算:●整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.整式的乘除●幂的运算1.概念:负数的奇数次幂是负数;负数的偶数次幂是正数2.运算:注意:1)底数a不能为0,若a为0,则除数为0,除法就没有意义了.2)只要底数不为0,则任何数的零次方都等于1●整式乘法:②单项式相乘:两个单项式相乘,把系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.③单项式与多项式相乘:单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加.用式子表达:④多项式与多项式相乘:一般地,多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.用式子表达:●因式分解:把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解.因式分解的两种基本方法:①提公因式法:②运用公式法:平方差公式:完全平方公式:十字相乘法: 探索:阅读理解。

(1)计算后填空:①(x+1)(x+2)=②(x+3)(x-1)=(2)归纳、猜想后填空:(x+a )(x+b )= +(_____)x+_____(3)运用(2)的猜想结论,直接写出计算结果:(x+2)(x+m )=_________(4)根据你的理解,把下列多项式因式分解:①x 2-5x+6=_________;②x 2-3x-10=_________第一部分:幂的运算例题:考点1.幂的运算法则例1. 计算(1)26()a a -⋅; (2) 32()()a b b a -⋅-; (3)12()n a +;(4)2232⎪⎭⎫ ⎝⎛-xy (5)53()a a -÷; (6)32(1)(1)a a +÷+ 变式 计算(1)35(2)(2)(2)b b b +⋅+⋅+ (2)3223()()x x -⋅-; (3)41n n a a ++÷;考点2.幂的法则的逆运算例2.(1)已知23m =,24n =,求2m n +的值; (2)比较55544433334,5,的大小(3)计算:2013201253()(2)135⨯ (4)已知323=+n m ,求n m 48⋅的值变式1.若n 为正整数,且72=n x ,求n n x x 2223)(4)3(-的值;2.已知4432=--c b a ,求4)161(84-⨯÷c b n 的值。

《整式的乘法与因式分解》(原卷版)

《整式的乘法与因式分解》(原卷版)

2022-2023学年人教版数学八年级上册章节考点精讲精练第14章《整式的乘法与因式分解》知识点01:幂的运算1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方: (为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方: (为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.m n ,m n ,n a m n ,m n 知识互联网知识导航5.零指数幂:即任何不等于零的数的零次方等于1.细节剖析:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点02:整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. 2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.细节剖析:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式. 5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加. 即:知识点03:乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.细节剖析:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相()010.a a =≠mc mb ma c b a m ++=++)(c b a m ,,,()()a b m n am an bm bn ++=+++()()()2x a x b x a b x ab ++=+++()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++22()()a b a b a b +-=-a b ,反项”的平方.2. 完全平方公式:;两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.细节剖析:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点04:因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等. 细节剖析:落实好方法的综合运用:首先提取公因式,然后考虑用公式; 两项平方或立方,三项完全或十字; 四项以上想分组,分组分得要合适; 几种方法反复试,最后须是连乘式; 因式分解要彻底,一次一次又一次.考点01:单项式乘多项式1.(2022秋•福州月考)若计算(3x 2+2ax +1)•(﹣3x )﹣4x 2的结果中不含有x 2项,则a 的值为( ) A .2B .0C .﹣D .﹣2.(2022秋•商水县月考)数学课上,老师讲了单项式乘多项式,放学回到家,李刚拿出课堂笔记复习,发现一道题:﹣4xy (3y ﹣2x ﹣3)=﹣12xy 2□+12xy ,□的地方被墨水弄污了,你认为□内应填写( ) A .+8x 2yB .﹣8x 2yC .+8xyD .﹣8xy 23.(2021秋•沐川县期末)已知A 是多项式,若A ×2xy =x 2y 2﹣2x 2y ﹣3xy 2,则A = .4.(2019秋•闵行区校级月考)今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:﹣3xy (4y ﹣2x ﹣1)=﹣12xy 2+6x 2y +□,□的地方被墨水弄污了,你认为□处应填写 .()2222a b a ab b +=++2222)(b ab a b a +-=-考点提优练5.(2021秋•廉江市期末)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.考点02:多项式乘多项式6.(2022秋•铁西区校级月考)若(x+3)(2x﹣m)=2x2+nx﹣15,则()A.m=﹣5,n=1 B.m=﹣5,n=﹣1 C.m=5,n=1 D.m=5,n=﹣17.(2022春•雁塔区校级期中)已知(x2+ax)(x2﹣2x+b)的乘积中不含x3和x2项,那么b﹣a=()A.﹣2 B.2 C.0 D.48.(2022春•温州期中)用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为a+b的长方形,需要B类卡片()张.A.3 B.4 C.5 D.69.(2022春•通川区期末)已知(x﹣m)(x2﹣2x+n)展开后得到多项式为x3﹣(m+2)x2+x+5,则n2+4m2的值为.10.(2022春•和平区校级月考)已知4x=10,25y=10,则(x﹣2)(y﹣2)+3(xy﹣1)的值为.11.(2022春•雅安期末)已知x≠1.观察下列等式:(1﹣x)(1+x)=1﹣x2;(1﹣x)(1+x+x2)=1﹣x3;(1﹣x)(1+x+x2+x3)=1﹣x4;…(1)猜想:(1﹣x)(1+x+x2+x3+…+x n﹣1)=;(2)应用:根据你的猜想请你计算下列式子的值:①(1﹣2)(1+2+22+23+24+25+26)=;②(x﹣1)(x2022+x2021+x2020+…+x2+x+1)=.(3)判断2100+299+298+…+22+2+1的值的个位数是几?并说明你的理由.12.(2022春•全椒县期末)数学课上,老师用图1中的一张边长为a的正方形纸片A,1张边长为b的正方形纸片B和2张宽与长分别为a与b的长方形纸片C,拼成了如图2所示的大正方形,观察图形并解答下列问题:(1)由图1和图2可以得到的等式为(用含a,b的等式表示);(2)莉莉想用这三种纸片拼出一个面积为(2a+b)(a+2b)的大长方形,求需A,B,C三种纸片各多少张;(3)如图3,S1,S2分别表示边长为p,q的正方形的面积,且A,B,C三点在一条直线上,S1+S2=20,p+q=6.求图中阴影部分的面积.考点03:同底数幂的除法13.(2022秋•渝中区校级月考)下列运算正确的是()A.(x3)2=x5B.3x2+2x2=5x4C.x8÷x2=x6D.(2xy)2=2x2y214.(2022秋•兰考县月考)下列运算不正确的是()A.a2•a3=a5B.a5÷a=a4C.a4﹣2a4=﹣a4D.(﹣a2)3=﹣a515.(2021秋•淮阳区期末)已知25a•52b=5b,4b÷4a=4,则代数式a2+b2值是.16.(2022春•东台市期中)已知a﹣2b﹣3c=2,则2a÷4b×的值是.17.(2021春•毕节市期中)(1)已知3×9m×27m=311,求m的值.(2)已知2a=3,4b=5,8c=5,求8a+c﹣2b的值.18.(2021春•海州区校级期中)尝试解决下列有关幂的问题:(1)若9×27x=317,求x的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若x=×25m+×5m+,y=×25m+5m+1,请比较x与y的大小.考点04:完全平方公式19.(2022春•北碚区校级期中)设a=x﹣2020,b=x﹣2022,c=x﹣2021,若a2+b2=56,则c2=()A.27 B.24 C.22 D.2020.(2022秋•工业园区校级月考)若A=x2+2x﹣6y,B=﹣y2+4x﹣11,则A、B的大小关系为()A.A>B B.A<B C.A≥B D.A=B21.(2022春•汉寿县期末)若x+y=3,xy=﹣5,则(x﹣y)2=.22.(2022春•莱西市期中)小淇将(2018x+2019)2展开后得到a1x2+b1x+c1;小尧将(2019x﹣2018)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值为.23.(2022春•招远市期末)利用我们学过的知识,可以导出下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(c﹣a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你检验这个等式的正确性;(2)若a=2020,b=2021,c=2022,你能很快求出a2+b2+c2﹣ab﹣bc﹣ac的值吗?考点05:完全平方公式的几何背景24.(2022春•碑林区校级期末)如图,正方形ABCD的边长为x,其中AI=5,JC=3,两个阴影部分都是正方形且面积和为60,则重叠部分FJDI的面积为()A.28 B.29 C.30 D.3125.(2022春•钱塘区期末)如图,边长为6的正方形ABCD中放置两个长和宽分别为a,b(a<6,b<6)的长方形,若长方形的周长为16,面积为15.75,则图中阴影部分面积S1+S2+S3=.26.(2022春•皇姑区校级期中)图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的边长等于;(2)观察图2写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系;(3)若mn=﹣3,m﹣n=5,则:①(m+n)2的值为;②m2+n2的值为;③m4+n4的值为.考点06:平方差公式27.(2022春•新城区校级期中)下列等式成立的是()A.(﹣x﹣1)(﹣x﹣1)=x2﹣2x+1B.(﹣x+1)(﹣x+1)=﹣x2﹣2x+1C.(1+x)(﹣x+1)=1﹣x2D.(﹣x+1)(﹣x﹣1)=﹣x2﹣128.(2021秋•望城区期末)如果一个正整数能表示为两个正整数的平方差,那么这个正整数就称为“智慧数”,例如:7=7×1=(4+3)×(4﹣3)=42﹣32,7就是一个智慧数,8=4×2=(3+1)×(3﹣1)=32﹣12,8也是一个智慧数,则下列各数不是智慧数的是()A.2021 B.2022 C.2023 D.202429.(2022春•铁岭期中)若a2﹣b2=﹣72,a﹣b=12,则a+b的值为.30.(2021秋•如皋市期中)小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+)×(1+)×(1+)×(1+)+=.31.(2022春•莲池区期末)阅读理解:我们知道,(a+b)2=a2+2ab+b2,①(a﹣b)2=a2﹣2ab+b2,②①﹣②得:(a+b)2﹣(a﹣b)2=4ab.所以.利用上面乘法公式的变形有时能简化计算,例如:.发现运用:根据阅读解答问题(1)利用上面乘法公式的变形填空:101×99=()2﹣()2.(2)利用上面乘法公式的变形计算:9.2×10.8.(3)根据平方差公式可得:(m+2)(m﹣2)=m2﹣22,请利用上面乘法公式的变形验证此等式成立.考点07:平方差公式的几何背景32.(2021秋•台江区期中)能够用如图中已有图形的面积说明的等式是()A.a(a+4)=a2+4a B.(a+4)(a﹣4)=a2﹣16C.(a+2)(a﹣2)=a2﹣4 D.(a+2) 2=a2+4a+433.(2020秋•丛台区期末)如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是.34.(2019秋•奈曼旗期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形(a>b),将剩下的阴影部分沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为.35.(2022春•潍坊期末)如图1,将边长为a的大正方形剪去一个边长为b的小正方形,然后将剩余部分拼成图2所示长方形.(1)上述操作能验证的等式是.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2﹣ab=a(a﹣b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2﹣4y2=18,x﹣2y=3,求x+2y.②计算:(1﹣)×(1﹣)×(1﹣)×……×(1﹣)×(1﹣).考点08:提公因式法与公式法的综合运用36.(2021春•滦州市期末)下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.x2y﹣y3=y(x+y)(x﹣y)37.(2012春•揭西县校级期中)下列各式:①4x2﹣y2;②2x4+8x3y+8x2y2;③a2+2ab﹣b2;④x2+xy﹣6y2;⑤x2+2x+3其中不能分解因式的有()A.1个B.2个C.3个D.4个38.(2022秋•岳麓区校级月考)把ab3﹣9ab分解因式的结果是.39.(2022•本溪模拟)把多项式ax2﹣4ay2分解因式的结果是.40.(2022春•江干区校级期中)(1)解方程组:.(2)因式分解①a2﹣6ab+9b2.②a2b﹣16b.考点09:因式分解-十字相乘法等41.(2022春•高新区校级期末)若多项式2x2+ax﹣6能分解成两个一次因式的积,且其中一个次因式2x﹣3,则a的值为()A.1 B.5 C.﹣1 D.﹣542.(2019秋•天心区校级月考)把多项式(x﹣y)2﹣2(x﹣y)﹣8分解因式,正确的结果是()A.(x﹣y+4)(x﹣y+2)B.(x﹣y﹣4)(x﹣y﹣2)C.(x﹣y﹣4)(x﹣y+2)D.(x﹣y+4)(x﹣y﹣2)43.(2022春•酒泉期末)阅读与思考:整式乘法与因式分解是方向相反的变形.由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题:(1)分解因式:x2+7x+12=;(2)分解因式:(x2﹣3)2+(x2﹣3)﹣2;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能的值是.44.(2021秋•顺城区期末)因式分解:(1)(a﹣b)2+4ab;(2)(m﹣4)(m+1)+3m.45.(2020秋•沂南县期末)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay,x2+2xy+y2﹣1分组分解法:解:原式=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)解:原式=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7.。

整式乘除与因式分解讲义

整式乘除与因式分解讲义

第八章 整式乘除与因式分解【知识点1】幂的运算1.同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

如:532)()()(b a b a b a +=+∙+同底数幂的乘法法则可以逆用:即nm nm p a a a a ∙==+ 如:⎪⎩⎪⎨⎧⋅=⋅=⋅==+++434352526617x x x x x x x x x x 可以根据已知条件,对原来的指数进行适当地“分解”。

2.幂的乘方法则:mn n m a a =)((n m ,都是正整数) 幂的乘方,底数不变,指数相乘。

如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn p a a a a )()(=== 如:23326)4()4(4== 3.积的乘方法则:nn b a ab =)((n 是正整数)。

积的乘方,等于各因数乘方的积。

如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙- 积的乘方法则可以逆用:即 ()()⎪⎪⎩⎪⎪⎨⎧-=⎩⎨⎧-=-=⎥⎦⎤⎢⎣⎡-⋅=⎪⎭⎫ ⎝⎛-⋅===⋅=⎪⎭⎫ ⎝⎛⋅=.,111)1(1;,11)1(1,a b n n a a a a a b a a a a ab b a nnn n nn nnn nn 为奇数,为偶数,常见:4.同底数幂的除法法则:nm nmaaa-=÷(n m a ,,0≠都是正整数,且)n m >同底数幂相除,底数不变,指数相减。

如:3334)()()(b a ab ab ab ==÷ 同底数幂的除法法则可以逆用:即nmnm pa aaa ÷==-如:已知3,537==x x ,则353537374=÷=÷==-x x xx5.零指数幂: 10=a ,即任何不等于零的数的零次方等于1。

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总整式乘除与因式分解一、知识点1.幂的运算性质:同底数幂相乘,底数不变,指数相加。

即,am·an=am+n(m、n为正整数)。

例如:(-2a)2(-3a2)3 = 4a2·-27a6 = -108a8.2.幂的乘方性质:幂的乘方,底数不变,指数相乘。

即,a(mn)=(am)n(m、n为正整数)。

例如:(-a5)5 = (-1)5·a25 = a25.3.积的乘方性质:积的乘方等于各因式乘方的积。

即,(ab)n = an·bn(n为正整数)。

例如:(-a2b)3 = (-1)3·a6·b3 = -a6b3.4.幂的除法性质:同底数幂相除,底数不变,指数相减。

即,a/m ÷ a/n = a(m-n)(a≠0,m、n都是正整数,且m>n)。

例如:(1) x8÷x2 = x6;(2) a4÷a = a3;(3) (ab)5÷(ab)2 = a3b3.5.零指数幂的概念:a0 = 1(a≠0)。

任何一个不等于零的数的零指数幂都等于1.例如:若(2a-3b)0=1成立,则a,b满足任何条件。

6.负指数幂的概念:a-p = 1/ap(a≠0,p是正整数)。

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数。

例如:(m/n)-2 = n2/m2.7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:(1) 3a2b·2abc·abc2 = 6a4b2c3;(2) (-m3n)3·(-2m2n)4 = -8m14n7.8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加。

例如:(1) 2ab(5ab+3ab) = 16a2b2;(2) (ab2-2ab)·ab = a2b3-ab2.9.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

苏科版七年级数学下册 幂运算、整式的乘法和因式分解 知识点与例题讲解(无答案)

苏科版七年级数学下册  幂运算、整式的乘法和因式分解 知识点与例题讲解(无答案)

幂运算、整式的乘法和因式分解幂的运算一、同底数幂的乘法1、法则:a m·a n·a p·……=a m+n+p+……(m、n、p……均为正整数)文字:同底数幂相乘,底数不变,指数相加。

2、注意事项:(1)a可以是实数,也可以是代数式等。

(2)一定要“同底数幂”“相乘”时,才能把指数相加。

(3)如果是二次根式或者整式作为底数时,要添加括号。

二、幂的乘方1、法则:(a m)n=a mn(m、n均为正整数)。

推广:{[(a m)n]p}s=a mn p s文字:幂的乘方,底数不变,指数相乘。

2、注意事项:(1)a可以是实数,也可以是代数式等。

(2)运用时注意符号的变化。

(3)注意该法则的逆应用,即:a mn=(a m)n,三、积的乘方1、法则:(ab)n=a n b n(n为正整数)。

推广:(acde)n=a n c n d n e n文字:积的乘方等于把积的每一个因式都分别乘方,再把所得的幂相乘。

2、注意事项:(1)a、b可以是实数,也可以是代数式等。

(2)运用时注意符号的变化。

(3)注意该法则的逆应用,即:a n b n=(ab)n;四、同底数幂的除法1、法则:a m÷a n=a m-n(m、n均为正整数,m>n,a≠0)文字:同底数幂相除,底数不变,指数相减。

2、注意事项:(1)a可以是实数,也可以是代数式等。

(2)注意a≠0这个条件。

(3)注意该法则的逆应用,即:a m-n=a m÷a n;整式的乘法一、单项式与单项式相乘法则:单项式与单项式相乘,只要将它们的系数与系数相乘,相同字母的幂相乘,多余的字母照搬到最后结果中。

二、单项式与多项式相乘法则:(乘法分配律)只要将单项式分别去乘以多项式的每一项,再将所得的积相加。

三、多项式与多项式相乘法则:(1)将一个多项式中的每一项分别乘以另一个多项式的每一项,再将所得的积相加。

如:(m+n)(a+b)=ma+mb+na+nb(2)把其中一个多项式看成一个整体(单项式),去乘以另一个多项式的每一项,再按照单项式与多项式相乘的法则继续相乘,最后将所得的积相加。

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总整式乘除与因式分解在研究代数的过程中,整式乘除与因式分解是非常重要的知识点。

下面将对这些知识点进行详细讲解。

一.幂的运算性质幂的运算性质是代数中最基本的知识之一。

其中,同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘。

例如,对于表达式(-2a)2(-3a2)3,可以先计算幂的乘方,然后再将同底数幂相乘。

二.乘方的运算乘方的运算也是代数中的基本知识。

根据乘方的运算法则,积的乘方等于各因式乘方的积。

例如,对于表达式(-a5)5,可以将其分解为a的5次方的积,然后再进行乘方运算。

三.同底数幂的除法同底数幂的除法也是代数中的基本知识之一。

根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减。

例如,对于表达式x÷x,可以将其化简为x的0次方,即1.四.零指数幂和负指数幂在代数中,零指数幂和负指数幂也是非常重要的概念。

任何一个不等于零的数的零指数幂都等于1;任何一个不等于零的数的负指数幂,等于这个数的指数幂的倒数。

例如,对于表达式(2a3b)1,可以通过代数式的运算,求出a和b的取值范围。

五.单项式和多项式的乘法单项式和多项式的乘法也是代数中的基本知识之一。

对于单项式相乘,需要将系数和同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

对于单项式与多项式相乘,需要用单项式和多项式的每一项分别相乘,再把所得的积相加。

对于多项式与多项式相乘,需要先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。

通过对整式乘除与因式分解的研究,可以更好地理解代数的基本概念和运算法则,为后续的研究打下坚实的基础。

1.计算 (3×10^8)×(-4×10^4) = -1.2×10^132.计算 2x·(-2xy)·(-3) = 12x^2y3.若n为正整数,且x^(2n)=3,则(3x^(3n))^2的值为 274.如果 (anb·abm)^3 = a^9b^15,那么 mn 的值是 55.-[-a^2(2a^3-a)] = 2a^5 - a^36.(-4x^2+6x-8)·(-1/2x) = 2x^3-3x^2+4x7.2n(-1+3mn^2) = -6mn^2+2n8.若 k(2k-5)+2k(1-k) = 32,则 k = 49.(-3x^2)+(2x-3y)(2x-5y)-3y(4x-5y) = -10x^2+31xy-15y^210.在 (ax^2+bx-3)(x^2-x+8) 的结果中不含 x^3 和 x 项,则a = 1/2,b = -311.一个长方体的长为 (a+4)cm,宽为 (a-3)cm,高为(a+5)cm,则它的表面积为 2a^2+22a+32,体积为 (a+4)(a-3)(a+5) = a^3+6a^2-7a-60.若将长方形的长和都扩大了2cm,则面积增大了 8cm^2.12.一个长方形的长是 10cm,宽比长少6cm,则它的面积是 40cm^2.当长和都扩大了2cm时,面积增大了 44cm^2.13.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式。

幂的运算、整式的乘法与因式分解 复习

幂的运算、整式的乘法与因式分解  复习

期中复习:幂的运算、整式的乘法与因式分解班级 姓名 学号知识点归纳 (重点) 1.幂的运算性质:a m ·a n = (m 、n 为正整数) 同底数幂 ,底数 ,指数 .例:(-2a )2(-3a 2)32.()nm a = (m 、n 为正整数)幂的 ,底数 ,指数 .例: (-a 5)53.()n n n b a ab = (n 为正整数) 的乘方等于 的积.例:(-a 2b )34.nma a ÷= (a ≠0,m 、n 都是正整数)同底数幂 ,底数 ,指数 . 例:(1)x 8÷x 2 (2)a 4÷(—a ) (3)(ab )5÷(a b )2(4)已知102m=,103n=,则3210m n+=____________(5)若n 为正整数,且x 2n=3,则(3x 3n )2的值为 (6)如果(a nb ·ab m )3=a 9b 15,那么mn 的值是5.零指数幂的概念: a 0= (a ≠ )任何一个 的数的零指数幂都等于 . 例:若1)32(0=-b a 成立,则b a ,满足条件是6.负指数幂的概念: a -p = (a ≠0,p 是正整数)也可表示为:pp n m m n ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=(m ≠0,n ≠0,p 为正整数) 7.单项式的乘法法则:单项式相乘,把 、 分别相乘,作为积的因式;对于只在一个单项式里含有的字母, .例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的 ,再把所得的积相加.例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅-9.多项式与多项式的乘法法则:多项式与多项式相乘,先 ,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-((4)在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b = 10.乘法公式:①平方差公式: 文字语言叙述: .例1: (1)(7+6x)(7−6x); (2)(3y + x)(x−3y); (3)(−m +2n)(−m−2n).②完全平方公式: 和 文字语言叙述: .例2: (1) (x+6)2 (2) (y-5)2 (3) (-2x+5)2例3: (1)已知x +y =7,xy =12,求(x -y )2;(2)已知a +b =8,a -b =2,求ab 的值.11.因式分解(难点)(1)定义.把一个多项式化成 的形式,这种变形叫做把这个多项式因式分解. 例.下列从左到右的变形是因式分解的是 ( )A .ma +mb -c =m (a +b )-cB .(a -b )(a 2+ab +b 2)=a 3-b 3C .a 2-4ab +4b 2-1=a (a -4b )+(2b +1)(2b -1)D .4x 2-25y 2=(2x +5y )(2x -5y ) (2)方法1、提公因式法公因式的构成:①系数一 ;②字母—— ;③指数—— ;例:(1)323812a b ab c + (2)—35247535x y x y -2、公式法 平方差公式: a 2-b 2=完全平方公式:a 2+2ab +b 2=a 2-2ab +b 2=例:(1)2220.25a b c - (2)29()6()1a b b a -+-+(3)42222244a x a x y x y -+ (4)22()12()36x y x y z z +-++(5)已知15x x +=,那么221x x +=_______;21x x ⎛⎫- ⎪⎝⎭=_______(6)若22916x mxy y ++是一个完全平方式,那么m 的值是__________ (7)若224x x m ++是完全平方式,则m 的值等于_____ (8)已知2246130a b a b +--+=,则a+b=_________(9) 已知a 、b 、c 为三角形的三边长,且满足2222a bc c ab -=-,则三角形的形状是_______.课堂练习一、选择题1.计算(a 3)2的结果是 ( )A .a 5B .a 6C .a 8D .a 92.下列运算正确的是 ( )A .a 2·a 3=a 4B .(-a )4=a 4C .a 2+a 3=a 5D .(a 2)3=a 53.已知x -3y =-3,则5-x +3y 的值是 ( ) A .0 B .2 C .5 D .84.若m +n =3,则2m 2+4mn +2n 2-6的值为 ( ) A .12 B .6 C .3 D .05.如图15-4所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),把余下的部分拼成一个矩形,根据两个图形中阴影部分的面积相等,可以验证 ( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 26.下列各式中,与(a -b )2一定相等的是 ( )A .a 2+2ab +b 2B .a 2-b 2C .a 2+b 2D .a 2-2ab +b 07.已知x +y =-5,xy =6,则x 2+y 2的值为 ( ) A .1 B .13 C .17 D .25 8.下列从左到右的变形是因式分解的是 ( ) A .ma +mb -c =m (a +b )-cB .(a -b )(a 2+ab +b 2)=a 3-b 3C .a 2-4ab +4b 2-1=a (a -4b )+(2b +1)(2b -1)D .4x 2-25y 2=(2x +5y )(2x -5y )9.下列各式中,能用平方差公式分解因式的是 ( )A .-a 2+b 2B .-a 2-b 2C .a 2+b 2D .a 3-b 310.如果(x -2)(x -3)=x 2+px +q ,那么p ,q 的值是 ( ) A .p =-5,q =6 B .p =1,q =-6 C .p =1,q =6 D .p =5,q =-6 二、填空题11.已知10m =2,10n =3,则103m +2n= .12.当x =3,y =1时,代数式(x +y )(x -y )+y 2的值是 . 13.若a -b =1,ab =-2,则(a +1)(b -1)= .14.分解因式:2m 3-8m = . 15.已知y =31x -1,那么31x 2-2xy +3y 2-2的值为 . 16.计算:5752×12-4252×12= . 17.若(9n )2=38,那么n = .18.如果x 2+2kx +81是一个完全平方式,那么k 的值为 .19.多项式9x 2+1加上一个单项式后,使它成为一个整式的完全平方式,.那么加上的单项式是 .(填一个你认为正确的即可)20.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b )2=a 2+2ab+b 2.你根据图乙能得到的数学公式是_________________三、解答题 21.化简.(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅(7)(-a )7÷(-a )5 (8) (-b ) 5÷(-b )2(9)-(m -2n )+5(m +4n )-2(-4m -2n ); (10)3(2x +1)(2x -1)-4(3x +2)(3x -2);(11)20002-1999×2001.22.分解因式.(1)m 2n (m -n )2-4mn (n -m ); (2)(x +y )2+64-16(x +y ).23.已知a ,b 是有理数,试说明a 2+b 2-2a -4b +8的值是正数.24.先化简,再求值:(a +b )(a -b )+(4ab 3-8a 2b 2)÷4ab ,其中a =2,b =1.25.给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.练习:(3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(2322 1、()()4352aa -⋅-=_______。

整式的乘法、因式分解、分式 标准

整式的乘法、因式分解、分式 标准

整式的乘法与因式分解重点:整式的乘除法和因式分解,特别是作为乘、除运算基础的是幂的运算.难点:充分理解并掌握幂的运算性质.易错点:1.在幂的运算中,由于法则掌握不准出现错误;2有关多项式的乘法计算出现错误;3.误用同底数幂的除法法则;4.用单项式除以单项式法则或多项式除以单项式法则出错;5.乘除混合运算顺序出错。

6.错误的运用平方差公式和完全平方公式。

7.用提公因式法分解因式时易出现漏项,丢系数或符号错误;分解因式不彻底。

【知识梳理】1.科学计数法:a×10n(其中1≤|a|<10)。

2.同底数幂的乘法:底数不变,指数相加;x n∙x m=x n+m(m、n都是正整数)。

3.幂的乘方:底数不变,指数相乘;(a m)n=a mn(m、n都是正整数)。

4.积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘;(ab)n=a n b n(n为正整数)。

5.同底数幂的除法:底数不变,指数相减;a m÷a n=a m-n(a≠0,m、n为正整数,且m>n).6.单项式与单项式相乘:把它们的系数、相同字母分别相乘,对于只有一个因式的则连同它的指数作为积的一个因式。

例如:2x2yz2∙(-5x3y2)=[2×(-5)](x2∙x3)(y∙y2)z2= -10x5y3z27.单项式与多项式相乘:用单项式去乘多项式的每一项,再把所得的积相加;即m(a+b+c)=ma+mb+mc.8.多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;即(a+b)(m+n)=am+bm+an+bn.9.单项式除以单项式:把单项式的系数、同底数幂分别相除后,作为商的因式;归纳拓展:对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例如:2x2y4z÷3x2y3=(x2÷x2)(y4÷y3)z=yz10.多项式除以单项式:先把这个多项式分别除以这个单项式,再把所得的商相加。

专题(十一) 幂的运算五大类型

专题(十一) 幂的运算五大类型

解:-48x6
(3)(a-b)(b-a)3· (b-a)4. 解:-(a-b)8
类型二:逆用幂的公式运算
2.计算:0.252017×42018-8100×0.5300. 解:3
3.(1)已知ma=3,mb=5,求m3a+2b的值; 解:∵m3a+2b=(ma)3· (mb)2=33×52=675
4.求32020的个位数字. 解:31=3,32=9,33=27,34=81,35=243,36=729,它们的个 位数字按3,9,7,1的规律依次循环出现,要求32020的个位数字,只 要将2020除以4即可,2020÷4=505,刚好整除,所以它的个位数字
是1
5.试判断212×58的结果是一个几位正整数? 解:212×58=28×58×24=108×16=1.6×109,故212×58是十位 正整数
类型五:判断是否整除 方法技巧:利用幂的性质将式子转化为用除数表示.
8.+1×2n-3n×6n+2(n为整数),能被13整除吗?并说明理由.
解:它能被13整除,理由:原式=52×(32n×3)×2n-3n×(6n×62)
Байду номын сангаас
=75×18n-36×18n=39×18n=13×3×18n,∴它能被13整除
八年级上册人教版数学 第十四章 整式的乘法与因式分解
专题(十一) 幂的运算五大类型
类型一:直接运用幂的运算公式 方法技巧:am· an=am+n(m,n都是正整数),(am)n=amn(m,n都是整数), (ab)n=anbn(n是正整数).
1.计算: (1)-22(x3)2· (x2)4-(x2)5· (x2)2; 解:-5x14 (2)(-4x3)2-[(-2x)2]3;
(2)已知275=9×3m,求m的值.

初中数学整式的乘除与因式分解知识点归纳!

初中数学整式的乘除与因式分解知识点归纳!

初中数学整式的乘除与因式分解知识点归纳!整式的乘除一、幂的运算1. 同底数幂的乘法:同底数幂相乘,底数不变,指数相加。

即:a m·a n=a m+n<>n>(m,n为正整数)2. 幂的乘方:幂的乘方,底数不变,指数相乘。

即:(a m)n=a mn(m,n为正整数)3. 积的乘方:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

即:(ab)n=a n b n(n为正整数)4. 同底数幂的除法:同底数幂相除,底数不变,指数相减。

即:a m÷a n=a m-n<>n>(m、n是正整数且m>n,a≠0)二、整式的乘法运算1. 单项式与单项式相乘:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

2. 单项式与多项式相乘:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

3. 多项式与多项式相乘:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

三、整式的除法运算1. 单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。

2. 多项式除以单项式:多项式除以单项式,先把多项式的每一项分别除以这个单项式,再把所得的商相加。

四、常用乘法公式:1. 平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差即:(a+b)(a-b)=a2-b22. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

即:(a±b)2=a2±2ab+b2因式分解一、因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

2. 因式分解与整式乘法的关系:因式分解与整式乘法都是整式变形,两者互为逆变形。

代数复习:幂的运算、整式乘法与因式分解

代数复习:幂的运算、整式乘法与因式分解

二.代数式的运算(一)整式的运算:整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.整式的乘除幂的运算1.概念:a a正数的任何次幂都是正数;负数的奇数次幂是负数;负数的偶数次幂是正数2.运算:注意:1)底数a不能为0,若a为0,则除数为0,除法就没有意义了.2)只要底数不为0,则任何数的零次方都等于1整式乘法:②单项式相乘:两个单项式相乘,把系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.③单项式与多项式相乘:单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加.用式子表达:④多项式与多项式相乘:一般地,多项式乘以多项式,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.用式子表达:因式分解:把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解.因式分解的两种基本方法:①提公因式法:指数底数幂②运用公式法:平方差公式:完全平方公式:十字相乘法:探索:阅读理解。

(1)计算后填空:①(x+1)(x+2)=②(x+3)(x-1)=(2)归纳、猜想后填空:(x+a )(x+b )=a 2+(_____)x+_____(3)运用(2)的猜想结论,直接写出计算结果:(x+2)(x+m )=_________(4)根据你的理解,把下列多项式因式分解:①x 2-5x+6=_________;②x 2-3x-10=_________第一部分:幂的运算例题:考点1.幂的运算法则例1. 计算(1)26()a a -⋅; (2) 32()()a b b a -⋅-; (3)12()n a +;(4)2232⎪⎭⎫ ⎝⎛-xy (5)53()a a -÷; (6)32(1)(1)a a +÷+ 变式 计算(1)35(2)(2)(2)b b b +⋅+⋅+ (2)3223()()x x -⋅-; (3)41n n a a ++÷;考点2.幂的法则的逆运算 例2.(1)已知23m =,24n =,求2m n +的值; (2)比较55544433334,5,的大小(3)计算:2013201253()(2)135⨯ (4)已知323=+n m ,求n m 48⋅的值变式1.若n 为正整数,且72=n x ,求n n x x 2223)(4)3(-的值;2.已知4432=--c b a ,求4)161(84-⨯÷c b n 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算、整式乘法、因式分解内容精要:1、公式同底数幂的乘法:n m n m aa a +=∙(m 、n 都是整数) 幂的乘方:()mn n m a a =(m 、n 都是整数)积的乘方:()n n nb a ab =(m 、n 都是整数) 同底数幂的除法:()n m a a a a n m n m ,,0≠=÷-都是整数零指数幂:()010≠=a a 负整数指数幂:nn a a 1=-(0≠a ,n 是整数) 乘法公式:平方差公式:()()22b a b a b a -=-+完全平方式()2222b ab a b a +=± 2、运算法则⑴单项式乘以单项式的运算法则单项式乘以单项式,把他们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同他的指数最为积的一个因式。

【注意】单项式乘以单项式运算三步走①:系数相乘,包括符号;②同底数幂相乘运算;③指在一个单项式含有的字母及其指数的处理⑵单项式和多项式相乘的运算法则。

用单项式乘以多项式的每一项,在把所得的积相加,即()()c b a m mc mb ma c b a m ...++=++都是单项式。

(3)多项式和多项式相乘原则多项式和多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,在把所得的积相加。

即:()()d c b a +∙+=()bd ad bc ac +++,特殊的二项式乘法公式:()()b x a x +∙+=ab ax bx x +++2=()ab x b a x +++23、提取公因式公因式:多项式mc mb ma ++中的每一项都含有一个相同的公因式m ,我们称之为公因式。

对于公因式的定义,要注意两点:一是多项式的每一项都含有它;二是他是多项式的每一项的因式。

提取公因式:把公因式提取出来,多项式mc mb ma ++就可以分解成两个因式m 和a+b+c 的乘积,这种因式分解的方法叫做提公因式法。

⑴提公因式注意的问题②公因式有时候是一个多项式,比如()()n m b n m a +++中的公因式为n m +。

⑵提公因式的步骤①找出多项式各项的公因式;②用多项式的各项依次除以公因式;③把多项式写成两个整式乘积的形式。

⑶找公因式的方法Ⅰ对于系数①如果各项的系数都为整数,取各项系数的最大公约数作为公因式的系数;②如果各项系数中含有分数,则公因式的系数为分数,取所有分数中的最小值;Ⅱ对于字母部分①取各项相同的字母;②相同字母的指数取次数最低的;例题精讲:例1222(1)3(1)a b ab ab ab -++-=2232(3)(23)3(25)x x x x x x ---+--=例2.(3x 2+2x +1)(2x 2+3x -1)例3:()()=+--+c a b c b a()()z y x z y x --++=同步练习一、选择题1、计算22232)3(2)(b a b a b a -⋅+-的结果为( )A. 3617b a -B. 3618b a -C. 3617b aD. 3618b a2、22343)()2(yc x y x -⋅-等于( )A. 214138c y x -B. 214138c y xC. 224368c y x -D. 224368c y x3、(x 2-px +3)(x -q )的乘积中不含x 2项,则( )A .p =qB .p =±qC .p =-qD .无法确定 4、若2x 2+5x +1=a (x +1)2+b (x +1)+c ,那么a ,b ,c 应为( )A .a =2,b =-2,c =-1B .a =2,b =2,c =-1C .a =2,b =1,c =-2D .a =2,b =-1,c =25、多项式))(())((x b x a ab b x x a a --+---的公因式是( )A 、-a 、B 、))((b x x a a ---C 、)(x a a -D 、)(a x a --6、若22)32(9-=++x kx mx ,则m ,k 的值分别是( )A 、m=—2,k=6,B 、m=2,k=12,C 、m=—4,k=—12、D m=4,k=-12、7、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公式分解因式的有( )A 、1个B 、2个C 、3个D 、4个8、计算)1011)(911()311)(211(2232---- 的值是( ) A 、21, B 、2011.,101.,201D C 二、填空题1、228(34)(3)m m m m m -+--= 。

2、._______________)104)(105.2)(102.1(9113=⨯⨯⨯3、若(x 2+ax +8)(x 2-3x +b )的乘积中不含x 2和x 3项,则a =_______,b =_______.4、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。

5、22)(n x m x x -=++则m =____ n =____6、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。

7、_____))(2(2(_____)2++=++x x x x 8、若442-+x x 的值为0,则51232-+x x 的值是________。

9、若6,422=+=+y x y x 则=xy ___ 。

三、化简111()()(2)326a a b a b a b -++---223121(3)()232x y y xy +-⋅-四、因式分解1、a 3+b 3+c 3-3abc 2、x 3-9x+82、(x 2+3x+2)(4x 2+8x+3)-90 3、(x 2+x+1)(x 2+x+2)-124、(2x 2-3x+1)2-22x 2+33x -1 5、6x 4+7x 3-36x 2-7x+66、(x+y)3+2xy(1-x -y)-1 7、 15x 2-42x+24课后作业:一、选择题(20分)1、下列多项式中,可以提取公因式的是( )A 、22y x -B 、x x +2C 、y x -2D 、222y xy x ++2、化简33)(x x -⋅的结果是( )A 、6x -B 、6xC 、5xD 、5x -3、下列两个多项式相乘,不能用平方差公式的是( )A 、)32)(32(b a b a ++-B 、)32)(32(b a b a --+-C 、)32)(32(b a b a --+D 、)32)(32(b a b a ---4、下列运算正确的是( )A 、a b a b a 2)(222++=+B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+5、下列多项式中,没有公因式的是( )A 、()y x a +和(x +y )B 、()b a +32和()b x +-C 、()y x b -3和 ()y x -2D 、()b a 33-和()a b -66、若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±247、下列四个多项式是完全平方式的是( )A 、22y xy x ++B 、222y xy x --C 、22424n mn m ++D 、2241b ab a ++8、已知a 、b 是△ABC 的的两边,且a 2+b 2=2ab ,则△ABC 的形状是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、不确定9、下面是某同学的作业题:○13a+2b=5ab ○24m 3n-5mn 3=-m 3n ○35236)2(3x x x -=-⋅ ○44a 3b ÷(-2a 2b)=-2a○5(a 3)2=a 5 ○6(-a)3÷(-a)=-a 2 其中正确的个数是( )A 、1B 、2C 、3D 、410、()()1333--⋅+-m m 的值是( )A 、1B 、-1C 、0D 、()13+-m二、填空题(30分)(-x 3y )2= (x 2)3÷x 5=12、分解因式: x 2+y 2-2xy=13、计算:(-8)2004 (-0.125)2003= ,22005-22004= .14、若A =3x -2,B =1-2x ,C =-5x ,则A ·B +A ·C = .15、x n =5,y n =3,则(xy)2n = 若2x =m ,2y =n ,则8x+y = .16、已知x +y =1,那么221122x xy y ++的值为_______. 17、在多项式4x 2+1中添加 ,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是18、若0a >且2x a =,3y a =,则x y a -的值为______19.计算:2(2)a a -÷= .(-2a)·(14a 3)=______ 20、化简(200920083)31∙- =三、计算(15分)21、(2m-3)(2m+5) 22、20052-2006×200423、4(x+1)2-(2x+5)(2x-5)24、()()()()232233574x xy xy xy y y x -⋅--⋅-+- 25、()()()737355322+---a a a四、分解因式(20分)26、(m+1)(m-1)-(1-m) 27、2241y x +-28、6xy 2-9x 2y-y 3 29、(2a-b)2+8ab29、2222c b ab a -+- 30、x a a x 2222---31、342+-x x 32、24822--x x33、y xy y x 3652-+ 34、1002924+-x x五、解答下列问题(9分)35、已知,8=+n m ,15=mn 求22n mn m +-的值36、已知;,012=-+a a 求1999223++a a 的值37、先化简,再求值:223(2)()()a b ab b b a b a b --÷-+- 其中112a b ==-,.六、解答下列问题(6分)38、计算:=+--⋅⋅⋅---20191832222222___________.39、阅读:分解因式x 2+2x-3解:原式=x 2+2x+1-1-3=(x 2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法。

相关文档
最新文档